1 //
2 // Copyright (c) 2017 The Khronos Group Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 #include "../testBase.h"
17 #include <float.h>
18
19 #if defined( __APPLE__ )
20 #include <signal.h>
21 #include <sys/signal.h>
22 #include <setjmp.h>
23 #endif
24
25
26 const char *read1DBufferKernelSourcePattern =
27 "__kernel void sample_kernel( read_only image1d_buffer_t inputA, read_only image1d_t inputB, sampler_t sampler, __global int *results )\n"
28 "{\n"
29 " int tidX = get_global_id(0);\n"
30 " int offset = tidX;\n"
31 " %s clr = read_image%s( inputA, tidX );\n"
32 " int4 test = (clr != read_image%s( inputB, sampler, tidX ));\n"
33 " if ( test.x || test.y || test.z || test.w )\n"
34 " results[offset] = -1;\n"
35 " else\n"
36 " results[offset] = 0;\n"
37 "}";
38
39
test_read_image_1D_buffer(cl_context context,cl_command_queue queue,cl_kernel kernel,image_descriptor * imageInfo,image_sampler_data * imageSampler,ExplicitType outputType,MTdata d)40 int test_read_image_1D_buffer( cl_context context, cl_command_queue queue, cl_kernel kernel,
41 image_descriptor *imageInfo, image_sampler_data *imageSampler,
42 ExplicitType outputType, MTdata d )
43 {
44 int error;
45 size_t threads[2];
46 cl_sampler actualSampler;
47
48 BufferOwningPtr<char> imageValues;
49 generate_random_image_data( imageInfo, imageValues, d );
50
51 if ( gDebugTrace )
52 log_info( " - Creating 1D image from buffer %d ...\n", (int)imageInfo->width );
53
54 // Construct testing sources
55 cl_mem image[2];
56 cl_image_desc image_desc;
57
58 cl_mem imageBuffer = clCreateBuffer( context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, imageInfo->rowPitch, imageValues, &error);
59 if ( error != CL_SUCCESS )
60 {
61 log_error( "ERROR: Unable to create buffer of size %d bytes (%s)\n", (int)imageInfo->rowPitch, IGetErrorString( error ) );
62 return error;
63 }
64
65 memset(&image_desc, 0x0, sizeof(cl_image_desc));
66 image_desc.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
67 image_desc.image_width = imageInfo->width;
68 image_desc.mem_object = imageBuffer;
69 image[0] = clCreateImage( context, CL_MEM_READ_ONLY, imageInfo->format,
70 &image_desc, NULL, &error );
71 if ( error != CL_SUCCESS )
72 {
73 log_error( "ERROR: Unable to create IMAGE1D_BUFFER of size %d pitch %d (%s)\n", (int)imageInfo->width, (int)imageInfo->rowPitch, IGetErrorString( error ) );
74 return error;
75 }
76
77 cl_mem ret = NULL;
78 error = clGetMemObjectInfo(image[0], CL_MEM_ASSOCIATED_MEMOBJECT, sizeof(ret), &ret, NULL);
79 if ( error != CL_SUCCESS )
80 {
81 log_error( "ERROR: Unable to query CL_MEM_ASSOCIATED_MEMOBJECT\n", IGetErrorString( error ) );
82 return error;
83 }
84
85 if (ret != imageBuffer) {
86 log_error("ERROR: clGetImageInfo for CL_IMAGE_BUFFER returned wrong value\n");
87 return -1;
88 }
89
90 memset(&image_desc, 0x0, sizeof(cl_image_desc));
91 image_desc.image_type = CL_MEM_OBJECT_IMAGE1D;
92 image_desc.image_width = imageInfo->width;
93 image[1] = clCreateImage( context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, imageInfo->format, &image_desc, imageValues, &error );
94 if ( error != CL_SUCCESS )
95 {
96 log_error( "ERROR: Unable to create IMAGE1D of size %d pitch %d (%s)\n", (int)imageInfo->width, (int)imageInfo->rowPitch, IGetErrorString( error ) );
97 return error;
98 }
99
100 if ( gDebugTrace )
101 log_info( " - Creating kernel arguments...\n" );
102
103 // Create sampler to use
104 actualSampler = clCreateSampler( context, CL_FALSE, CL_ADDRESS_NONE, CL_FILTER_NEAREST, &error );
105 test_error( error, "Unable to create image sampler" );
106
107 // Create results buffer
108 cl_mem results = clCreateBuffer( context, 0, imageInfo->width * sizeof(cl_int), NULL, &error);
109 test_error( error, "Unable to create results buffer" );
110
111 size_t resultValuesSize = imageInfo->width * sizeof(cl_int);
112 BufferOwningPtr<int> resultValues(malloc( resultValuesSize ));
113 memset( resultValues, 0xff, resultValuesSize );
