1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com>
5 //                    Benoit Steiner <benoit.steiner.goog@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
12 #define EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
13 namespace Eigen {
14 
15 /** \class TensorReverse
16   * \ingroup CXX11_Tensor_Module
17   *
18   * \brief Tensor reverse elements class.
19   *
20   */
21 namespace internal {
22 template<typename ReverseDimensions, typename XprType>
23 struct traits<TensorReverseOp<ReverseDimensions,
24                               XprType> > : public traits<XprType>
25 {
26   typedef typename XprType::Scalar Scalar;
27   typedef traits<XprType> XprTraits;
28   typedef typename XprTraits::StorageKind StorageKind;
29   typedef typename XprTraits::Index Index;
30   typedef typename XprType::Nested Nested;
31   typedef typename remove_reference<Nested>::type _Nested;
32   static const int NumDimensions = XprTraits::NumDimensions;
33   static const int Layout = XprTraits::Layout;
34 };
35 
36 template<typename ReverseDimensions, typename XprType>
37 struct eval<TensorReverseOp<ReverseDimensions, XprType>, Eigen::Dense>
38 {
39   typedef const TensorReverseOp<ReverseDimensions, XprType>& type;
40 };
41 
42 template<typename ReverseDimensions, typename XprType>
43 struct nested<TensorReverseOp<ReverseDimensions, XprType>, 1,
44             typename eval<TensorReverseOp<ReverseDimensions, XprType> >::type>
45 {
46   typedef TensorReverseOp<ReverseDimensions, XprType> type;
47 };
48 
49 }  // end namespace internal
50 
51 template<typename ReverseDimensions, typename XprType>
52 class TensorReverseOp : public TensorBase<TensorReverseOp<ReverseDimensions,
53                                           XprType>, WriteAccessors>
54 {
55   public:
56   typedef typename Eigen::internal::traits<TensorReverseOp>::Scalar Scalar;
57   typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
58   typedef typename XprType::CoeffReturnType CoeffReturnType;
59   typedef typename Eigen::internal::nested<TensorReverseOp>::type Nested;
60   typedef typename Eigen::internal::traits<TensorReverseOp>::StorageKind
61                                                                     StorageKind;
62   typedef typename Eigen::internal::traits<TensorReverseOp>::Index Index;
63 
64   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReverseOp(
65       const XprType& expr, const ReverseDimensions& reverse_dims)
66       : m_xpr(expr), m_reverse_dims(reverse_dims) { }
67 
68     EIGEN_DEVICE_FUNC
69     const ReverseDimensions& reverse() const { return m_reverse_dims; }
70 
71     EIGEN_DEVICE_FUNC
72     const typename internal::remove_all<typename XprType::Nested>::type&
73     expression() const { return m_xpr; }
74 
75     EIGEN_DEVICE_FUNC
76     EIGEN_STRONG_INLINE TensorReverseOp& operator = (const TensorReverseOp& other)
77     {
78       typedef TensorAssignOp<TensorReverseOp, const TensorReverseOp> Assign;
79       Assign assign(*this, other);
80       internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
81       return *this;
82     }
83 
84     template<typename OtherDerived>
85     EIGEN_DEVICE_FUNC
86     EIGEN_STRONG_INLINE TensorReverseOp& operator = (const OtherDerived& other)
87     {
88       typedef TensorAssignOp<TensorReverseOp, const OtherDerived> Assign;
89       Assign assign(*this, other);
90       internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
91       return *this;
92     }
93 
94   protected:
95     typename XprType::Nested m_xpr;
96     const ReverseDimensions m_reverse_dims;
97 };
98 
99 // Eval as rvalue
100 template<typename ReverseDimensions, typename ArgType, typename Device>
101 struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device>
102 {
103   typedef TensorReverseOp<ReverseDimensions, ArgType> XprType;
104   typedef typename XprType::Index Index;
105   static const int NumDims = internal::array_size<ReverseDimensions>::value;
106   typedef DSizes<Index, NumDims> Dimensions;
107   typedef typename XprType::Scalar Scalar;
108   typedef typename XprType::CoeffReturnType CoeffReturnType;
109   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
110   static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
111 
112   enum {
113     IsAligned = false,
114     PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
115     Layout = TensorEvaluator<ArgType, Device>::Layout,
116     CoordAccess = false,  // to be implemented
117     RawAccess = false
118   };
119 
120   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op,
121                                                         const Device& device)
122       : m_impl(op.expression(), device), m_reverse(op.reverse())
123   {
124     // Reversing a scalar isn't supported yet. It would be a no-op anyway.
