1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
5 //                    Benoit Steiner <benoit.steiner.goog@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
12 #define EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
13 
14 namespace Eigen {
15 namespace internal {
16 
17 /** \class TensorIndexTuple
18   * \ingroup CXX11_Tensor_Module
19   *
20   * \brief Tensor + Index Tuple class.
21   *
22   *
23   */
24 template<typename XprType>
25 struct traits<TensorIndexTupleOp<XprType> > : public traits<XprType>
26 {
27   typedef traits<XprType> XprTraits;
28   typedef typename XprTraits::StorageKind StorageKind;
29   typedef typename XprTraits::Index Index;
30   typedef Tuple<Index, typename XprTraits::Scalar> Scalar;
31   typedef typename XprType::Nested Nested;
32   typedef typename remove_reference<Nested>::type _Nested;
33   static const int NumDimensions = XprTraits::NumDimensions;
34   static const int Layout = XprTraits::Layout;
35 };
36 
37 template<typename XprType>
38 struct eval<TensorIndexTupleOp<XprType>, Eigen::Dense>
39 {
40   typedef const TensorIndexTupleOp<XprType>& type;
41 };
42 
43 template<typename XprType>
44 struct nested<TensorIndexTupleOp<XprType>, 1,
45               typename eval<TensorIndexTupleOp<XprType> >::type>
46 {
47   typedef TensorIndexTupleOp<XprType> type;
48 };
49 
50 }  // end namespace internal
51 
52 template<typename XprType>
53 class TensorIndexTupleOp : public TensorBase<TensorIndexTupleOp<XprType>, ReadOnlyAccessors>
54 {
55   public:
56   typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Scalar Scalar;
57   typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
58   typedef typename Eigen::internal::nested<TensorIndexTupleOp>::type Nested;
59   typedef typename Eigen::internal::traits<TensorIndexTupleOp>::StorageKind StorageKind;
60   typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Index Index;
61   typedef Tuple<Index, typename XprType::CoeffReturnType> CoeffReturnType;
62 
63   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIndexTupleOp(const XprType& expr)
64       : m_xpr(expr) {}
65 
66   EIGEN_DEVICE_FUNC
67   const typename internal::remove_all<typename XprType::Nested>::type&
68   expression() const { return m_xpr; }
69 
70   protected:
71     typename XprType::Nested m_xpr;
72 };
73 
74 // Eval as rvalue
75 template<typename ArgType, typename Device>
76 struct TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device>
77 {
78   typedef TensorIndexTupleOp<ArgType> XprType;
79   typedef typename XprType::Index Index;
80   typedef typename XprType::Scalar Scalar;
81   typedef typename XprType::CoeffReturnType CoeffReturnType;
82 
83   typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
84   static const int NumDims = internal::array_size<Dimensions>::value;
85 
86   enum {
87     IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
88     PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
89     BlockAccess = false,
90     Layout = TensorEvaluator<ArgType, Device>::Layout,
91     CoordAccess = false,  // to be implemented
92     RawAccess = false
93   };
94 
95   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
96       : m_impl(op.expression(), device) { }
97 
98   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
99     return m_impl.dimensions();
100   }
101 
102   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
103     m_impl.evalSubExprsIfNeeded(NULL);
104     return true;
105   }
106   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
107     m_impl.cleanup();
108   }
109 
110   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
111   {
112     return CoeffReturnType(index, m_impl.coeff(index));
113   }
114 
115   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
116   costPerCoeff(bool vectorized) const {
117     return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, 1);
118   }
119 
120   EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
121 
122  protected:
123   TensorEvaluator<ArgType, Device> m_impl;
124 };
125 
126 namespace internal {
127 
128 /** \class TensorTupleIndex
129   * \ingroup CXX11_Tensor_Module
130   *
131   * \brief Converts to Tensor<Tuple<Index, Scalar> > and reduces to Tensor<Index>.
