1 // Copyright 2020 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: statusor.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::StatusOr<T>` represents a union of an `absl::Status` object
20 // and an object of type `T`. The `absl::StatusOr<T>` will either contain an
21 // object of type `T` (indicating a successful operation), or an error (of type
22 // `absl::Status`) explaining why such a value is not present.
23 //
24 // In general, check the success of an operation returning an
25 // `absl::StatusOr<T>` like you would an `absl::Status` by using the `ok()`
26 // member function.
27 //
28 // Example:
29 //
30 // StatusOr<Foo> result = Calculation();
31 // if (result.ok()) {
32 // result->DoSomethingCool();
33 // } else {
34 // LOG(ERROR) << result.status();
35 // }
36 #ifndef ABSL_STATUS_STATUSOR_H_
37 #define ABSL_STATUS_STATUSOR_H_
38
39 #include <exception>
40 #include <initializer_list>
41 #include <new>
42 #include <string>
43 #include <type_traits>
44 #include <utility>
45
46 #include "absl/base/attributes.h"
47 #include "absl/meta/type_traits.h"
48 #include "absl/status/internal/statusor_internal.h"
49 #include "absl/status/status.h"
50 #include "absl/types/variant.h"
51 #include "absl/utility/utility.h"
52
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55
56 // BadStatusOrAccess
57 //
58 // This class defines the type of object to throw (if exceptions are enabled),
59 // when accessing the value of an `absl::StatusOr<T>` object that does not
60 // contain a value. This behavior is analogous to that of
61 // `std::bad_optional_access` in the case of accessing an invalid
62 // `std::optional` value.
63 //
64 // Example:
65 //
66 // try {
67 // absl::StatusOr<int> v = FetchInt();
68 // DoWork(v.value()); // Accessing value() when not "OK" may throw
69 // } catch (absl::BadStatusOrAccess& ex) {
70 // LOG(ERROR) << ex.status();
71 // }
72 class BadStatusOrAccess : public std::exception {
73 public:
74 explicit BadStatusOrAccess(absl::Status status);
75 ~BadStatusOrAccess() override;
76
77 // BadStatusOrAccess::what()
78 //
79 // Returns the associated explanatory string of the `absl::StatusOr<T>`
80 // object's error code. This function only returns the string literal "Bad
81 // StatusOr Access" for cases when evaluating general exceptions.
82 //
83 // The pointer of this string is guaranteed to be valid until any non-const
84 // function is invoked on the exception object.
85 const char* what() const noexcept override;
86
87 // BadStatusOrAccess::status()
88 //
89 // Returns the associated `absl::Status` of the `absl::StatusOr<T>` object's
90 // error.
91 const absl::Status& status() const;
92
93 private:
94 absl::Status status_;
95 };
96
97 // Returned StatusOr objects may not be ignored.
98 template <typename T>
99 class ABSL_MUST_USE_RESULT StatusOr;
100
101 // absl::StatusOr<T>
102 //
103 // The `absl::StatusOr<T>` class template is a union of an `absl::Status` object
104 // and an object of type `T`. The `absl::StatusOr<T>` models an object that is
105 // either a usable object, or an error (of type `absl::Status`) explaining why
106 // such an object is not present. An `absl::StatusOr<T>` is typically the return
107 // value of a function which may fail.
108 //
109 // An `absl::StatusOr<T>` can never hold an "OK" status (an
110 // `absl::StatusCode::kOk` value); instead, the presence of an object of type
111 // `T` indicates success. Instead of checking for a `kOk` value, use the
112 // `absl::StatusOr<T>::ok()` member function. (It is for this reason, and code
113 // readability, that using the `ok()` function is preferred for `absl::Status`
114 // as well.)