125     EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
126 
127     // Compute strides
128     m_dimensions = m_impl.dimensions();
129     if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
130       m_strides[0] = 1;
131       for (int i = 1; i < NumDims; ++i) {
132         m_strides[i] = m_strides[i-1] * m_dimensions[i-1];
133       }
134     } else {
135       m_strides[NumDims-1] = 1;
136       for (int i = NumDims - 2; i >= 0; --i) {
137         m_strides[i] = m_strides[i+1] * m_dimensions[i+1];
138       }
139     }
140   }
141 
142   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
143   const Dimensions& dimensions() const { return m_dimensions; }
144 
145   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
146     m_impl.evalSubExprsIfNeeded(NULL);
147     return true;
148   }
149   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
150     m_impl.cleanup();
151   }
152 
153   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index reverseIndex(
154       Index index) const {
155     eigen_assert(index < dimensions().TotalSize());
156     Index inputIndex = 0;
157     if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
158       for (int i = NumDims - 1; i > 0; --i) {
159         Index idx = index / m_strides[i];
160         index -= idx * m_strides[i];
161         if (m_reverse[i]) {
162           idx = m_dimensions[i] - idx - 1;
163         }
164         inputIndex += idx * m_strides[i] ;
165       }
166       if (m_reverse[0]) {
167         inputIndex += (m_dimensions[0] - index - 1);
168       } else {
169         inputIndex += index;
170       }
171     } else {
172       for (int i = 0; i < NumDims - 1; ++i) {
173         Index idx = index / m_strides[i];
174         index -= idx * m_strides[i];
175         if (m_reverse[i]) {
176           idx = m_dimensions[i] - idx - 1;
177         }
178         inputIndex += idx * m_strides[i] ;
179       }
180       if (m_reverse[NumDims-1]) {
181         inputIndex += (m_dimensions[NumDims-1] - index - 1);
182       } else {
183         inputIndex += index;
184       }
185     }
186     return inputIndex;
187   }
188 
189   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(
190       Index index) const  {
191     return m_impl.coeff(reverseIndex(index));
192   }
193 
194   template<int LoadMode>
195   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
196   PacketReturnType packet(Index index) const
197   {
198     EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
199     eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
200 
201     // TODO(ndjaitly): write a better packing routine that uses
202     // local structure.
203     EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type
204                                                             values[PacketSize];
205     for (int i = 0; i < PacketSize; ++i) {
206       values[i] = coeff(index+i);
207     }
208     PacketReturnType rslt = internal::pload<PacketReturnType>(values);
209     return rslt;
210   }
211 
212   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
213     double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
214                                      2 * TensorOpCost::MulCost<Index>() +
215                                      TensorOpCost::DivCost<Index>());
216     for (int i = 0; i < NumDims; ++i) {
217       if (m_reverse[i]) {
218         compute_cost += 2 * TensorOpCost::AddCost<Index>();
219       }
220     }
221     return m_impl.costPerCoeff(vectorized) +
222            TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize);
223   }
224 
225   EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
226 
227  protected:
228   Dimensions m_dimensions;
229   array<Index, NumDims> m_strides;
230   TensorEvaluator<ArgType, Device> m_impl;
231   ReverseDimensions m_reverse;
232 };
233 
234 // Eval as lvalue
235 
236 template <typename ReverseDimensions, typename ArgType, typename Device>
237 struct TensorEvaluator<TensorReverseOp<ReverseDimensions, ArgType>, Device>
238     : public TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>,
239                              Device> {
240   typedef TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>,
241                           Device> Base;
242   typedef TensorReverseOp<ReverseDimensions, ArgType> XprType;
243   typedef typename XprType::Index Index;
244   static const int NumDims = internal::array_size<ReverseDimensions>::value;
245   typedef DSizes<Index, NumDims> Dimensions;
246 
247   enum {
248     IsAligned = false,
249     PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
250     Layout = TensorEvaluator<ArgType, Device>::Layout,
251     CoordAccess = false,  // to be implemented
252     RawAccess = false
253   };
254   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op,
255                                                         const Device& device)
256       : Base(op, device) {}
257 
258   typedef typename XprType::Scalar Scalar;
259   typedef typename XprType::CoeffReturnType CoeffReturnType;
260   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
261   static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
262 
263   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
264   const Dimensions& dimensions() const { return this->m_dimensions; }
265 
266   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) {
267     return this->m_impl.coeffRef(this->reverseIndex(index));
268   }
269 
270   template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
271   void writePacket(Index index, const PacketReturnType& x) {
272     EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
273     eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
274 
275     // This code is pilfered from TensorMorphing.h
276     EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize];
277     internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
278     for (int i = 0; i < PacketSize; ++i) {
279       this->coeffRef(index+i) = values[i];
280     }
281   }
282 
283 };
284 
285 
286 }  // end namespace Eigen
287 
288 #endif // EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
289