1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_CUBOID_CONVOLUTIONS_H_
17 #define TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_CUBOID_CONVOLUTIONS_H_
18 
19 #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
20 #include "tensorflow/core/kernels/eigen_volume_patch.h"
21 
22 namespace Eigen {
23 
24 /** CuboidConvolutionBackwardInput
25  * \ingroup CXX11_NeuralNetworks_Module
26  *
27  * \brief Computes the backprop for the input of a 3D convolution.
28  *
29  * The output_backward parameter is expected to be a tensor with a rank of 4 or
30  * more (channels, depth, height, width, and optionally others)
31  * The kernel parameter is expected to be a 5D tensor (filters, channels,
32  * kernel_depth, kernel_height, kernel_width)
33  * output_backward and kernel have to be in the same layout.
34  *
35  * The dimensions of the result will be filters, depth, height, width (and
36  * others if applicable).
37  *
38  * It is possible to swap the order of the depth, width and height dimensions
39  * provided that the same order is used in the input, the kernel, and the
40  * output.
41  *
42  * All dimension orders above are given for col-major, and should be reversed
43  * for row-major.
44  */
45 
46 template <typename OutputBackward, typename Kernel>
47 EIGEN_ALWAYS_INLINE static const typename internal::conditional<
48     internal::traits<OutputBackward>::Layout == ColMajor,
49     TensorReshapingOp<
50         const DSizes<typename internal::traits<OutputBackward>::Index,
51                      internal::traits<OutputBackward>::NumDimensions>,
52         const TensorContractionOp<
53             const array<
54                 IndexPair<typename internal::traits<OutputBackward>::Index>, 1>,
55             const Eigen::TensorForcedEvalOp<const TensorReshapingOp<
56                 const DSizes<typename internal::traits<OutputBackward>::Index,
57                              2>,
58                 const TensorShufflingOp<
59                     const array<
60                         typename internal::traits<OutputBackward>::Index, 5>,
61                     const TensorReverseOp<const Eigen::array<bool, 5>,
62                                           const Kernel>>>>,
63             const TensorReshapingOp<
64                 const DSizes<typename internal::traits<OutputBackward>::Index,
65                              2>,
66                 const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic,
67                                           const OutputBackward>>>>,
68     TensorReshapingOp<
69         const DSizes<typename internal::traits<OutputBackward>::Index,
70                      internal::traits<OutputBackward>::NumDimensions>,
71         const TensorContractionOp<
72             const array<
73                 IndexPair<typename internal::traits<OutputBackward>::Index>, 1>,
74             const TensorReshapingOp<
75                 const DSizes<typename internal::traits<OutputBackward>::Index,
76                              2>,
77                 const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic,
78                                           const OutputBackward>>,
79             const Eigen::TensorForcedEvalOp<const TensorReshapingOp<
80                 const DSizes<typename internal::traits<OutputBackward>::Index,
81                              2>,
82                 const TensorShufflingOp<
83                     const array<
84                         typename internal::traits<OutputBackward>::Index, 5>,
85                     const TensorReverseOp<const Eigen::array<bool, 5>,
86                                           const Kernel>>>>>>>::type
87 CuboidConvolutionBackwardInput(
88     const Kernel& kernel, const OutputBackward& output_backward,
89     typename internal::traits<OutputBackward>::Index inputPlanes,
90     typename internal::traits<OutputBackward>::Index inputRows,
91     typename internal::traits<OutputBackward>::Index inputCols,
92     const DenseIndex plane_stride = 1, const DenseIndex row_stride = 1,
93     const DenseIndex col_stride = 1) {
94   typedef typename internal::traits<OutputBackward>::Index TensorIndex;
95   const TensorRef<const Tensor<typename internal::traits<Kernel>::Scalar,
96                                internal::traits<Kernel>::NumDimensions,
97                                internal::traits<Kernel>::Layout, TensorIndex>>
98       kern(kernel);
99   const TensorRef<
100       const Tensor<typename internal::traits<OutputBackward>::Scalar,
101                    internal::traits<OutputBackward>::NumDimensions,
102                    internal::traits<OutputBackward>::Layout, TensorIndex>>
103       out(output_backward);
104 
105   EIGEN_STATIC_ASSERT(internal::traits<Kernel>::Layout ==
106                           internal::traits<OutputBackward>::Layout,
107                       YOU_MADE_A_PROGRAMMING_MISTAKE);
108 
109   static const bool isColMajor =
110       (internal::traits<OutputBackward>::Layout == ColMajor);
111 
112   static const int NumDims = internal::traits<OutputBackward>::NumDimensions;
113 
114   // Number of filters to apply. This is the same as the output depth of the
115   // result
116   const TensorIndex kernelFilters =
117       isColMajor ? kern.dimensions()[0] : kern.dimensions()[4];
118   // Number of channels. This is the same as the input depth.