115 //
116 // Example:
117 //
118 // StatusOr<Foo> result = DoBigCalculationThatCouldFail();
119 // if (result.ok()) {
120 // result->DoSomethingCool();
121 // } else {
122 // LOG(ERROR) << result.status();
123 // }
124 //
125 // Accessing the object held by an `absl::StatusOr<T>` should be performed via
126 // `operator*` or `operator->`, after a call to `ok()` confirms that the
127 // `absl::StatusOr<T>` holds an object of type `T`:
128 //
129 // Example:
130 //
131 // absl::StatusOr<int> i = GetCount();
132 // if (foo.ok()) {
133 // updated_total += *i
134 // }
135 //
136 // NOTE: using `absl::StatusOr<T>::value()` when no valid value is present will
137 // throw an exception if exceptions are enabled or terminate the process when
138 // execeptions are not enabled.
139 //
140 // Example:
141 //
142 // StatusOr<Foo> result = DoBigCalculationThatCouldFail();
143 // const Foo& foo = result.value(); // Crash/exception if no value present
144 // foo.DoSomethingCool();
145 //
146 // A `absl::StatusOr<T*>` can be constructed from a null pointer like any other
147 // pointer value, and the result will be that `ok()` returns `true` and
148 // `value()` returns `nullptr`. Checking the value of pointer in an
149 // `absl::StatusOr<T>` generally requires a bit more care, to ensure both that a
150 // value is present and that value is not null:
151 //
152 // StatusOr<std::unique_ptr<Foo>> result = FooFactory::MakeNewFoo(arg);
153 // if (!result.ok()) {
154 // LOG(ERROR) << result.status();
155 // } else if (*result == nullptr) {
156 // LOG(ERROR) << "Unexpected null pointer";
157 // } else {
158 // (*result)->DoSomethingCool();
159 // }
160 //
161 // Example factory implementation returning StatusOr<T>:
162 //
163 // StatusOr<Foo> FooFactory::MakeFoo(int arg) {
164 // if (arg <= 0) {
165 // return absl::Status(absl::StatusCode::kInvalidArgument,
166 // "Arg must be positive");
167 // }
168 // return Foo(arg);
169 // }
170 template <typename T>
171 class StatusOr : private internal_statusor::StatusOrData<T>,
172 private internal_statusor::CopyCtorBase<T>,
173 private internal_statusor::MoveCtorBase<T>,
174 private internal_statusor::CopyAssignBase<T>,
175 private internal_statusor::MoveAssignBase<T> {
176 template <typename U>
177 friend class StatusOr;
178
179 typedef internal_statusor::StatusOrData<T> Base;
180
181 public:
182 // StatusOr<T>::value_type
183 //
184 // This instance data provides a generic `value_type` member for use within
185 // generic programming. This usage is analogous to that of
186 // `optional::value_type` in the case of `std::optional`.
187 typedef T value_type;
188
189 // Constructors
190
191 // Constructs a new `absl::StatusOr` with an `absl::StatusCode::kUnknown`
192 // status. This constructor is marked 'explicit' to prevent usages in return
193 // values such as 'return {};', under the misconception that
194 // `absl::StatusOr<std::vector<int>>` will be initialized with an empty
195 // vector, instead of an `absl::StatusCode::kUnknown` error code.
196 explicit StatusOr();
197
198 // `StatusOr<T>` is copy constructible if `T` is copy constructible.
199 StatusOr(const StatusOr&) = default;
200 // `StatusOr<T>` is copy assignable if `T` is copy constructible and copy
201 // assignable.
202 StatusOr& operator=(const StatusOr&) = default;
203
204 // `StatusOr<T>` is move constructible if `T` is move constructible.
205 StatusOr(StatusOr&&) = default;
206 // `StatusOr<T>` is moveAssignable if `T` is move constructible and move
207 // assignable.
208 StatusOr& operator=(StatusOr&&) = default;
209
210 // Converting Constructors
211
212 // Constructs a new `absl::StatusOr<T>` from an `absl::StatusOr<U>`, when `T`
213 // is constructible from `U`. To avoid ambiguity, these constructors are
214 // disabled if `T` is also constructible from `StatusOr<U>.`. This constructor
215 // is explicit if and only if the corresponding construction of `T` from `U`
216 // is explicit. (This constructor inherits its explicitness from the
217 // underlying constructor.)
