1 // Copyright 2015, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #ifndef VIXL_UTILS_H
28 #define VIXL_UTILS_H
29 
30 #include <cmath>
31 #include <cstring>
32 #include <limits>
33 #include <vector>
34 
35 #include "compiler-intrinsics-vixl.h"
36 #include "globals-vixl.h"
37 
38 namespace vixl {
39 
40 // Macros for compile-time format checking.
41 #if GCC_VERSION_OR_NEWER(4, 4, 0)
42 #define PRINTF_CHECK(format_index, varargs_index) \
43   __attribute__((format(gnu_printf, format_index, varargs_index)))
44 #else
45 #define PRINTF_CHECK(format_index, varargs_index)
46 #endif
47 
48 #ifdef __GNUC__
49 #define VIXL_HAS_DEPRECATED_WITH_MSG
50 #elif defined(__clang__)
51 #ifdef __has_extension(attribute_deprecated_with_message)
52 #define VIXL_HAS_DEPRECATED_WITH_MSG
53 #endif
54 #endif
55 
56 #ifdef VIXL_HAS_DEPRECATED_WITH_MSG
57 #define VIXL_DEPRECATED(replaced_by, declarator) \
58   __attribute__((deprecated("Use \"" replaced_by "\" instead"))) declarator
59 #else
60 #define VIXL_DEPRECATED(replaced_by, declarator) declarator
61 #endif
62 
63 #ifdef VIXL_DEBUG
64 #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_UNREACHABLE()
65 #else
66 #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_FALLTHROUGH()
67 #endif
68 
69 template <typename T, size_t n>
ArrayLength(const T (&)[n])70 constexpr size_t ArrayLength(const T (&)[n]) {
71   return n;
72 }
73 
GetUintMask(unsigned bits)74 inline uint64_t GetUintMask(unsigned bits) {
75   VIXL_ASSERT(bits <= 64);
76   uint64_t base = (bits >= 64) ? 0 : (UINT64_C(1) << bits);
77   return base - 1;
78 }
79 
GetSignMask(unsigned bits)80 inline uint64_t GetSignMask(unsigned bits) {
81   VIXL_ASSERT(bits <= 64);
82   return UINT64_C(1) << (bits - 1);
83 }
84 
85 // Check number width.
86 // TODO: Refactor these using templates.
IsIntN(unsigned n,uint32_t x)87 inline bool IsIntN(unsigned n, uint32_t x) {
88   VIXL_ASSERT((0 < n) && (n <= 32));
89   return x <= static_cast<uint32_t>(INT32_MAX >> (32 - n));
90 }
IsIntN(unsigned n,int32_t x)91 inline bool IsIntN(unsigned n, int32_t x) {
92   VIXL_ASSERT((0 < n) && (n <= 32));
93   if (n == 32) return true;
94   int32_t limit = INT32_C(1) << (n - 1);
95   return (-limit <= x) && (x < limit);
96 }
IsIntN(unsigned n,uint64_t x)97 inline bool IsIntN(unsigned n, uint64_t x) {
98   VIXL_ASSERT((0 < n) && (n <= 64));
99   return x <= static_cast<uint64_t>(INT64_MAX >> (64 - n));
100 }
IsIntN(unsigned n,int64_t x)101 inline bool IsIntN(unsigned n, int64_t x) {
102   VIXL_ASSERT((0 < n) && (n <= 64));
103   if (n == 64) return true;
104   int64_t limit = INT64_C(1) << (n - 1);
105   return (-limit <= x) && (x < limit);
106 }
is_intn(unsigned n,int64_t x)107 VIXL_DEPRECATED("IsIntN", inline bool is_intn(unsigned n, int64_t x)) {
108   return IsIntN(n, x);
109 }
110 
IsUintN(unsigned n,uint32_t x)111 inline bool IsUintN(unsigned n, uint32_t x) {
112   VIXL_ASSERT((0 < n) && (n <= 32));
113   if (n >= 32) return true;
114   return !(x >> n);
115 }
IsUintN(unsigned n,int32_t x)116 inline bool IsUintN(unsigned n, int32_t x) {
117   VIXL_ASSERT((0 < n) && (n < 32));
118   // Convert to an unsigned integer to avoid implementation-defined behavior.
119   return !(static_cast<uint32_t>(x) >> n);
120 }
IsUintN(unsigned n,uint64_t x)121 inline bool IsUintN(unsigned n, uint64_t x) {
122   VIXL_ASSERT((0 < n) && (n <= 64));
123   if (n >= 64) return true;
124   return !(x >> n);
125 }
IsUintN(unsigned n,int64_t x)126 inline bool IsUintN(unsigned n, int64_t x) {
127   VIXL_ASSERT((0 < n) && (n < 64));
128   // Convert to an unsigned integer to avoid implementation-defined behavior.
129   return !(static_cast<uint64_t>(x) >> n);
130 }
is_uintn(unsigned n,int64_t x)131 VIXL_DEPRECATED("IsUintN", inline bool is_uintn(unsigned n, int64_t x)) {
132   return IsUintN(n, x);
133 }
134 
TruncateToUintN(unsigned n,uint64_t x)135 inline uint64_t TruncateToUintN(unsigned n, uint64_t x) {
136   VIXL_ASSERT((0 < n) && (n < 64));
137   return static_cast<uint64_t>(x) & ((UINT64_C(1) << n) - 1);
138 }
139 VIXL_DEPRECATED("TruncateToUintN",
140                 inline uint64_t truncate_to_intn(unsigned n, int64_t x)) {
141   return TruncateToUintN(n, x);
142 }
143 
144 // clang-format off
145 #define INT_1_TO_32_LIST(V)                                                    \
146 V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
147 V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
148 V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
149 V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)
150 
151 #define INT_33_TO_63_LIST(V)                                                   \
152 V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
153 V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
154 V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
155 V(57) V(58) V(59) V(60) V(61) V(62) V(63)
156 
157 #define INT_1_TO_63_LIST(V) INT_1_TO_32_LIST(V) INT_33_TO_63_LIST(V)
158 
159 // clang-format on
160 
161 #define DECLARE_IS_INT_N(N)                                       \
162   inline bool IsInt##N(int64_t x) { return IsIntN(N, x); }        \
163   VIXL_DEPRECATED("IsInt" #N, inline bool is_int##N(int64_t x)) { \
164     return IsIntN(N, x);                                          \
165   }
166 
167 #define DECLARE_IS_UINT_N(N)                                        \
168   inline bool IsUint##N(int64_t x) { return IsUintN(N, x); }        \
169   VIXL_DEPRECATED("IsUint" #N, inline bool is_uint##N(int64_t x)) { \
170     return IsUintN(N, x);                                           \
171   }
172 
173 #define DECLARE_TRUNCATE_TO_UINT_32(N)                             \
174   inline uint32_t TruncateToUint##N(uint64_t x) {                  \
175     return static_cast<uint32_t>(TruncateToUintN(N, x));           \
176   }                                                                \
177   VIXL_DEPRECATED("TruncateToUint" #N,                             \
178                   inline uint32_t truncate_to_int##N(int64_t x)) { \
179     return TruncateToUint##N(x);                                   \
180   }
181 
182 INT_1_TO_63_LIST(DECLARE_IS_INT_N)
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)183 INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
184 INT_1_TO_32_LIST(DECLARE_TRUNCATE_TO_UINT_32)
185 
186 #undef DECLARE_IS_INT_N
187 #undef DECLARE_IS_UINT_N
188 #undef DECLARE_TRUNCATE_TO_INT_N
189 
190 // Bit field extraction.
