1 // Copyright 2020 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: statusor.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::StatusOr<T>` represents a union of an `absl::Status` object
20 // and an object of type `T`. The `absl::StatusOr<T>` will either contain an
21 // object of type `T` (indicating a successful operation), or an error (of type
22 // `absl::Status`) explaining why such a value is not present.
23 //
24 // In general, check the success of an operation returning an
25 // `absl::StatusOr<T>` like you would an `absl::Status` by using the `ok()`
26 // member function.
27 //
28 // Example:
29 //
30 //   StatusOr<Foo> result = Calculation();
31 //   if (result.ok()) {
32 //     result->DoSomethingCool();
33 //   } else {
34 //     LOG(ERROR) << result.status();
35 //   }
36 #ifndef ABSL_STATUS_STATUSOR_H_
37 #define ABSL_STATUS_STATUSOR_H_
38 
39 #include <exception>
40 #include <initializer_list>
41 #include <new>
42 #include <string>
43 #include <type_traits>
44 #include <utility>
45 
46 #include "absl/base/attributes.h"
47 #include "absl/meta/type_traits.h"
48 #include "absl/status/internal/statusor_internal.h"
49 #include "absl/status/status.h"
50 #include "absl/types/variant.h"
51 #include "absl/utility/utility.h"
52 
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55 
56 // BadStatusOrAccess
57 //
58 // This class defines the type of object to throw (if exceptions are enabled),
59 // when accessing the value of an `absl::StatusOr<T>` object that does not
60 // contain a value. This behavior is analogous to that of
61 // `std::bad_optional_access` in the case of accessing an invalid
62 // `std::optional` value.
63 //
64 // Example:
65 //
66 // try {
67 //   absl::StatusOr<int> v = FetchInt();
68 //   DoWork(v.value());  // Accessing value() when not "OK" may throw
69 // } catch (absl::BadStatusOrAccess& ex) {
70 //   LOG(ERROR) << ex.status();
71 // }
72 class BadStatusOrAccess : public std::exception {
73  public:
74   explicit BadStatusOrAccess(absl::Status status);
75   ~BadStatusOrAccess() override;
76 
77   // BadStatusOrAccess::what()
78   //
79   // Returns the associated explanatory string of the `absl::StatusOr<T>`
80   // object's error code. This function only returns the string literal "Bad
81   // StatusOr Access" for cases when evaluating general exceptions.
82   //
83   // The pointer of this string is guaranteed to be valid until any non-const
84   // function is invoked on the exception object.
85   const char* what() const noexcept override;
86 
87   // BadStatusOrAccess::status()
88   //
89   // Returns the associated `absl::Status` of the `absl::StatusOr<T>` object's
90   // error.
91   const absl::Status& status() const;
92 
93  private:
94   absl::Status status_;
95 };
96 
97 // Returned StatusOr objects may not be ignored.
98 template <typename T>
99 class ABSL_MUST_USE_RESULT StatusOr;
100 
101 // absl::StatusOr<T>
102 //
103 // The `absl::StatusOr<T>` class template is a union of an `absl::Status` object
104 // and an object of type `T`. The `absl::StatusOr<T>` models an object that is
105 // either a usable object, or an error (of type `absl::Status`) explaining why
106 // such an object is not present. An `absl::StatusOr<T>` is typically the return
107 // value of a function which may fail.
108 //
109 // An `absl::StatusOr<T>` can never hold an "OK" status (an
110 // `absl::StatusCode::kOk` value); instead, the presence of an object of type
111 // `T` indicates success. Instead of checking for a `kOk` value, use the
112 // `absl::StatusOr<T>::ok()` member function. (It is for this reason, and code
113 // readability, that using the `ok()` function is preferred for `absl::Status`
114 // as well.)
115 //
116 // Example:
117 //
118 //   StatusOr<Foo> result = DoBigCalculationThatCouldFail();
119 //   if (result.ok()) {
120 //     result->DoSomethingCool();
121 //   } else {
122 //     LOG(ERROR) << result.status();
123 //   }
124 //
125 // Accessing the object held by an `absl::StatusOr<T>` should be performed via
126 // `operator*` or `operator->`, after a call to `ok()` confirms that the
127 // `absl::StatusOr<T>` holds an object of type `T`:
128 //
129 // Example:
130 //
131 //   absl::StatusOr<int> i = GetCount();
132 //   if (foo.ok()) {
133 //     updated_total += *i
134 //   }
135 //
136 // NOTE: using `absl::StatusOr<T>::value()` when no valid value is present will
137 // throw an exception if exceptions are enabled or terminate the process when
138 // execeptions are not enabled.