218 template <
219 typename U,
220 absl::enable_if_t<
221 absl::conjunction<
222 absl::negation<std::is_same<T, U>>,
223 std::is_constructible<T, const U&>,
224 std::is_convertible<const U&, T>,
225 absl::negation<
226 internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
227 T, U>>>::value,
228 int> = 0>
StatusOr(const StatusOr<U> & other)229 StatusOr(const StatusOr<U>& other) // NOLINT
230 : Base(static_cast<const typename StatusOr<U>::Base&>(other)) {}
231 template <
232 typename U,
233 absl::enable_if_t<
234 absl::conjunction<
235 absl::negation<std::is_same<T, U>>,
236 std::is_constructible<T, const U&>,
237 absl::negation<std::is_convertible<const U&, T>>,
238 absl::negation<
239 internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
240 T, U>>>::value,
241 int> = 0>
StatusOr(const StatusOr<U> & other)242 explicit StatusOr(const StatusOr<U>& other)
243 : Base(static_cast<const typename StatusOr<U>::Base&>(other)) {}
244
245 template <
246 typename U,
247 absl::enable_if_t<
248 absl::conjunction<
249 absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
250 std::is_convertible<U&&, T>,
251 absl::negation<
252 internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
253 T, U>>>::value,
254 int> = 0>
StatusOr(StatusOr<U> && other)255 StatusOr(StatusOr<U>&& other) // NOLINT
256 : Base(static_cast<typename StatusOr<U>::Base&&>(other)) {}
257 template <
258 typename U,
259 absl::enable_if_t<
260 absl::conjunction<
261 absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
262 absl::negation<std::is_convertible<U&&, T>>,
263 absl::negation<
264 internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
265 T, U>>>::value,
266 int> = 0>
StatusOr(StatusOr<U> && other)267 explicit StatusOr(StatusOr<U>&& other)
268 : Base(static_cast<typename StatusOr<U>::Base&&>(other)) {}
269
270 // Converting Assignment Operators
271
272 // Creates an `absl::StatusOr<T>` through assignment from an
273 // `absl::StatusOr<U>` when:
274 //
275 // * Both `absl::StatusOr<T>` and `absl::StatusOr<U>` are OK by assigning
276 // `U` to `T` directly.
277 // * `absl::StatusOr<T>` is OK and `absl::StatusOr<U>` contains an error
278 // code by destroying `absl::StatusOr<T>`'s value and assigning from
279 // `absl::StatusOr<U>'
280 // * `absl::StatusOr<T>` contains an error code and `absl::StatusOr<U>` is
281 // OK by directly initializing `T` from `U`.
282 // * Both `absl::StatusOr<T>` and `absl::StatusOr<U>` contain an error
283 // code by assigning the `Status` in `absl::StatusOr<U>` to
284 // `absl::StatusOr<T>`
285 //
286 // These overloads only apply if `absl::StatusOr<T>` is constructible and
287 // assignable from `absl::StatusOr<U>` and `StatusOr<T>` cannot be directly
288 // assigned from `StatusOr<U>`.
289 template <
290 typename U,
291 absl::enable_if_t<
292 absl::conjunction<
293 absl::negation<std::is_same<T, U>>,
294 std::is_constructible<T, const U&>,
295 std::is_assignable<T, const U&>,
296 absl::negation<
297 internal_statusor::
298 IsConstructibleOrConvertibleOrAssignableFromStatusOr<
299 T, U>>>::value,
300 int> = 0>
301 StatusOr& operator=(const StatusOr<U>& other) {
302 this->Assign(other);
303 return *this;
304 }
305 template <
306 typename U,
307 absl::enable_if_t<
308 absl::conjunction<
309 absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
310 std::is_assignable<T, U&&>,
311 absl::negation<
312 internal_statusor::
313 IsConstructibleOrConvertibleOrAssignableFromStatusOr<
314 T, U>>>::value,
315 int> = 0>
316 StatusOr& operator=(StatusOr<U>&& other) {
317 this->Assign(std::move(other));
318 return *this;
319 }
320
321 // Constructs a new `absl::StatusOr<T>` with a non-ok status. After calling
322 // this constructor, `this->ok()` will be `false` and calls to `value()` will
323 // crash, or produce an exception if exceptions are enabled.