191 inline uint64_t ExtractUnsignedBitfield64(int msb, int lsb, uint64_t x) {
192   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
193               (msb >= lsb));
194   if ((msb == 63) && (lsb == 0)) return x;
195   return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
196 }
197 
198 
ExtractUnsignedBitfield32(int msb,int lsb,uint64_t x)199 inline uint32_t ExtractUnsignedBitfield32(int msb, int lsb, uint64_t x) {
200   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
201               (msb >= lsb));
202   return TruncateToUint32(ExtractUnsignedBitfield64(msb, lsb, x));
203 }
204 
205 
ExtractSignedBitfield64(int msb,int lsb,uint64_t x)206 inline int64_t ExtractSignedBitfield64(int msb, int lsb, uint64_t x) {
207   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
208               (msb >= lsb));
209   uint64_t temp = ExtractUnsignedBitfield64(msb, lsb, x);
210   // If the highest extracted bit is set, sign extend.
211   if ((temp >> (msb - lsb)) == 1) {
212     temp |= ~UINT64_C(0) << (msb - lsb);
213   }
214   int64_t result;
215   memcpy(&result, &temp, sizeof(result));
216   return result;
217 }
218 
ExtractSignedBitfield32(int msb,int lsb,uint64_t x)219 inline int32_t ExtractSignedBitfield32(int msb, int lsb, uint64_t x) {
220   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
221               (msb >= lsb));
222   uint32_t temp = TruncateToUint32(ExtractSignedBitfield64(msb, lsb, x));
223   int32_t result;
224   memcpy(&result, &temp, sizeof(result));
225   return result;
226 }
227 
RotateRight(uint64_t value,unsigned int rotate,unsigned int width)228 inline uint64_t RotateRight(uint64_t value,
229                             unsigned int rotate,
230                             unsigned int width) {
231   VIXL_ASSERT((width > 0) && (width <= 64));
232   uint64_t width_mask = ~UINT64_C(0) >> (64 - width);
233   rotate &= 63;
234   if (rotate > 0) {
235     value &= width_mask;
236     value = (value << (width - rotate)) | (value >> rotate);
237   }
238   return value & width_mask;
239 }
240 
241 
242 // Wrapper class for passing FP16 values through the assembler.
243 // This is purely to aid with type checking/casting.
244 class Float16 {
245  public:
246   explicit Float16(double dvalue);
Float16()247   Float16() : rawbits_(0x0) {}
248   friend uint16_t Float16ToRawbits(Float16 value);
249   friend Float16 RawbitsToFloat16(uint16_t bits);
250 
251  protected:
252   uint16_t rawbits_;
253 };
254 
255 // Floating point representation.
256 uint16_t Float16ToRawbits(Float16 value);
257 
258 
259 uint32_t FloatToRawbits(float value);
260 VIXL_DEPRECATED("FloatToRawbits",
261                 inline uint32_t float_to_rawbits(float value)) {
262   return FloatToRawbits(value);
263 }
264 
265 uint64_t DoubleToRawbits(double value);
266 VIXL_DEPRECATED("DoubleToRawbits",
267                 inline uint64_t double_to_rawbits(double value)) {
268   return DoubleToRawbits(value);
269 }
270 
271 Float16 RawbitsToFloat16(uint16_t bits);
272 
273 float RawbitsToFloat(uint32_t bits);
274 VIXL_DEPRECATED("RawbitsToFloat",
rawbits_to_float(uint32_t bits)275                 inline float rawbits_to_float(uint32_t bits)) {
276   return RawbitsToFloat(bits);
277 }
278 
279 double RawbitsToDouble(uint64_t bits);
280 VIXL_DEPRECATED("RawbitsToDouble",
rawbits_to_double(uint64_t bits)281                 inline double rawbits_to_double(uint64_t bits)) {
282   return RawbitsToDouble(bits);
283 }
284 
285 // Convert unsigned to signed numbers in a well-defined way (using two's
286 // complement representations).
RawbitsToInt64(uint64_t bits)287 inline int64_t RawbitsToInt64(uint64_t bits) {
288   return (bits >= UINT64_C(0x8000000000000000))
289              ? (-static_cast<int64_t>(-bits - 1) - 1)
290              : static_cast<int64_t>(bits);
291 }
292 
RawbitsToInt32(uint32_t bits)293 inline int32_t RawbitsToInt32(uint32_t bits) {
294   return (bits >= UINT64_C(0x80000000)) ? (-static_cast<int32_t>(-bits - 1) - 1)
295                                         : static_cast<int32_t>(bits);
296 }
297 
298 namespace internal {
299 
300 // Internal simulation class used solely by the simulator to
301 // provide an abstraction layer for any half-precision arithmetic.
302 class SimFloat16 : public Float16 {
303  public:
304   // TODO: We should investigate making this constructor explicit.
305   // This is currently difficult to do due to a number of templated
306   // functions in the simulator which rely on returning double values.