139 //
140 // Example:
141 //
142 //   StatusOr<Foo> result = DoBigCalculationThatCouldFail();
143 //   const Foo& foo = result.value();    // Crash/exception if no value present
144 //   foo.DoSomethingCool();
145 //
146 // A `absl::StatusOr<T*>` can be constructed from a null pointer like any other
147 // pointer value, and the result will be that `ok()` returns `true` and
148 // `value()` returns `nullptr`. Checking the value of pointer in an
149 // `absl::StatusOr<T>` generally requires a bit more care, to ensure both that a
150 // value is present and that value is not null:
151 //
152 //  StatusOr<std::unique_ptr<Foo>> result = FooFactory::MakeNewFoo(arg);
153 //  if (!result.ok()) {
154 //    LOG(ERROR) << result.status();
155 //  } else if (*result == nullptr) {
156 //    LOG(ERROR) << "Unexpected null pointer";
157 //  } else {
158 //    (*result)->DoSomethingCool();
159 //  }
160 //
161 // Example factory implementation returning StatusOr<T>:
162 //
163 //  StatusOr<Foo> FooFactory::MakeFoo(int arg) {
164 //    if (arg <= 0) {
165 //      return absl::Status(absl::StatusCode::kInvalidArgument,
166 //                          "Arg must be positive");
167 //    }
168 //    return Foo(arg);
169 //  }
170 template <typename T>
171 class StatusOr : private internal_statusor::StatusOrData<T>,
172                  private internal_statusor::CopyCtorBase<T>,
173                  private internal_statusor::MoveCtorBase<T>,
174                  private internal_statusor::CopyAssignBase<T>,
175                  private internal_statusor::MoveAssignBase<T> {
176   template <typename U>
177   friend class StatusOr;
178 
179   typedef internal_statusor::StatusOrData<T> Base;
180 
181  public:
182   // StatusOr<T>::value_type
183   //
184   // This instance data provides a generic `value_type` member for use within
185   // generic programming. This usage is analogous to that of
186   // `optional::value_type` in the case of `std::optional`.
187   typedef T value_type;
188 
189   // Constructors
190 
191   // Constructs a new `absl::StatusOr` with an `absl::StatusCode::kUnknown`
192   // status. This constructor is marked 'explicit' to prevent usages in return
193   // values such as 'return {};', under the misconception that
194   // `absl::StatusOr<std::vector<int>>` will be initialized with an empty
195   // vector, instead of an `absl::StatusCode::kUnknown` error code.
196   explicit StatusOr();
197 
198   // `StatusOr<T>` is copy constructible if `T` is copy constructible.
199   StatusOr(const StatusOr&) = default;
200   // `StatusOr<T>` is copy assignable if `T` is copy constructible and copy
201   // assignable.
202   StatusOr& operator=(const StatusOr&) = default;
203 
204   // `StatusOr<T>` is move constructible if `T` is move constructible.
205   StatusOr(StatusOr&&) = default;
206   // `StatusOr<T>` is moveAssignable if `T` is move constructible and move
207   // assignable.
208   StatusOr& operator=(StatusOr&&) = default;
209 
210   // Converting Constructors
211 
212   // Constructs a new `absl::StatusOr<T>` from an `absl::StatusOr<U>`, when `T`
213   // is constructible from `U`. To avoid ambiguity, these constructors are
214   // disabled if `T` is also constructible from `StatusOr<U>.`. This constructor
215   // is explicit if and only if the corresponding construction of `T` from `U`
216   // is explicit. (This constructor inherits its explicitness from the
217   // underlying constructor.)