324 //
325 // The constructor also takes any type `U` that is convertible to
326 // `absl::Status`. This constructor is explicit if an only if `U` is not of
327 // type `absl::Status` and the conversion from `U` to `Status` is explicit.
328 //
329 // REQUIRES: !Status(std::forward<U>(v)).ok(). This requirement is DCHECKed.
330 // In optimized builds, passing absl::OkStatus() here will have the effect
331 // of passing absl::StatusCode::kInternal as a fallback.
332 template <
333 typename U = absl::Status,
334 absl::enable_if_t<
335 absl::conjunction<
336 std::is_convertible<U&&, absl::Status>,
337 std::is_constructible<absl::Status, U&&>,
338 absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
339 absl::negation<std::is_same<absl::decay_t<U>, T>>,
340 absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
341 absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
342 T, U&&>>>::value,
343 int> = 0>
StatusOr(U && v)344 StatusOr(U&& v) : Base(std::forward<U>(v)) {}
345
346 template <
347 typename U = absl::Status,
348 absl::enable_if_t<
349 absl::conjunction<
350 absl::negation<std::is_convertible<U&&, absl::Status>>,
351 std::is_constructible<absl::Status, U&&>,
352 absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
353 absl::negation<std::is_same<absl::decay_t<U>, T>>,
354 absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
355 absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
356 T, U&&>>>::value,
357 int> = 0>
StatusOr(U && v)358 explicit StatusOr(U&& v) : Base(std::forward<U>(v)) {}
359
360 template <
361 typename U = absl::Status,
362 absl::enable_if_t<
363 absl::conjunction<
364 std::is_convertible<U&&, absl::Status>,
365 std::is_constructible<absl::Status, U&&>,
366 absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
367 absl::negation<std::is_same<absl::decay_t<U>, T>>,
368 absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
369 absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
370 T, U&&>>>::value,
371 int> = 0>
372 StatusOr& operator=(U&& v) {
373 this->AssignStatus(std::forward<U>(v));
374 return *this;
375 }
376
377 // Perfect-forwarding value assignment operator.
378
379 // If `*this` contains a `T` value before the call, the contained value is
380 // assigned from `std::forward<U>(v)`; Otherwise, it is directly-initialized
381 // from `std::forward<U>(v)`.
382 // This function does not participate in overload unless:
383 // 1. `std::is_constructible_v<T, U>` is true,
384 // 2. `std::is_assignable_v<T&, U>` is true.
385 // 3. `std::is_same_v<StatusOr<T>, std::remove_cvref_t<U>>` is false.
386 // 4. Assigning `U` to `T` is not ambiguous:
387 // If `U` is `StatusOr<V>` and `T` is constructible and assignable from
388 // both `StatusOr<V>` and `V`, the assignment is considered bug-prone and
389 // ambiguous thus will fail to compile. For example:
390 // StatusOr<bool> s1 = true; // s1.ok() && *s1 == true
391 // StatusOr<bool> s2 = false; // s2.ok() && *s2 == false
392 // s1 = s2; // ambiguous, `s1 = *s2` or `s1 = bool(s2)`?
393 template <
394 typename U = T,
395 typename = typename std::enable_if<absl::conjunction<
396 std::is_constructible<T, U&&>, std::is_assignable<T&, U&&>,
397 absl::disjunction<
398 std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>, T>,
399 absl::conjunction<
400 absl::negation<std::is_convertible<U&&, absl::Status>>,
401 absl::negation<internal_statusor::
402 HasConversionOperatorToStatusOr<T, U&&>>>>,
403 internal_statusor::IsForwardingAssignmentValid<T, U&&>>::value>::type>
404 StatusOr& operator=(U&& v) {
405 this->Assign(std::forward<U>(v));
406 return *this;
407 }
408
409 // Constructs the inner value `T` in-place using the provided args, using the
410 // `T(args...)` constructor.