SimFloat16(double dvalue)307   SimFloat16(double dvalue) : Float16(dvalue) {}  // NOLINT(runtime/explicit)
SimFloat16(Float16 f)308   SimFloat16(Float16 f) {                         // NOLINT(runtime/explicit)
309     this->rawbits_ = Float16ToRawbits(f);
310   }
SimFloat16()311   SimFloat16() : Float16() {}
312   SimFloat16 operator-() const;
313   SimFloat16 operator+(SimFloat16 rhs) const;
314   SimFloat16 operator-(SimFloat16 rhs) const;
315   SimFloat16 operator*(SimFloat16 rhs) const;
316   SimFloat16 operator/(SimFloat16 rhs) const;
317   bool operator<(SimFloat16 rhs) const;
318   bool operator>(SimFloat16 rhs) const;
319   bool operator==(SimFloat16 rhs) const;
320   bool operator!=(SimFloat16 rhs) const;
321   // This is necessary for conversions peformed in (macro asm) Fmov.
322   bool operator==(double rhs) const;
323   operator double() const;
324 };
325 }  // namespace internal
326 
327 uint32_t Float16Sign(internal::SimFloat16 value);
328 
329 uint32_t Float16Exp(internal::SimFloat16 value);
330 
331 uint32_t Float16Mantissa(internal::SimFloat16 value);
332 
333 uint32_t FloatSign(float value);
334 VIXL_DEPRECATED("FloatSign", inline uint32_t float_sign(float value)) {
335   return FloatSign(value);
336 }
337 
338 uint32_t FloatExp(float value);
339 VIXL_DEPRECATED("FloatExp", inline uint32_t float_exp(float value)) {
340   return FloatExp(value);
341 }
342 
343 uint32_t FloatMantissa(float value);
344 VIXL_DEPRECATED("FloatMantissa", inline uint32_t float_mantissa(float value)) {
345   return FloatMantissa(value);
346 }
347 
348 uint32_t DoubleSign(double value);
349 VIXL_DEPRECATED("DoubleSign", inline uint32_t double_sign(double value)) {
350   return DoubleSign(value);
351 }
352 
353 uint32_t DoubleExp(double value);
354 VIXL_DEPRECATED("DoubleExp", inline uint32_t double_exp(double value)) {
355   return DoubleExp(value);
356 }
357 
358 uint64_t DoubleMantissa(double value);
359 VIXL_DEPRECATED("DoubleMantissa",
360                 inline uint64_t double_mantissa(double value)) {
361   return DoubleMantissa(value);
362 }
363 
364 internal::SimFloat16 Float16Pack(uint16_t sign,
365                                  uint16_t exp,
366                                  uint16_t mantissa);
367 
368 float FloatPack(uint32_t sign, uint32_t exp, uint32_t mantissa);
369 VIXL_DEPRECATED("FloatPack",
float_pack(uint32_t sign,uint32_t exp,uint32_t mantissa)370                 inline float float_pack(uint32_t sign,
371                                         uint32_t exp,
372                                         uint32_t mantissa)) {
373   return FloatPack(sign, exp, mantissa);
374 }
375 
376 double DoublePack(uint64_t sign, uint64_t exp, uint64_t mantissa);
377 VIXL_DEPRECATED("DoublePack",
double_pack(uint32_t sign,uint32_t exp,uint64_t mantissa)378                 inline double double_pack(uint32_t sign,
379                                           uint32_t exp,
380                                           uint64_t mantissa)) {
381   return DoublePack(sign, exp, mantissa);
382 }
383 
384 // An fpclassify() function for 16-bit half-precision floats.
385 int Float16Classify(Float16 value);
float16classify(uint16_t value)386 VIXL_DEPRECATED("Float16Classify", inline int float16classify(uint16_t value)) {
387   return Float16Classify(RawbitsToFloat16(value));
388 }
389 
390 bool IsZero(Float16 value);
391 
IsPositiveZero(double value)392 inline bool IsPositiveZero(double value) {
393   return (value == 0.0) && (copysign(1.0, value) > 0.0);
394 }
395 
IsNaN(float value)396 inline bool IsNaN(float value) { return std::isnan(value); }
397 
IsNaN(double value)398 inline bool IsNaN(double value) { return std::isnan(value); }
399 
IsNaN(Float16 value)400 inline bool IsNaN(Float16 value) { return Float16Classify(value) == FP_NAN; }
401 
IsInf(float value)402 inline bool IsInf(float value) { return std::isinf(value); }
403 
IsInf(double value)404 inline bool IsInf(double value) { return std::isinf(value); }
405 
IsInf(Float16 value)406 inline bool IsInf(Float16 value) {
407   return Float16Classify(value) == FP_INFINITE;
408 }
409 
410 
411 // NaN tests.
IsSignallingNaN(double num)412 inline bool IsSignallingNaN(double num) {
413   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
414   uint64_t raw = DoubleToRawbits(num);
415   if (IsNaN(num) && ((raw & kFP64QuietNaNMask) == 0)) {
416     return true;
417   }
418   return false;
419 }
420 
421 
IsSignallingNaN(float num)422 inline bool IsSignallingNaN(float num) {
423   const uint32_t kFP32QuietNaNMask = 0x00400000;
424   uint32_t raw = FloatToRawbits(num);
425   if (IsNaN(num) && ((raw & kFP32QuietNaNMask) == 0)) {
426     return true;
427   }
428   return false;
429 }
430 
431 
IsSignallingNaN(Float16 num)432 inline bool IsSignallingNaN(Float16 num) {
433   const uint16_t kFP16QuietNaNMask = 0x0200;
434   return IsNaN(num) && ((Float16ToRawbits(num) & kFP16QuietNaNMask) == 0);
435 }
436 
437 
438 template <typename T>
IsQuietNaN(T num)439 inline bool IsQuietNaN(T num) {
440   return IsNaN(num) && !IsSignallingNaN(num);
441 }
442 
443 
444 // Convert the NaN in 'num' to a quiet NaN.
ToQuietNaN(double num)445 inline double ToQuietNaN(double num) {
446   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
447   VIXL_ASSERT(IsNaN(num));
448   return RawbitsToDouble(DoubleToRawbits(num) | kFP64QuietNaNMask);
449 }
450 
451 
ToQuietNaN(float num)452 inline float ToQuietNaN(float num) {
453   const uint32_t kFP32QuietNaNMask = 0x00400000;
454   VIXL_ASSERT(IsNaN(num));
455   return RawbitsToFloat(FloatToRawbits(num) | kFP32QuietNaNMask);
456 }
457 
458 
ToQuietNaN(internal::SimFloat16 num)459 inline internal::SimFloat16 ToQuietNaN(internal::SimFloat16 num) {
460   const uint16_t kFP16QuietNaNMask = 0x0200;
461   VIXL_ASSERT(IsNaN(num));
462   return internal::SimFloat16(
463       RawbitsToFloat16(Float16ToRawbits(num) | kFP16QuietNaNMask));
464 }
465 
466 
467 // Fused multiply-add.