218   template <
219       typename U,
220       absl::enable_if_t<
221           absl::conjunction<
222               absl::negation<std::is_same<T, U>>,
223               std::is_constructible<T, const U&>,
224               std::is_convertible<const U&, T>,
225               absl::negation<
226                   internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
227                       T, U>>>::value,
228           int> = 0>
StatusOr(const StatusOr<U> & other)229   StatusOr(const StatusOr<U>& other)  // NOLINT
230       : Base(static_cast<const typename StatusOr<U>::Base&>(other)) {}
231   template <
232       typename U,
233       absl::enable_if_t<
234           absl::conjunction<
235               absl::negation<std::is_same<T, U>>,
236               std::is_constructible<T, const U&>,
237               absl::negation<std::is_convertible<const U&, T>>,
238               absl::negation<
239                   internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
240                       T, U>>>::value,
241           int> = 0>
StatusOr(const StatusOr<U> & other)242   explicit StatusOr(const StatusOr<U>& other)
243       : Base(static_cast<const typename StatusOr<U>::Base&>(other)) {}
244 
245   template <
246       typename U,
247       absl::enable_if_t<
248           absl::conjunction<
249               absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
250               std::is_convertible<U&&, T>,
251               absl::negation<
252                   internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
253                       T, U>>>::value,
254           int> = 0>
StatusOr(StatusOr<U> && other)255   StatusOr(StatusOr<U>&& other)  // NOLINT
256       : Base(static_cast<typename StatusOr<U>::Base&&>(other)) {}
257   template <
258       typename U,
259       absl::enable_if_t<
260           absl::conjunction<
261               absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
262               absl::negation<std::is_convertible<U&&, T>>,
263               absl::negation<
264                   internal_statusor::IsConstructibleOrConvertibleFromStatusOr<
265                       T, U>>>::value,
266           int> = 0>
StatusOr(StatusOr<U> && other)267   explicit StatusOr(StatusOr<U>&& other)
268       : Base(static_cast<typename StatusOr<U>::Base&&>(other)) {}
269 
270   // Converting Assignment Operators
271 
272   // Creates an `absl::StatusOr<T>` through assignment from an
273   // `absl::StatusOr<U>` when:
274   //
275   //   * Both `absl::StatusOr<T>` and `absl::StatusOr<U>` are OK by assigning
276   //     `U` to `T` directly.
277   //   * `absl::StatusOr<T>` is OK and `absl::StatusOr<U>` contains an error
278   //      code by destroying `absl::StatusOr<T>`'s value and assigning from
279   //      `absl::StatusOr<U>'
280   //   * `absl::StatusOr<T>` contains an error code and `absl::StatusOr<U>` is
281   //      OK by directly initializing `T` from `U`.
282   //   * Both `absl::StatusOr<T>` and `absl::StatusOr<U>` contain an error
283   //     code by assigning the `Status` in `absl::StatusOr<U>` to
284   //     `absl::StatusOr<T>`
285   //
286   // These overloads only apply if `absl::StatusOr<T>` is constructible and
287   // assignable from `absl::StatusOr<U>` and `StatusOr<T>` cannot be directly
288   // assigned from `StatusOr<U>`.
289   template <
290       typename U,
291       absl::enable_if_t<
292           absl::conjunction<
293               absl::negation<std::is_same<T, U>>,
294               std::is_constructible<T, const U&>,
295               std::is_assignable<T, const U&>,
296               absl::negation<
297                   internal_statusor::
298                       IsConstructibleOrConvertibleOrAssignableFromStatusOr<
299                           T, U>>>::value,
300           int> = 0>
301   StatusOr& operator=(const StatusOr<U>& other) {
302     this->Assign(other);
303     return *this;
304   }
305   template <
306       typename U,
307       absl::enable_if_t<
308           absl::conjunction<
309               absl::negation<std::is_same<T, U>>, std::is_constructible<T, U&&>,
310               std::is_assignable<T, U&&>,
311               absl::negation<
312                   internal_statusor::
313                       IsConstructibleOrConvertibleOrAssignableFromStatusOr<
314                           T, U>>>::value,
315           int> = 0>
316   StatusOr& operator=(StatusOr<U>&& other) {
317     this->Assign(std::move(other));
318     return *this;
319   }
320 
321   // Constructs a new `absl::StatusOr<T>` with a non-ok status. After calling
322   // this constructor, `this->ok()` will be `false` and calls to `value()` will
323   // crash, or produce an exception if exceptions are enabled.