411 template <typename... Args>
412 explicit StatusOr(absl::in_place_t, Args&&... args);
413 template <typename U, typename... Args>
414 explicit StatusOr(absl::in_place_t, std::initializer_list<U> ilist,
415 Args&&... args);
416
417 // Constructs the inner value `T` in-place using the provided args, using the
418 // `T(U)` (direct-initialization) constructor. This constructor is only valid
419 // if `T` can be constructed from a `U`. Can accept move or copy constructors.
420 //
421 // This constructor is explicit if `U` is not convertible to `T`. To avoid
422 // ambiguity, this constuctor is disabled if `U` is a `StatusOr<J>`, where `J`
423 // is convertible to `T`.
424 template <
425 typename U = T,
426 absl::enable_if_t<
427 absl::conjunction<
428 internal_statusor::IsDirectInitializationValid<T, U&&>,
429 std::is_constructible<T, U&&>, std::is_convertible<U&&, T>,
430 absl::disjunction<
431 std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>,
432 T>,
433 absl::conjunction<
434 absl::negation<std::is_convertible<U&&, absl::Status>>,
435 absl::negation<
436 internal_statusor::HasConversionOperatorToStatusOr<
437 T, U&&>>>>>::value,
438 int> = 0>
StatusOr(U && u)439 StatusOr(U&& u) // NOLINT
440 : StatusOr(absl::in_place, std::forward<U>(u)) {
441 }
442
443 template <
444 typename U = T,
445 absl::enable_if_t<
446 absl::conjunction<
447 internal_statusor::IsDirectInitializationValid<T, U&&>,
448 absl::disjunction<
449 std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>,
450 T>,
451 absl::conjunction<
452 absl::negation<std::is_constructible<absl::Status, U&&>>,
453 absl::negation<
454 internal_statusor::HasConversionOperatorToStatusOr<
455 T, U&&>>>>,
456 std::is_constructible<T, U&&>,
457 absl::negation<std::is_convertible<U&&, T>>>::value,
458 int> = 0>
StatusOr(U && u)459 explicit StatusOr(U&& u) // NOLINT
460 : StatusOr(absl::in_place, std::forward<U>(u)) {
461 }
462
463 // StatusOr<T>::ok()
464 //
465 // Returns whether or not this `absl::StatusOr<T>` holds a `T` value. This
466 // member function is analagous to `absl::Status::ok()` and should be used
467 // similarly to check the status of return values.
468 //
469 // Example:
470 //
471 // StatusOr<Foo> result = DoBigCalculationThatCouldFail();
472 // if (result.ok()) {
473 // // Handle result
474 // else {
475 // // Handle error
476 // }
ok()477 ABSL_MUST_USE_RESULT bool ok() const { return this->status_.ok(); }
478
479 // StatusOr<T>::status()
480 //
481 // Returns a reference to the current `absl::Status` contained within the
482 // `absl::StatusOr<T>`. If `absl::StatusOr<T>` contains a `T`, then this
483 // function returns `absl::OkStatus()`.
484 const Status& status() const &;
485 Status status() &&;
486
487 // StatusOr<T>::value()
488 //
489 // Returns a reference to the held value if `this->ok()`. Otherwise, throws
490 // `absl::BadStatusOrAccess` if exceptions are enabled, or is guaranteed to
491 // terminate the process if exceptions are disabled.
492 //
493 // If you have already checked the status using `this->ok()`, you probably
494 // want to use `operator*()` or `operator->()` to access the value instead of
495 // `value`.
496 //
497 // Note: for value types that are cheap to copy, prefer simple code:
498 //
499 // T value = statusor.value();
500 //
501 // Otherwise, if the value type is expensive to copy, but can be left
502 // in the StatusOr, simply assign to a reference:
503 //
504 // T& value = statusor.value(); // or `const T&`
505 //
506 // Otherwise, if the value type supports an efficient move, it can be
507 // used as follows:
508 //
509 // T value = std::move(statusor).value();
510 //
511 // The `std::move` on statusor instead of on the whole expression enables
512 // warnings about possible uses of the statusor object after the move.
513 const T& value() const&;
514 T& value() &;
515 const T&& value() const&&;
516 T&& value() &&;
517
518 // StatusOr<T>:: operator*()
519 //
520 // Returns a reference to the current value.