FusedMultiplyAdd(double op1,double op2,double a)468 inline double FusedMultiplyAdd(double op1, double op2, double a) {
469   return fma(op1, op2, a);
470 }
471 
472 
FusedMultiplyAdd(float op1,float op2,float a)473 inline float FusedMultiplyAdd(float op1, float op2, float a) {
474   return fmaf(op1, op2, a);
475 }
476 
477 
LowestSetBit(uint64_t value)478 inline uint64_t LowestSetBit(uint64_t value) { return value & -value; }
479 
480 
481 template <typename T>
HighestSetBitPosition(T value)482 inline int HighestSetBitPosition(T value) {
483   VIXL_ASSERT(value != 0);
484   return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
485 }
486 
487 
488 template <typename V>
WhichPowerOf2(V value)489 inline int WhichPowerOf2(V value) {
490   VIXL_ASSERT(IsPowerOf2(value));
491   return CountTrailingZeros(value);
492 }
493 
494 
495 unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
496 
497 
498 int BitCount(uint64_t value);
499 
500 
501 template <typename T>
ReverseBits(T value)502 T ReverseBits(T value) {
503   VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
504               (sizeof(value) == 4) || (sizeof(value) == 8));
505   T result = 0;
506   for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
507     result = (result << 1) | (value & 1);
508     value >>= 1;
509   }
510   return result;
511 }
512 
513 
514 template <typename T>
SignExtend(T val,int size_in_bits)515 inline T SignExtend(T val, int size_in_bits) {
516   VIXL_ASSERT(size_in_bits > 0);
517   T mask = (T(2) << (size_in_bits - 1)) - T(1);
518   val &= mask;
519   T sign_bits = -((val >> (size_in_bits - 1)) << size_in_bits);
520   val |= sign_bits;
521   return val;
522 }
523 
524 
525 template <typename T>
ReverseBytes(T value,int block_bytes_log2)526 T ReverseBytes(T value, int block_bytes_log2) {
527   VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
528   VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
529   // Split the 64-bit value into an 8-bit array, where b[0] is the least
530   // significant byte, and b[7] is the most significant.
531   uint8_t bytes[8];
532   uint64_t mask = UINT64_C(0xff00000000000000);
533   for (int i = 7; i >= 0; i--) {
534     bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
535     mask >>= 8;
536   }
537 
538   // Permutation tables for REV instructions.
539   //  permute_table[0] is used by REV16_x, REV16_w
540   //  permute_table[1] is used by REV32_x, REV_w
541   //  permute_table[2] is used by REV_x
542   VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
543   static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1},
544                                               {4, 5, 6, 7, 0, 1, 2, 3},
545                                               {0, 1, 2, 3, 4, 5, 6, 7}};
546   uint64_t temp = 0;
547   for (int i = 0; i < 8; i++) {
548     temp <<= 8;
549     temp |= bytes[permute_table[block_bytes_log2 - 1][i]];
550   }
551 
552   T result;
553   VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(temp));
554   memcpy(&result, &temp, sizeof(result));
555   return result;
556 }
557 
558 template <unsigned MULTIPLE, typename T>
IsMultiple(T value)559 inline bool IsMultiple(T value) {
560   VIXL_ASSERT(IsPowerOf2(MULTIPLE));
561   return (value & (MULTIPLE - 1)) == 0;
562 }
563 
564 template <typename T>
IsMultiple(T value,unsigned multiple)565 inline bool IsMultiple(T value, unsigned multiple) {
566   VIXL_ASSERT(IsPowerOf2(multiple));
567   return (value & (multiple - 1)) == 0;
568 }
569 
570 template <typename T>
IsAligned(T pointer,int alignment)571 inline bool IsAligned(T pointer, int alignment) {
572   VIXL_ASSERT(IsPowerOf2(alignment));
573   return (pointer & (alignment - 1)) == 0;
574 }
575 
576 // Pointer alignment
577 // TODO: rename/refactor to make it specific to instructions.
578 template <unsigned ALIGN, typename T>
IsAligned(T pointer)579 inline bool IsAligned(T pointer) {
580   VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));  // NOLINT(runtime/sizeof)
581   // Use C-style casts to get static_cast behaviour for integral types (T), and
582   // reinterpret_cast behaviour for other types.
583   return IsAligned((intptr_t)(pointer), ALIGN);
584 }
585 
586 template <typename T>
IsWordAligned(T pointer)587 bool IsWordAligned(T pointer) {
588   return IsAligned<4>(pointer);
589 }
590 
591 // Increment a pointer until it has the specified alignment. The alignment must
592 // be a power of two.
593 template <class T>
AlignUp(T pointer,typename Unsigned<sizeof (T)* kBitsPerByte>::type alignment)594 T AlignUp(T pointer,
595           typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
596   VIXL_ASSERT(IsPowerOf2(alignment));
597   // Use C-style casts to get static_cast behaviour for integral types (T), and
598   // reinterpret_cast behaviour for other types.
599 
600   typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
601       (typename Unsigned<sizeof(T) * kBitsPerByte>::type) pointer;
602   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
603 
604   size_t mask = alignment - 1;
605   T result = (T)((pointer_raw + mask) & ~mask);
606   VIXL_ASSERT(result >= pointer);
607 
608   return result;
609 }
610 
611 // Decrement a pointer until it has the specified alignment. The alignment must
612 // be a power of two.
613 template <class T>
AlignDown(T pointer,typename Unsigned<sizeof (T)* kBitsPerByte>::type alignment)614 T AlignDown(T pointer,
615             typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
616   VIXL_ASSERT(IsPowerOf2(alignment));
617   // Use C-style casts to get static_cast behaviour for integral types (T), and
618   // reinterpret_cast behaviour for other types.