324   //
325   // The constructor also takes any type `U` that is convertible to
326   // `absl::Status`. This constructor is explicit if an only if `U` is not of
327   // type `absl::Status` and the conversion from `U` to `Status` is explicit.
328   //
329   // REQUIRES: !Status(std::forward<U>(v)).ok(). This requirement is DCHECKed.
330   // In optimized builds, passing absl::OkStatus() here will have the effect
331   // of passing absl::StatusCode::kInternal as a fallback.
332   template <
333       typename U = absl::Status,
334       absl::enable_if_t<
335           absl::conjunction<
336               std::is_convertible<U&&, absl::Status>,
337               std::is_constructible<absl::Status, U&&>,
338               absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
339               absl::negation<std::is_same<absl::decay_t<U>, T>>,
340               absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
341               absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
342                   T, U&&>>>::value,
343           int> = 0>
StatusOr(U && v)344   StatusOr(U&& v) : Base(std::forward<U>(v)) {}
345 
346   template <
347       typename U = absl::Status,
348       absl::enable_if_t<
349           absl::conjunction<
350               absl::negation<std::is_convertible<U&&, absl::Status>>,
351               std::is_constructible<absl::Status, U&&>,
352               absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
353               absl::negation<std::is_same<absl::decay_t<U>, T>>,
354               absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
355               absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
356                   T, U&&>>>::value,
357           int> = 0>
StatusOr(U && v)358   explicit StatusOr(U&& v) : Base(std::forward<U>(v)) {}
359 
360   template <
361       typename U = absl::Status,
362       absl::enable_if_t<
363           absl::conjunction<
364               std::is_convertible<U&&, absl::Status>,
365               std::is_constructible<absl::Status, U&&>,
366               absl::negation<std::is_same<absl::decay_t<U>, absl::StatusOr<T>>>,
367               absl::negation<std::is_same<absl::decay_t<U>, T>>,
368               absl::negation<std::is_same<absl::decay_t<U>, absl::in_place_t>>,
369               absl::negation<internal_statusor::HasConversionOperatorToStatusOr<
370                   T, U&&>>>::value,
371           int> = 0>
372   StatusOr& operator=(U&& v) {
373     this->AssignStatus(std::forward<U>(v));
374     return *this;
375   }
376 
377   // Perfect-forwarding value assignment operator.
378 
379   // If `*this` contains a `T` value before the call, the contained value is
380   // assigned from `std::forward<U>(v)`; Otherwise, it is directly-initialized
381   // from `std::forward<U>(v)`.
382   // This function does not participate in overload unless:
383   // 1. `std::is_constructible_v<T, U>` is true,
384   // 2. `std::is_assignable_v<T&, U>` is true.
385   // 3. `std::is_same_v<StatusOr<T>, std::remove_cvref_t<U>>` is false.
386   // 4. Assigning `U` to `T` is not ambiguous:
387   //  If `U` is `StatusOr<V>` and `T` is constructible and assignable from
388   //  both `StatusOr<V>` and `V`, the assignment is considered bug-prone and
389   //  ambiguous thus will fail to compile. For example:
390   //    StatusOr<bool> s1 = true;  // s1.ok() && *s1 == true
391   //    StatusOr<bool> s2 = false;  // s2.ok() && *s2 == false
392   //    s1 = s2;  // ambiguous, `s1 = *s2` or `s1 = bool(s2)`?
393   template <
394       typename U = T,
395       typename = typename std::enable_if<absl::conjunction<
396           std::is_constructible<T, U&&>, std::is_assignable<T&, U&&>,
397           absl::disjunction<
398               std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>, T>,
399               absl::conjunction<
400                   absl::negation<std::is_convertible<U&&, absl::Status>>,
401                   absl::negation<internal_statusor::
402                                      HasConversionOperatorToStatusOr<T, U&&>>>>,
403           internal_statusor::IsForwardingAssignmentValid<T, U&&>>::value>::type>
404   StatusOr& operator=(U&& v) {
405     this->Assign(std::forward<U>(v));
406     return *this;
407   }
408 
409   // Constructs the inner value `T` in-place using the provided args, using the
410   // `T(args...)` constructor.