119   const TensorIndex kernelChannels =
120       isColMajor ? kern.dimensions()[1] : kern.dimensions()[3];
121   const TensorIndex kernelPlanes =
122       isColMajor ? kern.dimensions()[2] : kern.dimensions()[2];
123   const TensorIndex kernelRows =
124       isColMajor ? kern.dimensions()[3] : kern.dimensions()[1];
125   const TensorIndex kernelCols =
126       isColMajor ? kern.dimensions()[4] : kern.dimensions()[0];
127 
128   const TensorIndex outputPlanes =
129       isColMajor ? out.dimensions()[1] : out.dimensions()[NumDims - 2];
130   const TensorIndex outputRows =
131       isColMajor ? out.dimensions()[2] : out.dimensions()[NumDims - 3];
132   const TensorIndex outputCols =
133       isColMajor ? out.dimensions()[3] : out.dimensions()[NumDims - 4];
134 
135   // TODO(ezhulenev): Add support for inflated strides. Without inflated strides
136   // effective kernel planes/rows/cols are always the same as the kernel itself
137   // (see eigen_spatial_convolutions for details).
138   const TensorIndex kernelPlanesEff = kernelPlanes;
139   const TensorIndex kernelRowsEff = kernelRows;
140   const TensorIndex kernelColsEff = kernelCols;
141 
142   // Computing the forward padding.
143   const TensorIndex forward_pad_top_z = numext::maxi<Index>(
144       0,
145       ((outputPlanes - 1) * plane_stride + kernelPlanesEff - inputPlanes) / 2);
146   const TensorIndex forward_pad_top = numext::maxi<Index>(
147       0, ((outputRows - 1) * row_stride + kernelRowsEff - inputRows) / 2);
148   const TensorIndex forward_pad_left = numext::maxi<Index>(
149       0, ((outputCols - 1) * col_stride + kernelColsEff - inputCols) / 2);
150 
151   const TensorIndex padding_top_z = kernelPlanesEff - 1 - forward_pad_top_z;
152   const TensorIndex padding_top = kernelRowsEff - 1 - forward_pad_top;
153   const TensorIndex padding_left = kernelColsEff - 1 - forward_pad_left;
154 
155   const TensorIndex padding_bottom_z = inputPlanes -
156                                        (outputPlanes - 1) * plane_stride - 2 -
157                                        padding_top_z + kernelPlanesEff;
158   const TensorIndex padding_bottom = inputRows - (outputRows - 1) * row_stride -
159                                      2 - padding_top + kernelRowsEff;
160   const TensorIndex padding_right = inputCols - (outputCols - 1) * col_stride -
161                                     2 - padding_left + kernelColsEff;
162 
163   eigen_assert(padding_top_z >= 0);
164   eigen_assert(padding_top >= 0);
165   eigen_assert(padding_left >= 0);
166   eigen_assert(padding_bottom_z >= 0);
167   eigen_assert(padding_bottom >= 0);
168   eigen_assert(padding_right >= 0);
169 
170   // The kernel has dimensions :
171   //   filters x channels x patch_planes x patch_rows x patch_cols.
172   // We need to reverse the kernel along the spatial dimensions.