619 
620   typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
621       (typename Unsigned<sizeof(T) * kBitsPerByte>::type) pointer;
622   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
623 
624   size_t mask = alignment - 1;
625   return (T)(pointer_raw & ~mask);
626 }
627 
628 
629 template <typename T>
ExtractBit(T value,unsigned bit)630 inline T ExtractBit(T value, unsigned bit) {
631   return (value >> bit) & T(1);
632 }
633 
634 template <typename Ts, typename Td>
ExtractBits(Ts value,int least_significant_bit,Td mask)635 inline Td ExtractBits(Ts value, int least_significant_bit, Td mask) {
636   return Td((value >> least_significant_bit) & Ts(mask));
637 }
638 
639 template <typename Ts, typename Td>
AssignBit(Td & dst,int bit,Ts value)640 inline void AssignBit(Td& dst,  // NOLINT(runtime/references)
641                       int bit,
642                       Ts value) {
643   VIXL_ASSERT((value == Ts(0)) || (value == Ts(1)));
644   VIXL_ASSERT(bit >= 0);
645   VIXL_ASSERT(bit < static_cast<int>(sizeof(Td) * 8));
646   Td mask(1);
647   dst &= ~(mask << bit);
648   dst |= Td(value) << bit;
649 }
650 
651 template <typename Td, typename Ts>
AssignBits(Td & dst,int least_significant_bit,Ts mask,Ts value)652 inline void AssignBits(Td& dst,  // NOLINT(runtime/references)
653                        int least_significant_bit,
654                        Ts mask,
655                        Ts value) {
656   VIXL_ASSERT(least_significant_bit >= 0);
657   VIXL_ASSERT(least_significant_bit < static_cast<int>(sizeof(Td) * 8));
658   VIXL_ASSERT(((Td(mask) << least_significant_bit) >> least_significant_bit) ==
659               Td(mask));
660   VIXL_ASSERT((value & mask) == value);
661   dst &= ~(Td(mask) << least_significant_bit);
662   dst |= Td(value) << least_significant_bit;
663 }
664 
665 class VFP {
666  public:
FP32ToImm8(float imm)667   static uint32_t FP32ToImm8(float imm) {
668     // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
669     uint32_t bits = FloatToRawbits(imm);
670     // bit7: a000.0000
671     uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
672     // bit6: 0b00.0000
673     uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
674     // bit5_to_0: 00cd.efgh
675     uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
676     return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
677   }
FP64ToImm8(double imm)678   static uint32_t FP64ToImm8(double imm) {
679     // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
680     //       0000.0000.0000.0000.0000.0000.0000.0000
681     uint64_t bits = DoubleToRawbits(imm);
682     // bit7: a000.0000
683     uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
684     // bit6: 0b00.0000
685     uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
686     // bit5_to_0: 00cd.efgh
687     uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
688 
689     return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
690   }
Imm8ToFP32(uint32_t imm8)691   static float Imm8ToFP32(uint32_t imm8) {
692     //   Imm8: abcdefgh (8 bits)
693     // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
694     // where B is b ^ 1
695     uint32_t bits = imm8;
696     uint32_t bit7 = (bits >> 7) & 0x1;
697     uint32_t bit6 = (bits >> 6) & 0x1;
698     uint32_t bit5_to_0 = bits & 0x3f;
699     uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
700 
701     return RawbitsToFloat(result);
702   }
Imm8ToFP64(uint32_t imm8)703   static double Imm8ToFP64(uint32_t imm8) {
704     //   Imm8: abcdefgh (8 bits)
705     // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
706     //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
707     // where B is b ^ 1
708     uint32_t bits = imm8;
709     uint64_t bit7 = (bits >> 7) & 0x1;
710     uint64_t bit6 = (bits >> 6) & 0x1;
711     uint64_t bit5_to_0 = bits & 0x3f;
712     uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
713     return RawbitsToDouble(result);
714   }
IsImmFP32(float imm)715   static bool IsImmFP32(float imm) {
716     // Valid values will have the form:
717     // aBbb.bbbc.defg.h000.0000.0000.0000.0000
718     uint32_t bits = FloatToRawbits(imm);
719     // bits[19..0] are cleared.
720     if ((bits & 0x7ffff) != 0) {
721       return false;
722     }
723 
724 
725     // bits[29..25] are all set or all cleared.
726     uint32_t b_pattern = (bits >> 16) & 0x3e00;
727     if (b_pattern != 0 && b_pattern != 0x3e00) {
728       return false;
729     }
730     // bit[30] and bit[29] are opposite.
731     if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
732       return false;
733     }
734     return true;
735   }
IsImmFP64(double imm)736   static bool IsImmFP64(double imm) {
737     // Valid values will have the form:
738     // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
739     // 0000.0000.0000.0000.0000.0000.0000.0000
740     uint64_t bits = DoubleToRawbits(imm);
741     // bits[47..0] are cleared.
742     if ((bits & 0x0000ffffffffffff) != 0) {
743       return false;
744     }
745     // bits[61..54] are all set or all cleared.
746     uint32_t b_pattern = (bits >> 48) & 0x3fc0;
747     if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
748       return false;
749     }
750     // bit[62] and bit[61] are opposite.
751     if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
752       return false;
753     }
754     return true;
755   }
756 };
757 
758 class BitField {
759   // ForEachBitHelper is a functor that will call
760   // bool ForEachBitHelper::execute(ElementType id) const
761   //   and expects a boolean in return whether to continue (if true)
762   //   or stop (if false)
763   // check_set will check if the bits are on (true) or off(false)
764   template <typename ForEachBitHelper, bool check_set>
ForEachBit(const ForEachBitHelper & helper)765   bool ForEachBit(const ForEachBitHelper& helper) {
766     for (int i = 0; static_cast<size_t>(i) < bitfield_.size(); i++) {
767       if (bitfield_[i] == check_set)
768         if (!helper.execute(i)) return false;
769     }
770     return true;
771   }
772 
773  public:
BitField(unsigned size)774   explicit BitField(unsigned size) : bitfield_(size, 0) {}
775 
Set(int i)776   void Set(int i) {
777     VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
778     bitfield_[i] = true;
779   }
780 
Unset(int i)781   void Unset(int i) {
782     VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
783     bitfield_[i] = true;
784   }
785 
IsSet(int i)786   bool IsSet(int i) const { return bitfield_[i]; }
787 
788   // For each bit not set in the bitfield call the execute functor
789   // execute.
790   // ForEachBitSetHelper::execute returns true if the iteration through
791   // the bits can continue, otherwise it will stop.