132   *
133   */
134 template<typename ReduceOp, typename Dims, typename XprType>
135 struct traits<TensorTupleReducerOp<ReduceOp, Dims, XprType> > : public traits<XprType>
136 {
137   typedef traits<XprType> XprTraits;
138   typedef typename XprTraits::StorageKind StorageKind;
139   typedef typename XprTraits::Index Index;
140   typedef Index Scalar;
141   typedef typename XprType::Nested Nested;
142   typedef typename remove_reference<Nested>::type _Nested;
143   static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
144   static const int Layout = XprTraits::Layout;
145 };
146 
147 template<typename ReduceOp, typename Dims, typename XprType>
148 struct eval<TensorTupleReducerOp<ReduceOp, Dims, XprType>, Eigen::Dense>
149 {
150   typedef const TensorTupleReducerOp<ReduceOp, Dims, XprType>& type;
151 };
152 
153 template<typename ReduceOp, typename Dims, typename XprType>
154 struct nested<TensorTupleReducerOp<ReduceOp, Dims, XprType>, 1,
155               typename eval<TensorTupleReducerOp<ReduceOp, Dims, XprType> >::type>
156 {
157   typedef TensorTupleReducerOp<ReduceOp, Dims, XprType> type;
158 };
159 
160 }  // end namespace internal
161 
162 template<typename ReduceOp, typename Dims, typename XprType>
163 class TensorTupleReducerOp : public TensorBase<TensorTupleReducerOp<ReduceOp, Dims, XprType>, ReadOnlyAccessors>
164 {
165   public:
166   typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Scalar Scalar;
167   typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
168   typedef typename Eigen::internal::nested<TensorTupleReducerOp>::type Nested;
169   typedef typename Eigen::internal::traits<TensorTupleReducerOp>::StorageKind StorageKind;
170   typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Index Index;
171   typedef Index CoeffReturnType;
172 
173   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTupleReducerOp(const XprType& expr,
174                                                           const ReduceOp& reduce_op,
175                                                           const int return_dim,
176                                                           const Dims& reduce_dims)
177       : m_xpr(expr), m_reduce_op(reduce_op), m_return_dim(return_dim), m_reduce_dims(reduce_dims) {}
178 
179   EIGEN_DEVICE_FUNC
180   const typename internal::remove_all<typename XprType::Nested>::type&
181   expression() const { return m_xpr; }
182 
183   EIGEN_DEVICE_FUNC
184   const ReduceOp& reduce_op() const { return m_reduce_op; }
185 
186   EIGEN_DEVICE_FUNC
187   const Dims& reduce_dims() const { return m_reduce_dims; }
188 
189   EIGEN_DEVICE_FUNC
190   int return_dim() const { return m_return_dim; }
191 
192   protected:
193     typename XprType::Nested m_xpr;
194     const ReduceOp m_reduce_op;
195     const int m_return_dim;
196     const Dims m_reduce_dims;
197 };
198 
199 // Eval as rvalue
200 template<typename ReduceOp, typename Dims, typename ArgType, typename Device>
201 struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Device>
202 {
203   typedef TensorTupleReducerOp<ReduceOp, Dims, ArgType> XprType;
204   typedef typename XprType::Index Index;
205   typedef typename XprType::Scalar Scalar;
206   typedef typename XprType::CoeffReturnType CoeffReturnType;
207   typedef typename TensorIndexTupleOp<ArgType>::CoeffReturnType TupleType;
208   typedef typename TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Dimensions Dimensions;
209   typedef typename TensorEvaluator<const TensorIndexTupleOp<ArgType> , Device>::Dimensions InputDimensions;
210   static const int NumDims = internal::array_size<InputDimensions>::value;
211   typedef array<Index, NumDims> StrideDims;
212 
213   enum {
214     IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
215     PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
216     BlockAccess = false,
217     Layout = TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Layout,
218     CoordAccess = false,  // to be implemented
219     RawAccess = false
220   };
221 
222   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
223       : m_orig_impl(op.expression(), device),
224         m_impl(op.expression().index_tuples().reduce(op.reduce_dims(), op.reduce_op()), device),
225         m_return_dim(op.return_dim()) {
226 
227     gen_strides(m_orig_impl.dimensions(), m_strides);
228     if (Layout == static_cast<int>(ColMajor)) {
229       const Index total_size = internal::array_prod(m_orig_impl.dimensions());
230       m_stride_mod = (m_return_dim < NumDims - 1) ? m_strides[m_return_dim + 1] : total_size;
231     } else {
232       const Index total_size = internal::array_prod(m_orig_impl.dimensions());
233       m_stride_mod = (m_return_dim > 0) ? m_strides[m_return_dim - 1] : total_size;
234     }
235     m_stride_div = m_strides[m_return_dim];
236   }
237 
238   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
239     return m_impl.dimensions();
240   }
241 
242   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
243     m_impl.evalSubExprsIfNeeded(NULL);
244     return true;
245   }
246   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
247     m_impl.cleanup();
248   }
249 
250   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
251     const TupleType v = m_impl.coeff(index);
252     return (m_return_dim < 0) ? v.first : (v.first % m_stride_mod) / m_stride_div;
253   }
254 
255   EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
256 
257   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
258   costPerCoeff(bool vectorized) const {
259     const double compute_cost = 1.0 +
260         (m_return_dim < 0 ? 0.0 : (TensorOpCost::ModCost<Index>() + TensorOpCost::DivCost<Index>()));
261     return m_orig_impl.costPerCoeff(vectorized) +
262            m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost);
263   }
264 
265  private:
266   EIGEN_DEVICE_FUNC void gen_strides(const InputDimensions& dims, StrideDims& strides) {
267     if (m_return_dim < 0) {
268       return;  // Won't be using the strides.
269     }
270     eigen_assert(m_return_dim < NumDims &&
271                  "Asking to convert index to a dimension outside of the rank");
272 
273     // Calculate m_stride_div and m_stride_mod, which are used to
274     // calculate the value of an index w.r.t. the m_return_dim.
275     if (Layout == static_cast<int>(ColMajor)) {
276       strides[0] = 1;
277       for (int i = 1; i < NumDims; ++i) {
278         strides[i] = strides[i-1] * dims[i-1];
279       }
280     } else {
281       strides[NumDims-1] = 1;
282       for (int i = NumDims - 2; i >= 0; --i) {
283         strides[i] = strides[i+1] * dims[i+1];
284       }
285     }
286   }
287 
288  protected:
289   TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device> m_orig_impl;
290   TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device> m_impl;
291   const int m_return_dim;
292   StrideDims m_strides;
293   Index m_stride_mod;
294   Index m_stride_div;
295 };
296 
297 } // end namespace Eigen
298 
299 #endif // EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
300