1 /*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/audio_processing/test/fake_recording_device.h"
12
13 #include <cmath>
14 #include <memory>
15 #include <string>
16 #include <vector>
17
18 #include "api/array_view.h"
19 #include "rtc_base/strings/string_builder.h"
20 #include "test/gtest.h"
21
22 namespace webrtc {
23 namespace test {
24 namespace {
25
26 constexpr int kInitialMicLevel = 100;
27
28 // TODO(alessiob): Add new fake recording device kind values here as they are
29 // added in FakeRecordingDevice::FakeRecordingDevice.
30 const std::vector<int> kFakeRecDeviceKinds = {0, 1, 2};
31
32 const std::vector<std::vector<float>> kTestMultiChannelSamples{
33 std::vector<float>{-10.f, -1.f, -0.1f, 0.f, 0.1f, 1.f, 10.f}};
34
35 // Writes samples into ChannelBuffer<float>.
WritesDataIntoChannelBuffer(const std::vector<std::vector<float>> & data,ChannelBuffer<float> * buff)36 void WritesDataIntoChannelBuffer(const std::vector<std::vector<float>>& data,
37 ChannelBuffer<float>* buff) {
38 EXPECT_EQ(data.size(), buff->num_channels());
39 EXPECT_EQ(data[0].size(), buff->num_frames());
40 for (size_t c = 0; c < buff->num_channels(); ++c) {
41 for (size_t f = 0; f < buff->num_frames(); ++f) {
42 buff->channels()[c][f] = data[c][f];
43 }
44 }
45 }
46
CreateChannelBufferWithData(const std::vector<std::vector<float>> & data)47 std::unique_ptr<ChannelBuffer<float>> CreateChannelBufferWithData(
48 const std::vector<std::vector<float>>& data) {
49 auto buff =
50 std::make_unique<ChannelBuffer<float>>(data[0].size(), data.size());
51 WritesDataIntoChannelBuffer(data, buff.get());
52 return buff;
53 }
54
55 // Checks that the samples modified using monotonic level values are also
56 // monotonic.
CheckIfMonotoneSamplesModules(const ChannelBuffer<float> * prev,const ChannelBuffer<float> * curr)57 void CheckIfMonotoneSamplesModules(const ChannelBuffer<float>* prev,
58 const ChannelBuffer<float>* curr) {
59 RTC_DCHECK_EQ(prev->num_channels(), curr->num_channels());
60 RTC_DCHECK_EQ(prev->num_frames(), curr->num_frames());
61 bool valid = true;
62 for (size_t i = 0; i < prev->num_channels(); ++i) {
63 for (size_t j = 0; j < prev->num_frames(); ++j) {
64 valid = std::fabs(prev->channels()[i][j]) <=
65 std::fabs(curr->channels()[i][j]);
66 if (!valid) {
67 break;
68 }
69 }
70 if (!valid) {
71 break;
72 }
73 }
74 EXPECT_TRUE(valid);
75 }
76
77 // Checks that the samples in each pair have the same sign unless the sample in
78 // |dst| is zero (because of zero gain).
CheckSameSign(const ChannelBuffer<float> * src,const ChannelBuffer<float> * dst)79 void CheckSameSign(const ChannelBuffer<float>* src,
80 const ChannelBuffer<float>* dst) {
81 RTC_DCHECK_EQ(src->num_channels(), dst->num_channels());
82 RTC_DCHECK_EQ(src->num_frames(), dst->num_frames());
83 const auto fsgn = [](float x) { return ((x < 0) ? -1 : (x > 0) ? 1 : 0); };
84 bool valid = true;
85 for (size_t i = 0; i < src->num_channels(); ++i) {
86 for (size_t j = 0; j < src->num_frames(); ++j) {
87 valid = dst->channels()[i][j] == 0.0f ||
88 fsgn(src->channels()[i][j]) == fsgn(dst->channels()[i][j]);
89 if (!valid) {
90 break;
91 }
92 }
93 if (!valid) {
94 break;
95 }
96 }
97 EXPECT_TRUE(valid);
98 }
99
FakeRecordingDeviceKindToString(int fake_rec_device_kind)100 std::string FakeRecordingDeviceKindToString(int fake_rec_device_kind) {
101 rtc::StringBuilder ss;
102 ss << "fake recording device: " << fake_rec_device_kind;
103 return ss.Release();
104 }
105
AnalogLevelToString(int level)106 std::string AnalogLevelToString(int level) {
107 rtc::StringBuilder ss;
108 ss << "analog level: " << level;
109 return ss.Release();
110 }
111
112 } // namespace
113
TEST(FakeRecordingDevice,CheckHelperFunctions)114 TEST(FakeRecordingDevice, CheckHelperFunctions) {
115 constexpr size_t kC = 0; // Channel index.
116 constexpr size_t kS = 1; // Sample index.
117
118 // Check read.
119 auto buff = CreateChannelBufferWithData(kTestMultiChannelSamples);
120 for (size_t c = 0; c < kTestMultiChannelSamples.size(); ++c) {
121 for (size_t s = 0; s < kTestMultiChannelSamples[0].size(); ++s) {
122 EXPECT_EQ(kTestMultiChannelSamples[c][s], buff->channels()[c][s]);
123 }
124 }
125
126 // Check write.
127 buff->channels()[kC][kS] = -5.0f;
128 RTC_DCHECK_NE(buff->channels()[kC][kS], kTestMultiChannelSamples[kC][kS]);
129
130 // Check reset.