114 clEnqueueWriteBuffer( queue, results, CL_TRUE, 0, resultValuesSize, resultValues, 0, NULL, NULL );
115
116 // Set arguments
117 int idx = 0;
118 error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &image[0] );
119 test_error( error, "Unable to set kernel arguments" );
120 error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &image[1] );
121 test_error( error, "Unable to set kernel arguments" );
122 error = clSetKernelArg( kernel, idx++, sizeof( cl_sampler ), &actualSampler );
123 test_error( error, "Unable to set kernel arguments" );
124 error = clSetKernelArg( kernel, idx++, sizeof( cl_mem ), &results );
125 test_error( error, "Unable to set kernel arguments" );
126
127 // Run the kernel
128 threads[0] = (size_t)imageInfo->width;
129 error = clEnqueueNDRangeKernel( queue, kernel, 1, NULL, threads, NULL, 0, NULL, NULL );
130 test_error( error, "Unable to run kernel" );
131
132 if ( gDebugTrace )
133 log_info( " reading results, %ld kbytes\n", (unsigned long)( imageInfo->width * sizeof(cl_int) / 1024 ) );
134
135 error = clEnqueueReadBuffer( queue, results, CL_TRUE, 0, resultValuesSize, resultValues, 0, NULL, NULL );
136 test_error( error, "Unable to read results from kernel" );
137 if ( gDebugTrace )
138 log_info( " results read\n" );
139
140 // Check for non-zero comps
141 bool allZeroes = true;
142 for ( size_t ic = 0; ic < imageInfo->width; ++ic )
143 {
144 if ( resultValues[ic] ) {
145 allZeroes = false;
146 break;
147 }
148 }
149 if ( !allZeroes )
150 {
151 log_error( " Sampler-less reads differ from reads with sampler.\n" );
152 return -1;
153 }
154
155 clReleaseSampler(actualSampler);
156 clReleaseMemObject(results);
157 clReleaseMemObject(image[0]);
158 clReleaseMemObject(image[1]);
159 clReleaseMemObject(imageBuffer);
160 return 0;
161 }
162
test_read_image_set_1D_buffer(cl_device_id device,cl_context context,cl_command_queue queue,const cl_image_format * format,image_sampler_data * imageSampler,ExplicitType outputType)163 int test_read_image_set_1D_buffer(cl_device_id device, cl_context context,
164 cl_command_queue queue,
165 const cl_image_format *format,
166 image_sampler_data *imageSampler,
167 ExplicitType outputType)
168 {
169 char programSrc[10240];
170 const char *ptr;
171 const char *readFormat;
172 const char *dataType;
173 clProgramWrapper program;
174 clKernelWrapper kernel;
175 RandomSeed seed( gRandomSeed );
176 int error;
177
178 // Get our operating params
179 size_t maxWidth, maxWidth1D;
180 cl_ulong maxAllocSize, memSize;
181 image_descriptor imageInfo = { 0 };
182 size_t pixelSize;
183
184 if (format->image_channel_order == CL_RGB || format->image_channel_order == CL_RGBx)
185 {
186 switch (format->image_channel_data_type)
187 {
188 case CL_UNORM_INT8:
189 case CL_UNORM_INT16:
190 case CL_SNORM_INT8:
191 case CL_SNORM_INT16:
192 case CL_HALF_FLOAT:
193 case CL_FLOAT:
194 case CL_SIGNED_INT8:
195 case CL_SIGNED_INT16:
196 case CL_SIGNED_INT32:
197 case CL_UNSIGNED_INT8:
198 case CL_UNSIGNED_INT16:
199 case CL_UNSIGNED_INT32:
200 case CL_UNORM_INT_101010:
201 log_info( "Skipping image format: %s %s\n", GetChannelOrderName( format->image_channel_order ),
202 GetChannelTypeName( format->image_channel_data_type ));
203 return 0;
204 default:
205 break;
206 }
207 }
208
209 imageInfo.format = format;
210 imageInfo.height = imageInfo.depth = imageInfo.arraySize = imageInfo.slicePitch = 0;
211 imageInfo.type = CL_MEM_OBJECT_IMAGE1D;
212 pixelSize = get_pixel_size( imageInfo.format );
213
214 error = clGetDeviceInfo( device, CL_DEVICE_IMAGE_MAX_BUFFER_SIZE, sizeof( maxWidth ), &maxWidth, NULL );
215 error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL );
216 error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL );
217 error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth1D, NULL );
218 test_error( error, "Unable to get max image 1D buffer size from device" );
219
220 if (memSize > (cl_ulong)SIZE_MAX) {
221 memSize = (cl_ulong)SIZE_MAX;
222 }
223
224 // note: image_buffer test uses image1D for results validation.