521 //
522 // REQUIRES: `this->ok() == true`, otherwise the behavior is undefined.
523 //
524 // Use `this->ok()` to verify that there is a current value within the
525 // `absl::StatusOr<T>`. Alternatively, see the `value()` member function for a
526 // similar API that guarantees crashing or throwing an exception if there is
527 // no current value.
528 const T& operator*() const&;
529 T& operator*() &;
530 const T&& operator*() const&&;
531 T&& operator*() &&;
532
533 // StatusOr<T>::operator->()
534 //
535 // Returns a pointer to the current value.
536 //
537 // REQUIRES: `this->ok() == true`, otherwise the behavior is undefined.
538 //
539 // Use `this->ok()` to verify that there is a current value.
540 const T* operator->() const;
541 T* operator->();
542
543 // StatusOr<T>::value_or()
544 //
545 // Returns the current value of `this->ok() == true`. Otherwise constructs a
546 // value using the provided `default_value`.
547 //
548 // Unlike `value`, this function returns by value, copying the current value
549 // if necessary. If the value type supports an efficient move, it can be used
550 // as follows:
551 //
552 // T value = std::move(statusor).value_or(def);
553 //
554 // Unlike with `value`, calling `std::move()` on the result of `value_or` will
555 // still trigger a copy.
556 template <typename U>
557 T value_or(U&& default_value) const&;
558 template <typename U>
559 T value_or(U&& default_value) &&;
560
561 // StatusOr<T>::IgnoreError()
562 //
563 // Ignores any errors. This method does nothing except potentially suppress
564 // complaints from any tools that are checking that errors are not dropped on
565 // the floor.
566 void IgnoreError() const;
567
568 // StatusOr<T>::emplace()
569 //
570 // Reconstructs the inner value T in-place using the provided args, using the
571 // T(args...) constructor. Returns reference to the reconstructed `T`.
572 template <typename... Args>
emplace(Args &&...args)573 T& emplace(Args&&... args) {
574 if (ok()) {
575 this->Clear();
576 this->MakeValue(std::forward<Args>(args)...);
577 } else {
578 this->MakeValue(std::forward<Args>(args)...);
579 this->status_ = absl::OkStatus();
580 }
581 return this->data_;
582 }
583
584 template <
585 typename U, typename... Args,
586 absl::enable_if_t<
587 std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value,
588 int> = 0>
emplace(std::initializer_list<U> ilist,Args &&...args)589 T& emplace(std::initializer_list<U> ilist, Args&&... args) {
590 if (ok()) {
591 this->Clear();
592 this->MakeValue(ilist, std::forward<Args>(args)...);
593 } else {
594 this->MakeValue(ilist, std::forward<Args>(args)...);
595 this->status_ = absl::OkStatus();
596 }
597 return this->data_;
598 }
599
600 private:
601 using internal_statusor::StatusOrData<T>::Assign;
602 template <typename U>
603 void Assign(const absl::StatusOr<U>& other);
604 template <typename U>
605 void Assign(absl::StatusOr<U>&& other);
606 };
607
608 // operator==()
609 //
610 // This operator checks the equality of two `absl::StatusOr<T>` objects.
611 template <typename T>
612 bool operator==(const StatusOr<T>& lhs, const StatusOr<T>& rhs) {
613 if (lhs.ok() && rhs.ok()) return *lhs == *rhs;
614 return lhs.status() == rhs.status();
615 }
616
617 // operator!=()
618 //
619 // This operator checks the inequality of two `absl::StatusOr<T>` objects.
620 template <typename T>
621 bool operator!=(const StatusOr<T>& lhs, const StatusOr<T>& rhs) {
622 return !(lhs == rhs);
623 }
624
625 //------------------------------------------------------------------------------
626 // Implementation details for StatusOr<T>
627 //------------------------------------------------------------------------------
628
629 // TODO(sbenza): avoid the string here completely.