792   // struct ForEachBitSetHelper {
793   //   bool execute(int /*id*/) { return false; }
794   // };
795   template <typename ForEachBitNotSetHelper>
ForEachBitNotSet(const ForEachBitNotSetHelper & helper)796   bool ForEachBitNotSet(const ForEachBitNotSetHelper& helper) {
797     return ForEachBit<ForEachBitNotSetHelper, false>(helper);
798   }
799 
800   // For each bit set in the bitfield call the execute functor
801   // execute.
802   template <typename ForEachBitSetHelper>
ForEachBitSet(const ForEachBitSetHelper & helper)803   bool ForEachBitSet(const ForEachBitSetHelper& helper) {
804     return ForEachBit<ForEachBitSetHelper, true>(helper);
805   }
806 
807  private:
808   std::vector<bool> bitfield_;
809 };
810 
811 namespace internal {
812 
813 typedef int64_t Int64;
814 class Uint64;
815 class Uint128;
816 
817 class Uint32 {
818   uint32_t data_;
819 
820  public:
821   // Unlike uint32_t, Uint32 has a default constructor.
Uint32()822   Uint32() { data_ = 0; }
Uint32(uint32_t data)823   explicit Uint32(uint32_t data) : data_(data) {}
824   inline explicit Uint32(Uint64 data);
Get()825   uint32_t Get() const { return data_; }
826   template <int N>
GetSigned()827   int32_t GetSigned() const {
828     return ExtractSignedBitfield32(N - 1, 0, data_);
829   }
GetSigned()830   int32_t GetSigned() const { return data_; }
831   Uint32 operator~() const { return Uint32(~data_); }
832   Uint32 operator-() const { return Uint32(-data_); }
833   bool operator==(Uint32 value) const { return data_ == value.data_; }
834   bool operator!=(Uint32 value) const { return data_ != value.data_; }
835   bool operator>(Uint32 value) const { return data_ > value.data_; }
836   Uint32 operator+(Uint32 value) const { return Uint32(data_ + value.data_); }
837   Uint32 operator-(Uint32 value) const { return Uint32(data_ - value.data_); }
838   Uint32 operator&(Uint32 value) const { return Uint32(data_ & value.data_); }
839   Uint32 operator&=(Uint32 value) {
840     data_ &= value.data_;
841     return *this;
842   }
843   Uint32 operator^(Uint32 value) const { return Uint32(data_ ^ value.data_); }
844   Uint32 operator^=(Uint32 value) {
845     data_ ^= value.data_;
846     return *this;
847   }
848   Uint32 operator|(Uint32 value) const { return Uint32(data_ | value.data_); }
849   Uint32 operator|=(Uint32 value) {
850     data_ |= value.data_;
851     return *this;
852   }
853   // Unlike uint32_t, the shift functions can accept negative shift and
854   // return 0 when the shift is too big.
855   Uint32 operator>>(int shift) const {
856     if (shift == 0) return *this;
857     if (shift < 0) {
858       int tmp = -shift;
859       if (tmp >= 32) return Uint32(0);
860       return Uint32(data_ << tmp);
861     }
862     int tmp = shift;
863     if (tmp >= 32) return Uint32(0);
864     return Uint32(data_ >> tmp);
865   }
866   Uint32 operator<<(int shift) const {
867     if (shift == 0) return *this;
868     if (shift < 0) {
869       int tmp = -shift;
870       if (tmp >= 32) return Uint32(0);
871       return Uint32(data_ >> tmp);
872     }
873     int tmp = shift;
874     if (tmp >= 32) return Uint32(0);
875     return Uint32(data_ << tmp);
876   }
877 };
878 
879 class Uint64 {
880   uint64_t data_;
881 
882  public:
883   // Unlike uint64_t, Uint64 has a default constructor.
Uint64()884   Uint64() { data_ = 0; }
Uint64(uint64_t data)885   explicit Uint64(uint64_t data) : data_(data) {}
Uint64(Uint32 data)886   explicit Uint64(Uint32 data) : data_(data.Get()) {}
887   inline explicit Uint64(Uint128 data);
Get()888   uint64_t Get() const { return data_; }
GetSigned(int N)889   int64_t GetSigned(int N) const {
890     return ExtractSignedBitfield64(N - 1, 0, data_);
891   }
GetSigned()892   int64_t GetSigned() const { return data_; }
ToUint32()893   Uint32 ToUint32() const {
894     VIXL_ASSERT((data_ >> 32) == 0);
895     return Uint32(static_cast<uint32_t>(data_));
896   }
GetHigh32()897   Uint32 GetHigh32() const { return Uint32(data_ >> 32); }
GetLow32()898   Uint32 GetLow32() const { return Uint32(data_ & 0xffffffff); }
899   Uint64 operator~() const { return Uint64(~data_); }
900   Uint64 operator-() const { return Uint64(-data_); }
901   bool operator==(Uint64 value) const { return data_ == value.data_; }
902   bool operator!=(Uint64 value) const { return data_ != value.data_; }
903   Uint64 operator+(Uint64 value) const { return Uint64(data_ + value.data_); }
904   Uint64 operator-(Uint64 value) const { return Uint64(data_ - value.data_); }
905   Uint64 operator&(Uint64 value) const { return Uint64(data_ & value.data_); }
906   Uint64 operator&=(Uint64 value) {
907     data_ &= value.data_;
908     return *this;
909   }
910   Uint64 operator^(Uint64 value) const { return Uint64(data_ ^ value.data_); }
911   Uint64 operator^=(Uint64 value) {
912     data_ ^= value.data_;
913     return *this;
914   }
915   Uint64 operator|(Uint64 value) const { return Uint64(data_ | value.data_); }
916   Uint64 operator|=(Uint64 value) {
917     data_ |= value.data_;
918     return *this;
919   }
920   // Unlike uint64_t, the shift functions can accept negative shift and
921   // return 0 when the shift is too big.