225 // So the test can't use the biggest possible size for image_buffer if it's bigger than the max image1D size
226 maxWidth = (maxWidth > maxWidth1D) ? maxWidth1D : maxWidth;
227 // Determine types
228 if ( outputType == kInt )
229 {
230 readFormat = "i";
231 dataType = "int4";
232 }
233 else if ( outputType == kUInt )
234 {
235 readFormat = "ui";
236 dataType = "uint4";
237 }
238 else // kFloat
239 {
240 readFormat = "f";
241 dataType = "float4";
242 }
243
244 sprintf( programSrc, read1DBufferKernelSourcePattern, dataType,
245 readFormat,
246 readFormat );
247
248 ptr = programSrc;
249 error = create_single_kernel_helper(context, &program, &kernel, 1, &ptr,
250 "sample_kernel");
251 test_error( error, "Unable to create testing kernel" );
252
253 if ( gTestSmallImages )
254 {
255 for ( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ )
256 {
257 imageInfo.rowPitch = imageInfo.width * pixelSize;
258 {
259 if ( gDebugTrace )
260 log_info( " at size %d\n", (int)imageInfo.width );
261
262 int retCode = test_read_image_1D_buffer( context, queue, kernel, &imageInfo, imageSampler, outputType, seed );
263 if ( retCode )
264 return retCode;
265 }
266 }
267 }
268 else if ( gTestMaxImages )
269 {
270 // Try a specific set of maximum sizes
271 size_t numbeOfSizes;
272 size_t sizes[100][3];
273
274 get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, 1, 1, 1, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE1D, imageInfo.format);
275
276 for ( size_t idx = 0; idx < numbeOfSizes; idx++ )
277 {
278 imageInfo.width = sizes[ idx ][ 0 ];
279 imageInfo.rowPitch = imageInfo.width * pixelSize;
280 log_info("Testing %d\n", (int)sizes[ idx ][ 0 ]);
281 if ( gDebugTrace )
282 log_info( " at max size %d\n", (int)sizes[ idx ][ 0 ] );
283 int retCode = test_read_image_1D_buffer( context, queue, kernel, &imageInfo, imageSampler, outputType, seed );
284 if ( retCode )
285 return retCode;
286 }
287 }
288 else
289 {
290 for ( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ )
291 {
292 cl_ulong size;
293 // Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that
294 // image, the result array, plus offset arrays, will fit in the global ram space
295 do
296 {
297 imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed );
298 imageInfo.rowPitch = imageInfo.width * pixelSize;
299 size = (size_t)imageInfo.rowPitch * 4;
300 } while ( size > maxAllocSize || ( size * 3 ) > memSize );
301
302 if ( gDebugTrace )
303 log_info( " at size %d (row pitch %d) out of %d\n", (int)imageInfo.width, (int)imageInfo.rowPitch, (int)maxWidth );
304 int retCode = test_read_image_1D_buffer( context, queue, kernel, &imageInfo, imageSampler, outputType, seed );
305 if ( retCode )
306 return retCode;
307 }
308 }
309
310 return 0;
311 }
312
313
314