630 template <typename T>
StatusOr()631 StatusOr<T>::StatusOr() : Base(Status(absl::StatusCode::kUnknown, "")) {}
632
633 template <typename T>
634 template <typename U>
Assign(const StatusOr<U> & other)635 inline void StatusOr<T>::Assign(const StatusOr<U>& other) {
636 if (other.ok()) {
637 this->Assign(*other);
638 } else {
639 this->AssignStatus(other.status());
640 }
641 }
642
643 template <typename T>
644 template <typename U>
Assign(StatusOr<U> && other)645 inline void StatusOr<T>::Assign(StatusOr<U>&& other) {
646 if (other.ok()) {
647 this->Assign(*std::move(other));
648 } else {
649 this->AssignStatus(std::move(other).status());
650 }
651 }
652 template <typename T>
653 template <typename... Args>
StatusOr(absl::in_place_t,Args &&...args)654 StatusOr<T>::StatusOr(absl::in_place_t, Args&&... args)
655 : Base(absl::in_place, std::forward<Args>(args)...) {}
656
657 template <typename T>
658 template <typename U, typename... Args>
StatusOr(absl::in_place_t,std::initializer_list<U> ilist,Args &&...args)659 StatusOr<T>::StatusOr(absl::in_place_t, std::initializer_list<U> ilist,
660 Args&&... args)
661 : Base(absl::in_place, ilist, std::forward<Args>(args)...) {}
662
663 template <typename T>
status()664 const Status& StatusOr<T>::status() const & { return this->status_; }
665 template <typename T>
status()666 Status StatusOr<T>::status() && {
667 return ok() ? OkStatus() : std::move(this->status_);
668 }
669
670 template <typename T>
value()671 const T& StatusOr<T>::value() const& {
672 if (!this->ok()) internal_statusor::ThrowBadStatusOrAccess(this->status_);
673 return this->data_;
674 }
675
676 template <typename T>
value()677 T& StatusOr<T>::value() & {
678 if (!this->ok()) internal_statusor::ThrowBadStatusOrAccess(this->status_);
679 return this->data_;
680 }
681
682 template <typename T>
value()683 const T&& StatusOr<T>::value() const&& {
684 if (!this->ok()) {
685 internal_statusor::ThrowBadStatusOrAccess(std::move(this->status_));
686 }
687 return std::move(this->data_);
688 }
689
690 template <typename T>
value()691 T&& StatusOr<T>::value() && {
692 if (!this->ok()) {
693 internal_statusor::ThrowBadStatusOrAccess(std::move(this->status_));
694 }
695 return std::move(this->data_);
696 }
697
698 template <typename T>
699 const T& StatusOr<T>::operator*() const& {
700 this->EnsureOk();
701 return this->data_;
702 }
703
704 template <typename T>
705 T& StatusOr<T>::operator*() & {
706 this->EnsureOk();
707 return this->data_;
708 }
709
710 template <typename T>
711 const T&& StatusOr<T>::operator*() const&& {
712 this->EnsureOk();
713 return std::move(this->data_);
714 }
715
716 template <typename T>
717 T&& StatusOr<T>::operator*() && {
718 this->EnsureOk();
719 return std::move(this->data_);
720 }
721
722 template <typename T>
723 const T* StatusOr<T>::operator->() const {
724 this->EnsureOk();
725 return &this->data_;
726 }
727
728 template <typename T>
729 T* StatusOr<T>::operator->() {
730 this->EnsureOk();
731 return &this->data_;
732 }
733
734 template <typename T>
735 template <typename U>
value_or(U && default_value)736 T StatusOr<T>::value_or(U&& default_value) const& {
737 if (ok()) {
738 return this->data_;
739 }
740 return std::forward<U>(default_value);
741 }
742
743 template <typename T>
744 template <typename U>
value_or(U && default_value)745 T StatusOr<T>::value_or(U&& default_value) && {
746 if (ok()) {
747 return std::move(this->data_);
748 }
749 return std::forward<U>(default_value);
750 }
751
752 template <typename T>
IgnoreError()753 void StatusOr<T>::IgnoreError() const {
754 // no-op
755 }
756
757 ABSL_NAMESPACE_END
758 } // namespace absl
759
760 #endif // ABSL_STATUS_STATUSOR_H_
761