173   Eigen::array<bool, 5> kernel_reverse;
174   if (isColMajor) {
175     kernel_reverse[0] = false;
176     kernel_reverse[1] = false;
177     kernel_reverse[2] = true;
178     kernel_reverse[3] = true;
179     kernel_reverse[4] = true;
180   } else {
181     kernel_reverse[0] = true;
182     kernel_reverse[1] = true;
183     kernel_reverse[2] = true;
184     kernel_reverse[3] = false;
185     kernel_reverse[4] = false;
186   }
187 
188   // Reorder the dimensions to:
189   //   filters x patch_planes x patch_rows x patch_cols x channels
190   array<TensorIndex, 5> kernel_shuffle;
191   if (isColMajor) {
192     //  From: filters x channels x planes x rows x cols
193     //  To:   filters x planes x rows x cols x channels
194     kernel_shuffle[0] = 0;
195     kernel_shuffle[1] = 2;
196     kernel_shuffle[2] = 3;
197     kernel_shuffle[3] = 4;
198     kernel_shuffle[4] = 1;
199   } else {
200     //  From: cols x rows x planes x channels x filters
201     //  To:   channels x cols x rows x planes x filters
202     kernel_shuffle[0] = 3;
203     kernel_shuffle[1] = 0;
204     kernel_shuffle[2] = 1;
205     kernel_shuffle[3] = 2;
206     kernel_shuffle[4] = 4;
207   }
208 
209   // Collapse the dims
210   DSizes<TensorIndex, 2> kernel_dims;
211   if (isColMajor) {
212     kernel_dims[0] = kernelFilters * kernelPlanes * kernelRows * kernelCols;
213     kernel_dims[1] = kernelChannels;
214   } else {
215     kernel_dims[1] = kernelFilters * kernelPlanes * kernelRows * kernelCols;
216     kernel_dims[0] = kernelChannels;
217   }
218 
219   // The output_backward has dimensions out_depth X out_planes X out_rows X
220   // out_cols X OTHERS
221   // When we extract the image patches from output_backward, it will have
222   // dimensions:
223   //   out_depth X (patch_planes * patch_rows * patch_cols) X (input_planes *
224   //   input_rows * input_cols * OTHERS)
225   DSizes<TensorIndex, 2> pre_contract_dims;
226   if (isColMajor) {
227     pre_contract_dims[0] =
228         kernelFilters * kernelPlanes * kernelRows * kernelCols;
229     pre_contract_dims[1] = inputPlanes * inputRows * inputCols;
230     for (int i = 4; i < NumDims; ++i) {
231       pre_contract_dims[1] *= out.dimension(i);
232     }
233   } else {
234     pre_contract_dims[1] =
235         kernelFilters * kernelPlanes * kernelRows * kernelCols;
236     pre_contract_dims[0] = inputPlanes * inputRows * inputCols;
237     for (int i = 0; i < NumDims - 4; ++i) {
238       pre_contract_dims[0] *= out.dimension(i);
239     }
240   }
241 
242   // We will contract along the collapsed dimension that contains the
243   // kernelFilters, kernelPlanes, kernelRows and kernelCols.
244   array<IndexPair<TensorIndex>, 1> contract_dims;
245   if (isColMajor) {
246     // col-major: kernel.contract(output.patches)
247     contract_dims[0] = IndexPair<TensorIndex>(0, 0);
248   } else {
249     // row-major: output.patches.contract(kernel)
250     contract_dims[0] = IndexPair<TensorIndex>(1, 1);
251   }
252 
253   // Post contraction, the dimensions of the input_backprop is
254   //  channels X input_planes X input_rows X input_cols X OTHERS
255   DSizes<TensorIndex, NumDims> post_contract_dims;
256   if (isColMajor) {
257     post_contract_dims[0] = kernelChannels;
258     post_contract_dims[1] = inputPlanes;
259     post_contract_dims[2] = inputRows;
260     post_contract_dims[3] = inputCols;
261     for (int i = 4; i < NumDims; ++i) {
262       post_contract_dims[i] = out.dimension(i);
263     }
264   } else {
265     post_contract_dims[NumDims - 1] = kernelChannels;
266     post_contract_dims[NumDims - 2] = inputPlanes;
267     post_contract_dims[NumDims - 3] = inputRows;
268     post_contract_dims[NumDims - 4] = inputCols;
269     for (int i = 0; i < NumDims - 4; ++i) {
270       post_contract_dims[i] = out.dimension(i);
271     }
272   }
273 
274   return choose(
275       Cond<internal::traits<OutputBackward>::Layout == ColMajor>(),
276       kernel.reverse(kernel_reverse)
277           .shuffle(kernel_shuffle)
278           .reshape(kernel_dims)
279           .eval()
280           .contract(output_backward
281                         .extract_volume_patches(
282                             kernelPlanes, kernelRows, kernelCols, 1, 1, 1,
283                             plane_stride, row_stride, col_stride, padding_top_z,
284                             padding_bottom_z, padding_top, padding_bottom,
