1# Copyright 2015 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""CIFAR100 small images classification dataset. 16""" 17from __future__ import absolute_import 18from __future__ import division 19from __future__ import print_function 20 21import os 22 23import numpy as np 24 25from tensorflow.python.keras import backend as K 26from tensorflow.python.keras.datasets.cifar import load_batch 27from tensorflow.python.keras.utils.data_utils import get_file 28from tensorflow.python.util.tf_export import keras_export 29 30 31@keras_export('keras.datasets.cifar100.load_data') 32def load_data(label_mode='fine'): 33 """Loads [CIFAR100 dataset](https://www.cs.toronto.edu/~kriz/cifar.html). 34 35 This is a dataset of 50,000 32x32 color training images and 36 10,000 test images, labeled over 100 fine-grained classes that are 37 grouped into 20 coarse-grained classes. See more info at the 38 [CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html). 39 40 Args: 41 label_mode: one of "fine", "coarse". If it is "fine" the category labels 42 are the fine-grained labels, if it is "coarse" the output labels are the 43 coarse-grained superclasses. 44 45 Returns: 46 Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. 47 48 **x_train, x_test**: uint8 arrays of RGB image data with shape 49 `(num_samples, 3, 32, 32)` if `tf.keras.backend.image_data_format()` is 50 `'channels_first'`, or `(num_samples, 32, 32, 3)` if the data format 51 is `'channels_last'`. 52 53 **y_train, y_test**: uint8 arrays of category labels with shape 54 (num_samples, 1). 55 56 Raises: 57 ValueError: in case of invalid `label_mode`. 58 """ 59 if label_mode not in ['fine', 'coarse']: 60 raise ValueError('`label_mode` must be one of `"fine"`, `"coarse"`.') 61 62 dirname = 'cifar-100-python' 63 origin = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz' 64 path = get_file( 65 dirname, 66 origin=origin, 67 untar=True, 68 file_hash= 69 '85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7') 70 71 fpath = os.path.join(path, 'train') 72 x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels') 73 74 fpath = os.path.join(path, 'test') 75 x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels') 76 77 y_train = np.reshape(y_train, (len(y_train), 1)) 78 y_test = np.reshape(y_test, (len(y_test), 1)) 79 80 if K.image_data_format() == 'channels_last': 81 x_train = x_train.transpose(0, 2, 3, 1) 82 x_test = x_test.transpose(0, 2, 3, 1) 83 84 return (x_train, y_train), (x_test, y_test) 85