922   Uint64 operator>>(int shift) const {
923     if (shift == 0) return *this;
924     if (shift < 0) {
925       int tmp = -shift;
926       if (tmp >= 64) return Uint64(0);
927       return Uint64(data_ << tmp);
928     }
929     int tmp = shift;
930     if (tmp >= 64) return Uint64(0);
931     return Uint64(data_ >> tmp);
932   }
933   Uint64 operator<<(int shift) const {
934     if (shift == 0) return *this;
935     if (shift < 0) {
936       int tmp = -shift;
937       if (tmp >= 64) return Uint64(0);
938       return Uint64(data_ >> tmp);
939     }
940     int tmp = shift;
941     if (tmp >= 64) return Uint64(0);
942     return Uint64(data_ << tmp);
943   }
944 };
945 
946 class Uint128 {
947   uint64_t data_high_;
948   uint64_t data_low_;
949 
950  public:
Uint128()951   Uint128() : data_high_(0), data_low_(0) {}
Uint128(uint64_t data_low)952   explicit Uint128(uint64_t data_low) : data_high_(0), data_low_(data_low) {}
Uint128(Uint64 data_low)953   explicit Uint128(Uint64 data_low)
954       : data_high_(0), data_low_(data_low.Get()) {}
Uint128(uint64_t data_high,uint64_t data_low)955   Uint128(uint64_t data_high, uint64_t data_low)
956       : data_high_(data_high), data_low_(data_low) {}
ToUint64()957   Uint64 ToUint64() const {
958     VIXL_ASSERT(data_high_ == 0);
959     return Uint64(data_low_);
960   }
GetHigh64()961   Uint64 GetHigh64() const { return Uint64(data_high_); }
GetLow64()962   Uint64 GetLow64() const { return Uint64(data_low_); }
963   Uint128 operator~() const { return Uint128(~data_high_, ~data_low_); }
964   bool operator==(Uint128 value) const {
965     return (data_high_ == value.data_high_) && (data_low_ == value.data_low_);
966   }
967   Uint128 operator&(Uint128 value) const {
968     return Uint128(data_high_ & value.data_high_, data_low_ & value.data_low_);
969   }
970   Uint128 operator&=(Uint128 value) {
971     data_high_ &= value.data_high_;
972     data_low_ &= value.data_low_;
973     return *this;
974   }
975   Uint128 operator|=(Uint128 value) {
976     data_high_ |= value.data_high_;
977     data_low_ |= value.data_low_;
978     return *this;
979   }
980   Uint128 operator>>(int shift) const {
981     VIXL_ASSERT((shift >= 0) && (shift < 128));
982     if (shift == 0) return *this;
983     if (shift >= 64) {
984       return Uint128(0, data_high_ >> (shift - 64));
985     }
986     uint64_t tmp = (data_high_ << (64 - shift)) | (data_low_ >> shift);
987     return Uint128(data_high_ >> shift, tmp);
988   }
989   Uint128 operator<<(int shift) const {
990     VIXL_ASSERT((shift >= 0) && (shift < 128));
991     if (shift == 0) return *this;
992     if (shift >= 64) {
993       return Uint128(data_low_ << (shift - 64), 0);
994     }
995     uint64_t tmp = (data_high_ << shift) | (data_low_ >> (64 - shift));
996     return Uint128(tmp, data_low_ << shift);
997   }
998 };
999 
Uint32(Uint64 data)1000 Uint32::Uint32(Uint64 data) : data_(data.ToUint32().Get()) {}
Uint64(Uint128 data)1001 Uint64::Uint64(Uint128 data) : data_(data.ToUint64().Get()) {}
1002 
1003 Int64 BitCount(Uint32 value);
1004 
1005 // The algorithm used is adapted from the one described in section 8.2 of
1006 // Hacker's Delight, by Henry S. Warren, Jr.
1007 template <unsigned N, typename T>
MultiplyHigh(T u,T v)1008 int64_t MultiplyHigh(T u, T v) {
1009   uint64_t u0, v0, w0, u1, v1, w1, w2, t;
1010   VIXL_STATIC_ASSERT((N == 8) || (N == 16) || (N == 32) || (N == 64));
1011   uint64_t sign_mask = UINT64_C(1) << (N - 1);
1012   uint64_t sign_ext = 0;
1013   unsigned half_bits = N / 2;
1014   uint64_t half_mask = GetUintMask(half_bits);
1015   if (std::numeric_limits<T>::is_signed) {
1016     sign_ext = UINT64_C(0xffffffffffffffff) << half_bits;
1017   }
1018 
1019   VIXL_ASSERT(sizeof(u) == sizeof(uint64_t));
1020   VIXL_ASSERT(sizeof(u) == sizeof(u0));
1021 
1022   u0 = u & half_mask;
1023   u1 = u >> half_bits | (((u & sign_mask) != 0) ? sign_ext : 0);
1024   v0 = v & half_mask;
1025   v1 = v >> half_bits | (((v & sign_mask) != 0) ? sign_ext : 0);
1026 
1027   w0 = u0 * v0;
1028   t = u1 * v0 + (w0 >> half_bits);
1029 
1030   w1 = t & half_mask;
1031   w2 = t >> half_bits | (((t & sign_mask) != 0) ? sign_ext : 0);
1032   w1 = u0 * v1 + w1;
1033   w1 = w1 >> half_bits | (((w1 & sign_mask) != 0) ? sign_ext : 0);
1034 
1035   uint64_t value = u1 * v1 + w2 + w1;
1036   int64_t result;
1037   memcpy(&result, &value, sizeof(result));
1038   return result;
1039 }
1040 
1041 }  // namespace internal
1042 
1043 // The default NaN values (for FPCR.DN=1).
1044 extern const double kFP64DefaultNaN;
1045 extern const float kFP32DefaultNaN;
1046 extern const Float16 kFP16DefaultNaN;
1047 
1048 // Floating-point infinity values.
1049 extern const Float16 kFP16PositiveInfinity;
1050 extern const Float16 kFP16NegativeInfinity;
1051 extern const float kFP32PositiveInfinity;
1052 extern const float kFP32NegativeInfinity;
1053 extern const double kFP64PositiveInfinity;
1054 extern const double kFP64NegativeInfinity;
1055 
1056 // Floating-point zero values.
1057 extern const Float16 kFP16PositiveZero;
1058 extern const Float16 kFP16NegativeZero;
1059 
1060 // AArch64 floating-point specifics. These match IEEE-754.
1061 const unsigned kDoubleMantissaBits = 52;
1062 const unsigned kDoubleExponentBits = 11;
1063 const unsigned kFloatMantissaBits = 23;
1064 const unsigned kFloatExponentBits = 8;
1065 const unsigned kFloat16MantissaBits = 10;
1066 const unsigned kFloat16ExponentBits = 5;
1067 
1068 enum FPRounding {
1069   // The first four values are encodable directly by FPCR<RMode>.
1070   FPTieEven = 0x0,
1071   FPPositiveInfinity = 0x1,
1072   FPNegativeInfinity = 0x2,
1073   FPZero = 0x3,
1074 
1075   // The final rounding modes are only available when explicitly specified by
1076   // the instruction (such as with fcvta). It cannot be set in FPCR.