285                             padding_left, padding_right)
286                         .reshape(pre_contract_dims),
287                     contract_dims)
288           .reshape(post_contract_dims),
289       output_backward
290           .extract_volume_patches(kernelPlanes, kernelRows, kernelCols, 1, 1, 1,
291                                   plane_stride, row_stride, col_stride,
292                                   padding_top_z, padding_bottom_z, padding_top,
293                                   padding_bottom, padding_left, padding_right)
294           .reshape(pre_contract_dims)
295           .contract(kernel.reverse(kernel_reverse)
296                         .shuffle(kernel_shuffle)
297                         .reshape(kernel_dims)
298                         .eval(),
299                     contract_dims)
300           .reshape(post_contract_dims));
301 }
302 
303 /** CuboidConvolutionBackwardKernel
304  * \ingroup CXX11_NeuralNetworks_Module
305  *
306  * \brief Computes the backprop for the filter of a 3D convolution.
307  *
308  * The output_backward parameter is expected to be a tensor with a rank of 4 or
309  * more (channels, depth, height, width, and optionally others)
310  * The kernel parameter is expected to be a 4D tensor (filters, channels,
311  * kernel_depth, kernel_height, kernel_width)
312  * output_backward and kernel have to be in the same layout.
313  *
314  * The dimensions of the result will be filters, depth, height, width (and
315  * others if applicable).
316  *
317  * It is possible to swap the order of the depth, width and height dimensions
318  * provided that the same order is used in the input, the kernel, and the
319  * output.
320  *
321  * All dimension orders above are given for col-major, and should be reversed
322  * for row-major.
323  */
324 template <typename OutputBackward, typename Input>
325 EIGEN_ALWAYS_INLINE static const typename internal::conditional<
326     internal::traits<Input>::Layout == ColMajor,
327     const TensorReverseOp<
328         const Eigen::array<typename internal::traits<Input>::Index,
329                            internal::traits<Input>::NumDimensions>,
330         const Eigen::TensorShufflingOp<
331             const Eigen::array<typename internal::traits<Input>::Index,
332                                internal::traits<Input>::NumDimensions>,
333             const Eigen::TensorReshapingOp<
334                 const Eigen::DSizes<typename internal::traits<Input>::Index,
335                                     internal::traits<Input>::NumDimensions>,
336                 const TensorContractionOp<
337                     const array<
338                         IndexPair<typename internal::traits<Input>::Index>, 1>,
339                     const Eigen::TensorForcedEvalOp<const TensorReshapingOp<
340                         const DSizes<typename internal::traits<Input>::Index,
341                                      2>,
342                         const Eigen::TensorShufflingOp<
343                             const Eigen::array<
344                                 typename internal::traits<Input>::Index,
345                                 internal::traits<Input>::NumDimensions>,
346                             const OutputBackward>>>,
347                     const TensorReshapingOp<
348                         const DSizes<typename internal::traits<Input>::Index,
349                                      2>,
350                         const TensorVolumePatchOp<
351                             Dynamic, Dynamic, Dynamic,
352                             const Eigen::TensorForcedEvalOp<
353                                 const Eigen::TensorShufflingOp<
354                                     const Eigen::array<
355                                         typename internal::traits<Input>::Index,
356                                         internal::traits<Input>::NumDimensions>,
357                                     const Input>>>>>>>>,
358     const TensorReverseOp<
359         const Eigen::array<typename internal::traits<Input>::Index,
360                            internal::traits<Input>::NumDimensions>,
361         const Eigen::TensorShufflingOp<
362             const Eigen::array<typename internal::traits<Input>::Index,
363                                internal::traits<Input>::NumDimensions>,
364             const Eigen::TensorReshapingOp<
365                 const Eigen::DSizes<typename internal::traits<Input>::Index,
