1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 // This is the common header for the input and filter backprop kernels. 17 // 18 // The operation to compute Conv2D gradients. 19 // 20 // To compute the gradients for Conv2D, we need three input tensors: 21 // input, filter, and backprop for output. 22 // And we need to compute two backprops: one for input and one for filter. We 23 // compute them in two different kernels. 24 // 25 // Both backprops can be computed as straightforward conv2d. 26 // 27 // Consider a case where the input is 3x3 and the filter is 2x1: 28 // 29 // INPUT = [ A B C ] 30 // [ D E F ] 31 // [ G H I ] 32 // 33 // where each "A", "B", etc is batch x in_depth 34 // 35 // FILTER = [ X Y ] 36 // 37 // where both "X" and "Y" are in_depth x out_depth 38 // 39 // With VALID padding, the output is 3x2: 40 // 41 // OUTPUT = [ a b ] 42 // [ c d ] 43 // [ e f ] 44 // 45 // where each "a", "b", etc is batch x out_depth 46 // 47 // So we have: 48 // 49 // a = A * X + B * Y 50 // b = B * X + C * Y 51 // c = D * X + E * Y 52 // d = E * X + F * Y 53 // e = G * X + H * Y 54 // f = H * X + I * Y 55 // 56 // So when we have backprops for the outputs (we denote them by 57 // a', b', ... ): 58 // 59 // The backprops for the input are: 60 // 61 // A' = a' * X^t 62 // B' = a' * Y^t + b' * X^t 63 // C' = b' * Y^t 64 // ... 65 // 66 // This is essentially computing a 2d conv of 67 // 68 // INPUT = [ 0 a' b' 0 ] 69 // [ 0 c' d' 0 ] 70 // [ 0 e' f' 0 ] 71 // and 72 // 73 // FILTER = [ Y^t X^t ] 74 // 75 // The backprops for the filter are: 76 // 77 // X' = A^t * a' + B^t * b' + D^t * c' + E^t * d' + G^t * e' + H^t * f' 78 // Y' = B^t * a' + C^t * b' + E^t + c' + F^t * d' + H^t * e' + I^t * f' 79 // 80 // This is essentially computing a 2d conv of 81 // 82 // INPUT = [ A^t B^t C^t ] 83 // [ D^t E^t F^t ] 84 // [ G^t H^t I^t ] 85 // 86 // and 87 // 88 // FILTER = [ a' b' ] 89 // [ c' d' ] 90 // [ e' f' ] 91 // 92 // 93 ////////////////////////////////////////////////////////// 94 // 95 // With stride more than one, it's a bit more complicated (we will need to 96 // create holes to the backprop). 97 // 98 // Consider the case where 99 // 100 // INPUT = [ A B C D E ] 101 // [ F G H I J ] 102 // [ K L M N O ] 103 // and 104 // 105 // FILTER = [ X Y Z ] 106 // 107 // with stride 2. 108 // 109 // The output will be 110 // 111 // OUTPUT = [ a b ] 112 // [ c d ] 113 // 114 // where: 115 // 116 // a = A * X + B * Y + C * Z 117 // b = C * X + D * Y + E * Z 118 // c = K * X + L * Y + M * Z 119 // d = M * X + N * Y + O * Z 120 // 121 // 122 // To compute the backprop for INPUT, we need to convolve 123 // 124 // INPUT = [ 0 0 a' 0 b' 0 0 ] 125 // [ 0 0 0 0 0 0 0 ] 126 // [ 0 0 c' 0 d' 0 0 ] 127 // 128 // (notice the holes in INPUT) 129 // 130 // and 131 // 132 // FILTER = [ Z^t Y^t X^t ] 133 // 134 // with stride 1. 135 // 136 // To compute the backprop for FILTER, we need to convolve 137 138 // 139 // INPUT = [ A^t B^t C^t D^t E^t ] 140 // [ F^t G^t H^t I^t J^t ] 141 // [ K^t L^t M^t N^t O^t ] 142 // and 143 // 144 // FILTER = [ a' 0 b' ] 145 // [ 0 0 0 ] 146 // [ c' 0 d' ] 147 // 148 // (notice the holes in FILTER) 149 // 150 // 151 // with stride 1 152 // 153 ////////////////////////////////////////////////////////// 154 // 155 // 156 // The case for SAME padding is in fact very similar to VALID -- we just 157 // need to pad the input tensor a bit when computing the filter_backprop. 158 159 #ifndef TENSORFLOW_CORE_KERNELS_CONV_GRAD_OPS_H_ 160 #define TENSORFLOW_CORE_KERNELS_CONV_GRAD_OPS_H_ 161 162 #include <vector> 163 164 #include "tensorflow/core/util/padding.h" 165 #include "tensorflow/core/util/tensor_format.h" 166 167 namespace tensorflow { 168 169 // Forward declaration. 170 class OpKernelContext; 171 172 template <typename Device, typename T> 173 struct LaunchConv2DBackpropInputOp { 174 void operator()(OpKernelContext* ctx, bool use_cudnn, bool cudnn_use_autotune, 175 const Tensor& out_backprop, const Tensor& filter, 176 int row_dilation, int col_dilation, int row_stride, 177 int col_stride, const Padding& padding, 178 const std::vector<int64>& explicit_paddings, 179 Tensor* in_backprop, TensorFormat data_format); 180 }; 181 182 template <typename Device, typename T> 183 struct LaunchConv2DBackpropFilterOp { 184 void operator()(OpKernelContext* ctx, bool use_cudnn, bool cudnn_use_autotune, 185 const Tensor& out_backprop, const Tensor& input, 186 int row_dilation, int col_dilation, int row_stride, 187 int col_stride, const Padding& padding, 188 const std::vector<int64>& explicit_paddings, 189 Tensor* filter_backprop, TensorFormat data_format); 190 }; 191 192 #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM 193 template <typename T> 194 struct LaunchConv2DBackpropInputOp<Eigen::GpuDevice, T> { 195 void operator()(OpKernelContext* ctx, bool use_cudnn, bool cudnn_use_autotune, 196 const Tensor& input, const Tensor& filter, int row_dilation, 197 int col_dilation, int row_stride, int col_stride, 198 const Padding& padding, 199 const std::vector<int64>& explicit_paddings, Tensor* output, 200 TensorFormat data_format); 201 }; 202 203 template <typename T> 204 struct LaunchConv2DBackpropFilterOp<Eigen::GpuDevice, T> { 205 void operator()(OpKernelContext* ctx, bool use_cudnn, bool cudnn_use_autotune, 206 const Tensor& out_backprop, const Tensor& input, 207 int row_dilation, int col_dilation, int row_stride, 208 int col_stride, const Padding& padding, 209 const std::vector<int64>& explicit_paddings, 210 Tensor* filter_backprop, TensorFormat data_format); 211 }; 212 #endif // GOOGLE_CUDA || TENSORFLOW_USE_ROCM 213 } // namespace tensorflow 214 215 #endif // TENSORFLOW_CORE_KERNELS_CONV_GRAD_OPS_H_ 216