1 /* Copyright 2016 The TensorFlow Authors All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15
16 // Parent class and utilities for tfprof_graph and tfprof_scope.
17
18 #ifndef TENSORFLOW_CORE_PROFILER_INTERNAL_TFPROF_SHOW_H_
19 #define TENSORFLOW_CORE_PROFILER_INTERNAL_TFPROF_SHOW_H_
20
21 #include <algorithm>
22 #include <string>
23 #include <vector>
24
25 #include "tensorflow/c/checkpoint_reader.h"
26 #include "tensorflow/core/framework/graph.pb.h"
27 #include "tensorflow/core/lib/core/errors.h"
28 #include "tensorflow/core/profiler/internal/tfprof_constants.h"
29 #include "tensorflow/core/profiler/internal/tfprof_node.h"
30 #include "tensorflow/core/profiler/internal/tfprof_node_show.h"
31 #include "tensorflow/core/profiler/internal/tfprof_tensor.h"
32 #include "tensorflow/core/profiler/internal/tfprof_timeline.h"
33 #include "tensorflow/core/profiler/internal/tfprof_utils.h"
34 #include "tensorflow/core/profiler/tfprof_options.h"
35 #include "tensorflow/core/profiler/tfprof_output.pb.h"
36
37 namespace tensorflow {
38 namespace tfprof {
39 class TFShow {
40 public:
TFShow(checkpoint::CheckpointReader * ckpt_reader)41 explicit TFShow(checkpoint::CheckpointReader* ckpt_reader)
42 : ckpt_reader_(ckpt_reader) {}
~TFShow()43 virtual ~TFShow() {}
44 virtual void AddNode(TFGraphNode* node) = 0;
45 virtual void Build() = 0;
46 virtual const GraphNodeProto& Show(const string& prefix,
47 const Options& opts) final;
48
49 protected:
50 virtual const ShowNode* ShowInternal(const Options& opts,
51 Timeline* timeline) = 0;
52
53 bool LookUpCheckPoint(const string& name,
54 std::unique_ptr<TFProfTensor>* tensor);
55
56 // Overridden by subclass if extra requirements need to be met.
ShouldShowIfExtra(const ShowNode * node,const Options & opts,int depth)57 virtual bool ShouldShowIfExtra(const ShowNode* node, const Options& opts,
58 int depth) const {
59 return true;
60 }
61
62 bool ShouldShow(const ShowNode* node, const Options& opts, int depth) const;
63
64 bool ShouldTrim(const ShowNode* node,
65 const std::vector<string>& regexes) const;
66
67 bool ReAccount(ShowNode* node, const Options& opts);
68
69 string FormatNode(ShowNode* node, const Options& opts) const;
70 string FormatNodeMemory(ShowNode* node, int64 bytes, int64 total_bytes) const;
71
72 string FormatLegend(const Options& opts) const;
73
74 template <typename T>
SortNodes(const std::vector<T * > & nodes,const Options & opts)75 std::vector<T*> SortNodes(const std::vector<T*>& nodes, const Options& opts) {
76 if (opts.order_by.empty() || nodes.empty()) {
77 return nodes;
78 }
79 std::vector<T*> sorted_nodes = nodes;
80 std::sort(sorted_nodes.begin(), sorted_nodes.end(),
81 [&opts](const T* n1, const T* n2) {
82 if (n1->name() == kTFProfRoot) return true;
83 if (n2->name() == kTFProfRoot) return false;
84 bool name_cmp = n1->name() < n2->name();
85 if (opts.order_by == kOrderBy[0]) {
86 return name_cmp;
87 } else if (opts.order_by == kOrderBy[1]) {
88 return n1->proto().total_requested_bytes() >
89 n2->proto().total_requested_bytes();
90 } else if (opts.order_by == kOrderBy[2]) {
91 return n1->proto().total_peak_bytes() >
92 n2->proto().total_peak_bytes();
93 } else if (opts.order_by == kOrderBy[3]) {
94 return n1->proto().total_residual_bytes() >
95 n2->proto().total_residual_bytes();
96 } else if (opts.order_by == kOrderBy[4]) {
97 return n1->proto().total_output_bytes() >
98 n2->proto().total_output_bytes();
99 } else if (opts.order_by == kOrderBy[5]) {
100 return n1->proto().total_exec_micros() >
101 n2->proto().total_exec_micros();
102 } else if (opts.order_by == kOrderBy[6]) {
103 return n1->proto().total_accelerator_exec_micros() >
104 n2->proto().total_accelerator_exec_micros();
105 } else if (opts.order_by == kOrderBy[7]) {
106 return n1->proto().total_cpu_exec_micros() >
107 n2->proto().total_cpu_exec_micros();
108 } else if (opts.order_by == kOrderBy[8]) {
109 return n1->proto().total_parameters() >
110 n2->proto().total_parameters();
111 } else if (opts.order_by == kOrderBy[9]) {
112 return n1->proto().total_float_ops() >
113 n2->proto().total_float_ops();
114 }
115 return name_cmp;
116 });
117 return sorted_nodes;
118 }
119
120 checkpoint::CheckpointReader* ckpt_reader_;
121 };
122
123 template <typename T>
FormatTotalExecTime(const T * node,const Options & opts)124 string FormatTotalExecTime(const T* node, const Options& opts) {
125 string time = FormatTime(node->proto().total_exec_micros());
126 if (node->account) {
127 time = FormatTime(node->proto().exec_micros()) + "/" + time;
128 } else {
129 time = "--/" + time;
130 }
131 return time;
132 }
133 template <typename T>
FormatCPUExecTime(const T * node,const Options & opts)134 string FormatCPUExecTime(const T* node, const Options& opts) {
135 string time = FormatTime(node->proto().total_cpu_exec_micros());
136 if (node->account) {
137 time = FormatTime(node->proto().cpu_exec_micros()) + "/" + time;
138 } else {
139 time = "--/" + time;
140 }
141 return time;
142 }
143 template <typename T>
FormatAcceleratorExecTime(const T * node,const Options & opts)144 string FormatAcceleratorExecTime(const T* node, const Options& opts) {
145 string time = FormatTime(node->proto().total_accelerator_exec_micros());
146 if (node->account) {
147 time = FormatTime(node->proto().accelerator_exec_micros()) + "/" + time;
148 } else {
149 time = "--/" + time;
150 }
151 return time;
152 }
153 } // namespace tfprof
154 } // namespace tensorflow
155
156 #endif // TENSORFLOW_CORE_PROFILER_INTERNAL_TFPROF_SHOW_H_
157