366                                     internal::traits<Input>::NumDimensions>,
367                 const TensorContractionOp<
368                     const array<
369                         IndexPair<typename internal::traits<Input>::Index>, 1>,
370                     const TensorReshapingOp<
371                         const DSizes<typename internal::traits<Input>::Index,
372                                      2>,
373                         const TensorVolumePatchOp<
374                             Dynamic, Dynamic, Dynamic,
375                             const Eigen::TensorForcedEvalOp<
376                                 const Eigen::TensorShufflingOp<
377                                     const Eigen::array<
378                                         typename internal::traits<Input>::Index,
379                                         internal::traits<Input>::NumDimensions>,
380                                     const Input>>>>,
381                     const Eigen::TensorForcedEvalOp<const TensorReshapingOp<
382                         const DSizes<typename internal::traits<Input>::Index,
383                                      2>,
384                         const Eigen::TensorShufflingOp<
385                             const Eigen::array<
386                                 typename internal::traits<Input>::Index,
387                                 internal::traits<Input>::NumDimensions>,
388                             const OutputBackward>>>>>>>>::type
389 CuboidConvolutionBackwardKernel(
390     const Input& input, const OutputBackward& output_backward,
391     typename internal::traits<Input>::Index kernelPlanes,
392     typename internal::traits<Input>::Index kernelRows,
393     typename internal::traits<Input>::Index kernelCols,
394     const DenseIndex stridePlanes = 1, const DenseIndex strideRows = 1,
395     const DenseIndex strideCols = 1) {
396   typedef typename internal::traits<Input>::Index TensorIndex;
397   TensorRef<Tensor<typename internal::traits<Input>::Scalar,
398                    internal::traits<Input>::NumDimensions,
399                    internal::traits<Input>::Layout, TensorIndex>>
400       in(input);
401   TensorRef<Tensor<typename internal::traits<OutputBackward>::Scalar,
402                    internal::traits<OutputBackward>::NumDimensions,
403                    internal::traits<OutputBackward>::Layout, TensorIndex>>
404       out(output_backward);
405 
406   EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout ==
407                           internal::traits<OutputBackward>::Layout,
408                       YOU_MADE_A_PROGRAMMING_MISTAKE);
409 
410   static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
411 
412   static const int NumDims = internal::traits<Input>::NumDimensions;
413   EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions ==
414                           internal::traits<OutputBackward>::NumDimensions,
415                       YOU_MADE_A_PROGRAMMING_MISTAKE);
416 
417   // We do not support higher dimensional backward convolutions, or convolutions
418   // without batch dimension.
419   // TODO(ezhulenev): Relax this constraint, and turn on tests without batch
420   // dimension in eigen_backward_cuboid_convolutions_test.cc.
421   EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 5,
422                       YOU_MADE_A_PROGRAMMING_MISTAKE);
423 
424   const TensorIndex inputPlanes =
425       isColMajor ? in.dimension(1) : in.dimension(NumDims - 2);
426   const TensorIndex inputRows =
427       isColMajor ? in.dimension(2) : in.dimension(NumDims - 3);
428   const TensorIndex inputCols =
429       isColMajor ? in.dimension(3) : in.dimension(NumDims - 4);
430 
431   const TensorIndex outputPlanes =
432       isColMajor ? out.dimension(1) : out.dimension(NumDims - 2);
433   const TensorIndex outputRows =
434       isColMajor ? out.dimension(2) : out.dimension(NumDims - 3);
435   const TensorIndex outputCols =
436       isColMajor ? out.dimension(3) : out.dimension(NumDims - 4);
437 
438   // Number of filters. This is the same as the output depth.
439   const TensorIndex kernelFilters =
440       isColMajor ? out.dimension(0) : out.dimension(NumDims - 1);
441   // Number of channels. This is the same as the input depth.
442   const TensorIndex kernelChannels =
443       isColMajor ? in.dimension(0) : in.dimension(NumDims - 1);
444 
445   // Number of batches in the input tensor.