411   template <typename... Args>
412   explicit StatusOr(absl::in_place_t, Args&&... args);
413   template <typename U, typename... Args>
414   explicit StatusOr(absl::in_place_t, std::initializer_list<U> ilist,
415                     Args&&... args);
416 
417   // Constructs the inner value `T` in-place using the provided args, using the
418   // `T(U)` (direct-initialization) constructor. This constructor is only valid
419   // if `T` can be constructed from a `U`. Can accept move or copy constructors.
420   //
421   // This constructor is explicit if `U` is not convertible to `T`. To avoid
422   // ambiguity, this constuctor is disabled if `U` is a `StatusOr<J>`, where `J`
423   // is convertible to `T`.
424   template <
425       typename U = T,
426       absl::enable_if_t<
427           absl::conjunction<
428               internal_statusor::IsDirectInitializationValid<T, U&&>,
429               std::is_constructible<T, U&&>, std::is_convertible<U&&, T>,
430               absl::disjunction<
431                   std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>,
432                                T>,
433                   absl::conjunction<
434                       absl::negation<std::is_convertible<U&&, absl::Status>>,
435                       absl::negation<
436                           internal_statusor::HasConversionOperatorToStatusOr<
437                               T, U&&>>>>>::value,
438           int> = 0>
StatusOr(U && u)439   StatusOr(U&& u)  // NOLINT
440       : StatusOr(absl::in_place, std::forward<U>(u)) {
441   }
442 
443   template <
444       typename U = T,
445       absl::enable_if_t<
446           absl::conjunction<
447               internal_statusor::IsDirectInitializationValid<T, U&&>,
448               absl::disjunction<
449                   std::is_same<absl::remove_cv_t<absl::remove_reference_t<U>>,
450                                T>,
451                   absl::conjunction<
452                       absl::negation<std::is_constructible<absl::Status, U&&>>,
453                       absl::negation<
454                           internal_statusor::HasConversionOperatorToStatusOr<
455                               T, U&&>>>>,
456               std::is_constructible<T, U&&>,
457               absl::negation<std::is_convertible<U&&, T>>>::value,
458           int> = 0>
StatusOr(U && u)459   explicit StatusOr(U&& u)  // NOLINT
460       : StatusOr(absl::in_place, std::forward<U>(u)) {
461   }
462 
463   // StatusOr<T>::ok()
464   //
465   // Returns whether or not this `absl::StatusOr<T>` holds a `T` value. This
466   // member function is analagous to `absl::Status::ok()` and should be used
467   // similarly to check the status of return values.
468   //
469   // Example:
470   //
471   // StatusOr<Foo> result = DoBigCalculationThatCouldFail();
472   // if (result.ok()) {
473   //    // Handle result
474   // else {
475   //    // Handle error
476   // }
ok()477   ABSL_MUST_USE_RESULT bool ok() const { return this->status_.ok(); }
478 
479   // StatusOr<T>::status()
480   //
481   // Returns a reference to the current `absl::Status` contained within the
482   // `absl::StatusOr<T>`. If `absl::StatusOr<T>` contains a `T`, then this
483   // function returns `absl::OkStatus()`.
484   const Status& status() const &;
485   Status status() &&;
486 
487   // StatusOr<T>::value()
488   //
489   // Returns a reference to the held value if `this->ok()`. Otherwise, throws
490   // `absl::BadStatusOrAccess` if exceptions are enabled, or is guaranteed to
491   // terminate the process if exceptions are disabled.
492   //
493   // If you have already checked the status using `this->ok()`, you probably
494   // want to use `operator*()` or `operator->()` to access the value instead of
495   // `value`.
496   //
497   // Note: for value types that are cheap to copy, prefer simple code:
498   //
499   //   T value = statusor.value();
500   //
501   // Otherwise, if the value type is expensive to copy, but can be left
502   // in the StatusOr, simply assign to a reference:
503   //
504   //   T& value = statusor.value();  // or `const T&`
505   //
506   // Otherwise, if the value type supports an efficient move, it can be
507   // used as follows:
508   //
509   //   T value = std::move(statusor).value();
510   //
511   // The `std::move` on statusor instead of on the whole expression enables
512   // warnings about possible uses of the statusor object after the move.
