1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_MODEL_TRANSFORMER_H_
17 #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_MODEL_TRANSFORMER_H_
18 
19 #include <deque>
20 #include <string>
21 #include <utility>
22 #include <vector>
23 
24 #include "absl/container/flat_hash_set.h"
25 #include "tensorflow/lite/delegates/gpu/common/model.h"
26 
27 namespace tflite {
28 namespace gpu {
29 
30 class TransformationReporter;
31 
32 struct TransformationContext {
33   GraphFloat32* graph;
34   TransformationReporter* reporter;
35 };
36 
37 enum class TransformStatus {
38   // Transformation was not applied due to trivial conditions mismatch.
39   //
40   // This is different from DECLINED code below that provides in-depth
41   // explanation why a transformation that could have been applied but was not
42   // due to some issues.
43   SKIPPED,
44 
45   // Transformation was declined, therefore, a model was not modified.
46   DECLINED,
47 
48   // Transformation was applied successfully
49   APPLIED,
50 
51   // Transformation may partially be applied, but left a model in an invalid
52   // state. This error should be considered unrecoverable.
53   INVALID,
54 };
55 
56 struct TransformResult {
57   TransformStatus status;
58   std::string message;
59 };
60 
61 // Class responsible for applying a transformation to a single node.
62 class NodeTransformation {
63  public:
64   virtual ~NodeTransformation() = default;
65 
66   virtual TransformResult ApplyToNode(Node* node, GraphFloat32* graph) = 0;
67 };
68 
69 // Class responsible for applying a transformation to a sequence of nodes.
70 // Nodes are guaranteed to depend on each other without extra dependents being
71 // spilled.
72 class SequenceTransformation {
73  public:
74   virtual ~SequenceTransformation() = default;
75 
76   // @return number of nodes in a sequence to apply this transformation.
77   virtual int ExpectedSequenceLength() const = 0;
78 
79   // Applies transformations to a sequence of nodes. Transformation
80   // implementation is free manipulate with sequence nodes including adding
81   // and/or deleting nodes. if there were updates to nodes in the end and/or
82   // beginning of the sequence, then referential consistency should be
83   // maintained by updating relevant references in nodes that precede this
84   // sequence or depend on a last node of the sequence.
85   virtual TransformResult ApplyToNodesSequence(
86       const std::vector<Node*>& sequence, GraphFloat32* graph) = 0;
87 };
88 
89 // A class accumulated decisions or updates done by transformations.
90 class TransformationReporter {
91  public:
92   virtual ~TransformationReporter() = default;
93 
94   virtual void DeclinedTransformation(const std::string& transformation,
95                                       const std::string& node_ids,
96                                       const std::string& message) = 0;
97 
98   virtual void AppliedTransformation(const std::string& transformation,
99                                      const std::string& node_ids,
100                                      const std::string& message) = 0;
101 };
102 
103 // A class is designed to perform model transformations.
104 class ModelTransformer {
105  public:
ModelTransformer(GraphFloat32 * graph,TransformationReporter * reporter)106   ModelTransformer(GraphFloat32* graph, TransformationReporter* reporter)
107       : graph_(graph), reporter_(reporter) {}
108 
109   // @return false if a graph is in the broken states can not be used any more
110   bool Apply(const std::string& name, SequenceTransformation* transformation);
111 
112   // @return false if a graph is in the broken states can not be used any more
113   bool Apply(const std::string& name, NodeTransformation* transformation);
114 
115  private:
116   bool ApplyStartingWithNode(const std::string& name,
117                              SequenceTransformation* transformation,
118                              Node* begin);
119 
AddNodeToProcess(Node * node)120   void AddNodeToProcess(Node* node) {
121     if (node && processed_.insert(node->id).second) {
122       to_process_.push_back(node->id);
123     }
124   }
125 
126   GraphFloat32* graph_;
127   TransformationReporter* reporter_;
128 
129   std::deque<NodeId> to_process_;
130   absl::flat_hash_set<NodeId> processed_;
131 };
132 
133 class NullTransformationReporter : public TransformationReporter {
134  public:
DeclinedTransformation(const std::string & transformation,const std::string & nodes_id,const std::string & message)135   void DeclinedTransformation(const std::string& transformation,
136                               const std::string& nodes_id,
137                               const std::string& message) override {}
138 
AppliedTransformation(const std::string & transformation,const std::string & nodes_id,const std::string & message)139   void AppliedTransformation(const std::string& transformation,
140                              const std::string& nodes_id,
141                              const std::string& message) override {}
142 };
143 
144 }  // namespace gpu
145 }  // namespace tflite
146 
147 #endif  // TENSORFLOW_LITE_DELEGATES_GPU_COMMON_MODEL_TRANSFORMER_H_
148