446   const TensorIndex batch =
447       isColMajor ? in.dimension(4) : in.dimension(NumDims - 5);
448 
449   // TODO(ezhulenev): Add support for inflated strides. Without inflated strides
450   // effective kernel planes/rows/cols are always the same as the kernel itself
451   // (see eigen_spatial_convolutions for details).
452   const TensorIndex kernelPlanesEff = kernelPlanes;
453   const TensorIndex kernelRowsEff = kernelRows;
454   const TensorIndex kernelColsEff = kernelCols;
455 
456   // Compute forward padding from input and output_backward dimensions.
457   const TensorIndex padPlanes = numext::maxi<Index>(
458       0, (outputPlanes - 1) * stridePlanes + kernelPlanesEff - inputPlanes);
459   const TensorIndex padRows = numext::maxi<Index>(
460       0, (outputRows - 1) * strideRows + kernelRowsEff - inputRows);
461   const TensorIndex padCols = numext::maxi<Index>(
462       0, (outputCols - 1) * strideCols + kernelColsEff - inputCols);
463 
464   const TensorIndex padding_top_z = padPlanes / 2;
465   const TensorIndex padding_top = padRows / 2;
466   const TensorIndex padding_left = padCols / 2;
467 
468   // Compute paddings for output_backward before extracting patches.
469   const auto expanded_out_planes = (outputPlanes - 1) * stridePlanes + 1;
470   const auto expanded_out_rows = (outputRows - 1) * strideRows + 1;
471   const auto expanded_out_cols = (outputCols - 1) * strideCols + 1;
472   const auto padded_out_planes = inputPlanes + kernelPlanes - 1;
473   const auto padded_out_rows = inputRows + kernelRows - 1;
474   const auto padded_out_cols = inputCols + kernelCols - 1;
475   const auto top_pad_planes = kernelPlanes - 1 - padding_top_z;
476   const auto top_pad_rows = kernelRows - 1 - padding_top;
477   const auto left_pad_cols = kernelCols - 1 - padding_left;
478   const auto bottom_pad_planes =
479       padded_out_planes - expanded_out_planes - top_pad_planes;
480   const auto bottom_pad_rows =
481       padded_out_rows - expanded_out_rows - top_pad_rows;
482   const auto right_pad_cols =
483       padded_out_cols - expanded_out_cols - left_pad_cols;
484 
485   // Reorder output_backward dimensions.
486   array<TensorIndex, 5> output_backward_shuffle;
487   if (isColMajor) {
488     // From: [out_depth, out_planes, out_rows, out_cols, batch]
489     // To:   [batch, out_planes, out_rows, out_cols, out_depth]
490     output_backward_shuffle = {4, 1, 2, 3, 0};
491   } else {
492     // From: [batch, out_cols, out_rows, out_planes, out_depth]
493     // To:   [out_depth, out_cols, out_rows, out_planes, batch]
494     output_backward_shuffle = {4, 1, 2, 3, 0};
495   }
496 
497   // Reorder input dimensions.
498   array<TensorIndex, 5> input_shuffle;
499   if (isColMajor) {
500     // From: [in_depth, in_planes, in_rows, in_cols, batch]
501     // To:   [in_depth, batch, in_planes, in_rows, in_cols]
502     input_shuffle = {0, 4, 1, 2, 3};
503   } else {
504     // From: [batch, in_cols, in_rows, in_planes, in_depth]
505     // To:   [in_cols, in_rows, in_planes, batch, in_depth]
506     input_shuffle = {1, 2, 3, 0, 4};
507   }
508 
509   // Input is playing the role of a "kernel" in this convolution.