513   const T& value() const&;
514   T& value() &;
515   const T&& value() const&&;
516   T&& value() &&;
517 
518   // StatusOr<T>:: operator*()
519   //
520   // Returns a reference to the current value.
521   //
522   // REQUIRES: `this->ok() == true`, otherwise the behavior is undefined.
523   //
524   // Use `this->ok()` to verify that there is a current value within the
525   // `absl::StatusOr<T>`. Alternatively, see the `value()` member function for a
526   // similar API that guarantees crashing or throwing an exception if there is
527   // no current value.
528   const T& operator*() const&;
529   T& operator*() &;
530   const T&& operator*() const&&;
531   T&& operator*() &&;
532 
533   // StatusOr<T>::operator->()
534   //
535   // Returns a pointer to the current value.
536   //
537   // REQUIRES: `this->ok() == true`, otherwise the behavior is undefined.
538   //
539   // Use `this->ok()` to verify that there is a current value.
540   const T* operator->() const;
541   T* operator->();
542 
543   // StatusOr<T>::value_or()
544   //
545   // Returns the current value of `this->ok() == true`. Otherwise constructs a
546   // value using the provided `default_value`.
547   //
548   // Unlike `value`, this function returns by value, copying the current value
549   // if necessary. If the value type supports an efficient move, it can be used
550   // as follows:
551   //
552   //   T value = std::move(statusor).value_or(def);
553   //
554   // Unlike with `value`, calling `std::move()` on the result of `value_or` will
555   // still trigger a copy.
556   template <typename U>
557   T value_or(U&& default_value) const&;
558   template <typename U>
559   T value_or(U&& default_value) &&;
560 
561   // StatusOr<T>::IgnoreError()
562   //
563   // Ignores any errors. This method does nothing except potentially suppress
564   // complaints from any tools that are checking that errors are not dropped on
565   // the floor.
566   void IgnoreError() const;
567 
568   // StatusOr<T>::emplace()
569   //
570   // Reconstructs the inner value T in-place using the provided args, using the
571   // T(args...) constructor. Returns reference to the reconstructed `T`.
572   template <typename... Args>
emplace(Args &&...args)573   T& emplace(Args&&... args) {
574     if (ok()) {
575       this->Clear();
576       this->MakeValue(std::forward<Args>(args)...);
577     } else {
578       this->MakeValue(std::forward<Args>(args)...);
579       this->status_ = absl::OkStatus();
580     }
581     return this->data_;
582   }
583 
584   template <
585       typename U, typename... Args,
586       absl::enable_if_t<
587           std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value,
588           int> = 0>
emplace(std::initializer_list<U> ilist,Args &&...args)589   T& emplace(std::initializer_list<U> ilist, Args&&... args) {
590     if (ok()) {
591       this->Clear();
592       this->MakeValue(ilist, std::forward<Args>(args)...);
593     } else {
594       this->MakeValue(ilist, std::forward<Args>(args)...);
595       this->status_ = absl::OkStatus();
596     }
597     return this->data_;
598   }
599 
600  private:
601   using internal_statusor::StatusOrData<T>::Assign;
602   template <typename U>
603   void Assign(const absl::StatusOr<U>& other);
604   template <typename U>
605   void Assign(absl::StatusOr<U>&& other);
606 };
607 
608 // operator==()
609 //
610 // This operator checks the equality of two `absl::StatusOr<T>` objects.
611 template <typename T>
612 bool operator==(const StatusOr<T>& lhs, const StatusOr<T>& rhs) {
613   if (lhs.ok() && rhs.ok()) return *lhs == *rhs;
614   return lhs.status() == rhs.status();
615 }
616 
617 // operator!=()
618 //
619 // This operator checks the inequality of two `absl::StatusOr<T>` objects.
620 template <typename T>
621 bool operator!=(const StatusOr<T>& lhs, const StatusOr<T>& rhs) {
622   return !(lhs == rhs);
623 }
624 
625 //------------------------------------------------------------------------------
626 // Implementation details for StatusOr<T>
627 //------------------------------------------------------------------------------
628 
629 // TODO(sbenza): avoid the string here completely.