131 WritesDataIntoChannelBuffer(kTestMultiChannelSamples, buff.get());
132 EXPECT_EQ(buff->channels()[kC][kS], kTestMultiChannelSamples[kC][kS]);
133 }
134
135 // Implicitly checks that changes to the mic and undo levels are visible to the
136 // FakeRecordingDeviceWorker implementation are injected in FakeRecordingDevice.
TEST(FakeRecordingDevice,TestWorkerAbstractClass)137 TEST(FakeRecordingDevice, TestWorkerAbstractClass) {
138 FakeRecordingDevice fake_recording_device(kInitialMicLevel, 1);
139
140 auto buff1 = CreateChannelBufferWithData(kTestMultiChannelSamples);
141 fake_recording_device.SetMicLevel(100);
142 fake_recording_device.SimulateAnalogGain(buff1.get());
143
144 auto buff2 = CreateChannelBufferWithData(kTestMultiChannelSamples);
145 fake_recording_device.SetMicLevel(200);
146 fake_recording_device.SimulateAnalogGain(buff2.get());
147
148 for (size_t c = 0; c < kTestMultiChannelSamples.size(); ++c) {
149 for (size_t s = 0; s < kTestMultiChannelSamples[0].size(); ++s) {
150 EXPECT_LE(std::abs(buff1->channels()[c][s]),
151 std::abs(buff2->channels()[c][s]));
152 }
153 }
154
155 auto buff3 = CreateChannelBufferWithData(kTestMultiChannelSamples);
156 fake_recording_device.SetMicLevel(200);
157 fake_recording_device.SetUndoMicLevel(100);
158 fake_recording_device.SimulateAnalogGain(buff3.get());
159
160 for (size_t c = 0; c < kTestMultiChannelSamples.size(); ++c) {
161 for (size_t s = 0; s < kTestMultiChannelSamples[0].size(); ++s) {
162 EXPECT_LE(std::abs(buff1->channels()[c][s]),
163 std::abs(buff3->channels()[c][s]));
164 EXPECT_LE(std::abs(buff2->channels()[c][s]),
165 std::abs(buff3->channels()[c][s]));
166 }
167 }
168 }
169
TEST(FakeRecordingDevice,GainCurveShouldBeMonotone)170 TEST(FakeRecordingDevice, GainCurveShouldBeMonotone) {
171 // Create input-output buffers.
172 auto buff_prev = CreateChannelBufferWithData(kTestMultiChannelSamples);
173 auto buff_curr = CreateChannelBufferWithData(kTestMultiChannelSamples);
174
175 // Test different mappings.
176 for (auto fake_rec_device_kind : kFakeRecDeviceKinds) {
177 SCOPED_TRACE(FakeRecordingDeviceKindToString(fake_rec_device_kind));
178 FakeRecordingDevice fake_recording_device(kInitialMicLevel,
179 fake_rec_device_kind);
180 // TODO(alessiob): The test below is designed for state-less recording
181 // devices. If, for instance, a device has memory, the test might need
182 // to be redesigned (e.g., re-initialize fake recording device).
183
184 // Apply lowest analog level.
185 WritesDataIntoChannelBuffer(kTestMultiChannelSamples, buff_prev.get());
186 fake_recording_device.SetMicLevel(0);
187 fake_recording_device.SimulateAnalogGain(buff_prev.get());
188
189 // Increment analog level to check monotonicity.
190 for (int i = 1; i <= 255; ++i) {
191 SCOPED_TRACE(AnalogLevelToString(i));
192 WritesDataIntoChannelBuffer(kTestMultiChannelSamples, buff_curr.get());
193 fake_recording_device.SetMicLevel(i);
194 fake_recording_device.SimulateAnalogGain(buff_curr.get());
195 CheckIfMonotoneSamplesModules(buff_prev.get(), buff_curr.get());
196
197 // Update prev.
198 buff_prev.swap(buff_curr);
199 }
200 }
201 }
202
TEST(FakeRecordingDevice,GainCurveShouldNotChangeSign)203 TEST(FakeRecordingDevice, GainCurveShouldNotChangeSign) {
204 // Create view on original samples.
205 std::unique_ptr<const ChannelBuffer<float>> buff_orig =
206 CreateChannelBufferWithData(kTestMultiChannelSamples);
207
208 // Create output buffer.
209 auto buff = CreateChannelBufferWithData(kTestMultiChannelSamples);
210
211 // Test different mappings.
212 for (auto fake_rec_device_kind : kFakeRecDeviceKinds) {
213 SCOPED_TRACE(FakeRecordingDeviceKindToString(fake_rec_device_kind));
214 FakeRecordingDevice fake_recording_device(kInitialMicLevel,
215 fake_rec_device_kind);
216
217 // TODO(alessiob): The test below is designed for state-less recording
218 // devices. If, for instance, a device has memory, the test might need
219 // to be redesigned (e.g., re-initialize fake recording device).
220 for (int i = 0; i <= 255; ++i) {
221 SCOPED_TRACE(AnalogLevelToString(i));
222 WritesDataIntoChannelBuffer(kTestMultiChannelSamples, buff.get());
223 fake_recording_device.SetMicLevel(i);
224 fake_recording_device.SimulateAnalogGain(buff.get());
225 CheckSameSign(buff_orig.get(), buff.get());
226 }
227 }
228 }
229
230 } // namespace test
231 } // namespace webrtc
232