510   DSizes<TensorIndex, 2> input_dims;
511   if (isColMajor) {
512     input_dims[0] = kernelChannels;
513     input_dims[1] = batch * inputPlanes * inputRows * inputCols;
514   } else {
515     input_dims[1] = kernelChannels;
516     input_dims[0] = inputCols * inputRows * inputPlanes * batch;
517   }
518 
519   // Molds the output of the patch extraction result into a 2D tensor:
520   // - the first dimension (dims[0]): the patch values to be multiplied with the
521   // kernels
522   // - the second dimension (dims[1]): everything else
523   DSizes<TensorIndex, 2> pre_contract_dims;
524   if (isColMajor) {
525     pre_contract_dims[0] = batch * inputPlanes * inputRows * inputCols;
526     pre_contract_dims[1] =
527         kernelPlanes * kernelRows * kernelCols * kernelFilters;
528   } else {
529     pre_contract_dims[1] = inputCols * inputRows * inputPlanes * batch;
530     pre_contract_dims[0] =
531         kernelFilters * kernelCols * kernelRows * kernelPlanes;
532   }
533 
534   // We will contract along the collapsed dimension that contains the
535   // batch, inputPlanes, inputRows and inputCols.
536   array<IndexPair<TensorIndex>, 1> contract_dims;
537   contract_dims[0] = IndexPair<TensorIndex>(1, 0);
538 
539   // Dimensions after contraction.
540   DSizes<TensorIndex, NumDims> post_contract_dims;
541   if (isColMajor) {
542     post_contract_dims[0] = kernelChannels;
543     post_contract_dims[1] = kernelPlanes;
544     post_contract_dims[2] = kernelRows;
545     post_contract_dims[3] = kernelCols;
546     post_contract_dims[4] = kernelFilters;
547   } else {
548     post_contract_dims[0] = kernelFilters;
549     post_contract_dims[1] = kernelCols;
550     post_contract_dims[2] = kernelRows;
551     post_contract_dims[3] = kernelPlanes;
552     post_contract_dims[4] = kernelChannels;
553   }
554 
555   // Reorder output of contraction to valid filter shape.
556   array<TensorIndex, 5> kernel_shuffle;
557   if (isColMajor) {
558     // From: [in_depth, kernel_planes, kernel_rows, kernel_cols, out_depth]
559     // To:   [out_depth, in_depth, kernel_planes, kernel_rows, kernel_cols]
560     kernel_shuffle = {4, 0, 1, 2, 3};
561   } else {
562     // From: [out_depth, kernel_cols, kernel_rows, kernel_planes, in_depth]
563     // To:   [kernel_cols, kernel_rows, kernel_planes, in_depth, out_depth]
564     kernel_shuffle = {1, 2, 3, 4, 0};
565   }
566 
567   // Reverse kernel backprop dimensions.
568   array<TensorIndex, 5> kernel_reverse;
569   if (isColMajor) {
570     kernel_reverse = {false, false, true, true, true};
571   } else {
572     kernel_reverse = {true, true, true, false, false};
573   }
574 
575   // Create convolution input (aka source of patches) from output backward
576   // tensor by shuffling dimensions.
577   const auto the_input =
578       output_backward.shuffle(output_backward_shuffle).eval();
579 
580   // Create convolution kernel (aka filter) from input by shuffling and
581   // reshaping.
582   const auto the_kernel =
583       input.shuffle(input_shuffle).reshape(input_dims).eval();
584 
585   return choose(Cond<internal::traits<Input>::Layout == ColMajor>(),
586                 the_kernel.contract(
587                     the_input
588                         .extract_volume_patches(
589                             inputPlanes, inputRows, inputCols, 1, 1, 1,
590                             stridePlanes, strideRows, strideCols,
591                             top_pad_planes, bottom_pad_planes, top_pad_rows,
592                             bottom_pad_rows, left_pad_cols, right_pad_cols)
593                         .reshape(pre_contract_dims),
594                     contract_dims),
595                 the_input
596                     .extract_volume_patches(
597                         inputPlanes, inputRows, inputCols, 1, 1, 1,
598                         stridePlanes, strideRows, strideCols, top_pad_planes,
599                         bottom_pad_planes, top_pad_rows, bottom_pad_rows,
600                         left_pad_cols, right_pad_cols)
601                     .reshape(pre_contract_dims)
602                     .contract(the_kernel, contract_dims))
603       .reshape(post_contract_dims)
604       .shuffle(kernel_shuffle)
605       .reverse(kernel_reverse);
606 }
607 
608 }  // end namespace Eigen
609 
610 #endif  // TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_CUBOID_CONVOLUTIONS_H_
611