630 template <typename T>
StatusOr()631 StatusOr<T>::StatusOr() : Base(Status(absl::StatusCode::kUnknown, "")) {}
632 
633 template <typename T>
634 template <typename U>
Assign(const StatusOr<U> & other)635 inline void StatusOr<T>::Assign(const StatusOr<U>& other) {
636   if (other.ok()) {
637     this->Assign(*other);
638   } else {
639     this->AssignStatus(other.status());
640   }
641 }
642 
643 template <typename T>
644 template <typename U>
Assign(StatusOr<U> && other)645 inline void StatusOr<T>::Assign(StatusOr<U>&& other) {
646   if (other.ok()) {
647     this->Assign(*std::move(other));
648   } else {
649     this->AssignStatus(std::move(other).status());
650   }
651 }
652 template <typename T>
653 template <typename... Args>
StatusOr(absl::in_place_t,Args &&...args)654 StatusOr<T>::StatusOr(absl::in_place_t, Args&&... args)
655     : Base(absl::in_place, std::forward<Args>(args)...) {}
656 
657 template <typename T>
658 template <typename U, typename... Args>
StatusOr(absl::in_place_t,std::initializer_list<U> ilist,Args &&...args)659 StatusOr<T>::StatusOr(absl::in_place_t, std::initializer_list<U> ilist,
660                       Args&&... args)
661     : Base(absl::in_place, ilist, std::forward<Args>(args)...) {}
662 
663 template <typename T>
status()664 const Status& StatusOr<T>::status() const & { return this->status_; }
665 template <typename T>
status()666 Status StatusOr<T>::status() && {
667   return ok() ? OkStatus() : std::move(this->status_);
668 }
669 
670 template <typename T>
value()671 const T& StatusOr<T>::value() const& {
672   if (!this->ok()) internal_statusor::ThrowBadStatusOrAccess(this->status_);
673   return this->data_;
674 }
675 
676 template <typename T>
value()677 T& StatusOr<T>::value() & {
678   if (!this->ok()) internal_statusor::ThrowBadStatusOrAccess(this->status_);
679   return this->data_;
680 }
681 
682 template <typename T>
value()683 const T&& StatusOr<T>::value() const&& {
684   if (!this->ok()) {
685     internal_statusor::ThrowBadStatusOrAccess(std::move(this->status_));
686   }
687   return std::move(this->data_);
688 }
689 
690 template <typename T>
value()691 T&& StatusOr<T>::value() && {
692   if (!this->ok()) {
693     internal_statusor::ThrowBadStatusOrAccess(std::move(this->status_));
694   }
695   return std::move(this->data_);
696 }
697 
698 template <typename T>
699 const T& StatusOr<T>::operator*() const& {
700   this->EnsureOk();
701   return this->data_;
702 }
703 
704 template <typename T>
705 T& StatusOr<T>::operator*() & {
706   this->EnsureOk();
707   return this->data_;
708 }
709 
710 template <typename T>
711 const T&& StatusOr<T>::operator*() const&& {
712   this->EnsureOk();
713   return std::move(this->data_);
714 }
715 
716 template <typename T>
717 T&& StatusOr<T>::operator*() && {
718   this->EnsureOk();
719   return std::move(this->data_);
720 }
721 
722 template <typename T>
723 const T* StatusOr<T>::operator->() const {
724   this->EnsureOk();
725   return &this->data_;
726 }
727 
728 template <typename T>
729 T* StatusOr<T>::operator->() {
730   this->EnsureOk();
731   return &this->data_;
732 }
733 
734 template <typename T>
735 template <typename U>
value_or(U && default_value)736 T StatusOr<T>::value_or(U&& default_value) const& {
737   if (ok()) {
738     return this->data_;
739   }
740   return std::forward<U>(default_value);
741 }
742 
743 template <typename T>
744 template <typename U>
value_or(U && default_value)745 T StatusOr<T>::value_or(U&& default_value) && {
746   if (ok()) {
747     return std::move(this->data_);
748   }
749   return std::forward<U>(default_value);
750 }
751 
752 template <typename T>
IgnoreError()753 void StatusOr<T>::IgnoreError() const {
754   // no-op
755 }
756 
757 ABSL_NAMESPACE_END
758 }  // namespace absl
759 
760 #endif  // ABSL_STATUS_STATUSOR_H_
761