1077   FPTieAway,
1078   FPRoundOdd
1079 };
1080 
1081 enum UseDefaultNaN { kUseDefaultNaN, kIgnoreDefaultNaN };
1082 
1083 // Assemble the specified IEEE-754 components into the target type and apply
1084 // appropriate rounding.
1085 //  sign:     0 = positive, 1 = negative
1086 //  exponent: Unbiased IEEE-754 exponent.
1087 //  mantissa: The mantissa of the input. The top bit (which is not encoded for
1088 //            normal IEEE-754 values) must not be omitted. This bit has the
1089 //            value 'pow(2, exponent)'.
1090 //
1091 // The input value is assumed to be a normalized value. That is, the input may
1092 // not be infinity or NaN. If the source value is subnormal, it must be
1093 // normalized before calling this function such that the highest set bit in the
1094 // mantissa has the value 'pow(2, exponent)'.
1095 //
1096 // Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
1097 // calling a templated FPRound.
1098 template <class T, int ebits, int mbits>
FPRound(int64_t sign,int64_t exponent,uint64_t mantissa,FPRounding round_mode)1099 T FPRound(int64_t sign,
1100           int64_t exponent,
1101           uint64_t mantissa,
1102           FPRounding round_mode) {
1103   VIXL_ASSERT((sign == 0) || (sign == 1));
1104 
1105   // Only FPTieEven and FPRoundOdd rounding modes are implemented.
1106   VIXL_ASSERT((round_mode == FPTieEven) || (round_mode == FPRoundOdd));
1107 
1108   // Rounding can promote subnormals to normals, and normals to infinities. For
1109   // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
1110   // encodable as a float, but rounding based on the low-order mantissa bits
1111   // could make it overflow. With ties-to-even rounding, this value would become
1112   // an infinity.
1113 
1114   // ---- Rounding Method ----
1115   //
1116   // The exponent is irrelevant in the rounding operation, so we treat the
1117   // lowest-order bit that will fit into the result ('onebit') as having
1118   // the value '1'. Similarly, the highest-order bit that won't fit into
1119   // the result ('halfbit') has the value '0.5'. The 'point' sits between
1120   // 'onebit' and 'halfbit':
1121   //
1122   //            These bits fit into the result.
1123   //               |---------------------|
1124   //  mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1125   //                                     ||
1126   //                                    / |
1127   //                                   /  halfbit
1128   //                               onebit
1129   //
1130   // For subnormal outputs, the range of representable bits is smaller and
1131   // the position of onebit and halfbit depends on the exponent of the
1132   // input, but the method is otherwise similar.
1133   //
1134   //   onebit(frac)
1135   //     |
1136   //     | halfbit(frac)          halfbit(adjusted)
1137   //     | /                      /
1138   //     | |                      |
1139   //  0b00.0 (exact)      -> 0b00.0 (exact)                    -> 0b00
1140   //  0b00.0...           -> 0b00.0...                         -> 0b00
1141   //  0b00.1 (exact)      -> 0b00.0111..111                    -> 0b00
1142   //  0b00.1...           -> 0b00.1...                         -> 0b01
1143   //  0b01.0 (exact)      -> 0b01.0 (exact)                    -> 0b01
1144   //  0b01.0...           -> 0b01.0...                         -> 0b01
1145   //  0b01.1 (exact)      -> 0b01.1 (exact)                    -> 0b10
1146   //  0b01.1...           -> 0b01.1...                         -> 0b10
1147   //  0b10.0 (exact)      -> 0b10.0 (exact)                    -> 0b10
1148   //  0b10.0...           -> 0b10.0...                         -> 0b10
1149   //  0b10.1 (exact)      -> 0b10.0111..111                    -> 0b10
1150   //  0b10.1...           -> 0b10.1...                         -> 0b11
1151   //  0b11.0 (exact)      -> 0b11.0 (exact)                    -> 0b11
1152   //  ...                   /             |                      /   |
1153   //                       /              |                     /    |
1154   //                                                           /     |
1155   // adjusted = frac - (halfbit(mantissa) & ~onebit(frac));   /      |
1156   //
1157   //                   mantissa = (mantissa >> shift) + halfbit(adjusted);
1158 
1159   static const int mantissa_offset = 0;
1160   static const int exponent_offset = mantissa_offset + mbits;
1161   static const int sign_offset = exponent_offset + ebits;
1162   VIXL_ASSERT(sign_offset == (sizeof(T) * 8 - 1));
1163 
1164   // Bail out early for zero inputs.
1165   if (mantissa == 0) {
1166     return static_cast<T>(sign << sign_offset);
1167   }
1168 
1169   // If all bits in the exponent are set, the value is infinite or NaN.
1170   // This is true for all binary IEEE-754 formats.
1171   static const int infinite_exponent = (1 << ebits) - 1;
1172   static const int max_normal_exponent = infinite_exponent - 1;
1173 
1174   // Apply the exponent bias to encode it for the result. Doing this early makes
1175   // it easy to detect values that will be infinite or subnormal.
1176   exponent += max_normal_exponent >> 1;
1177 
1178   if (exponent > max_normal_exponent) {
1179     // Overflow: the input is too large for the result type to represent.
1180     if (round_mode == FPTieEven) {
1181       // FPTieEven rounding mode handles overflows using infinities.
1182       exponent = infinite_exponent;
1183       mantissa = 0;
1184     } else {
1185       VIXL_ASSERT(round_mode == FPRoundOdd);
1186       // FPRoundOdd rounding mode handles overflows using the largest magnitude
1187       // normal number.
1188       exponent = max_normal_exponent;
1189       mantissa = (UINT64_C(1) << exponent_offset) - 1;
1190     }
1191     return static_cast<T>((sign << sign_offset) |
1192                           (exponent << exponent_offset) |
1193                           (mantissa << mantissa_offset));
1194   }
1195 
1196   // Calculate the shift required to move the top mantissa bit to the proper
1197   // place in the destination type.
1198   const int highest_significant_bit = 63 - CountLeadingZeros(mantissa);
1199   int shift = highest_significant_bit - mbits;
1200 
1201   if (exponent <= 0) {
1202     // The output will be subnormal (before rounding).
1203     // For subnormal outputs, the shift must be adjusted by the exponent. The +1
1204     // is necessary because the exponent of a subnormal value (encoded as 0) is
1205     // the same as the exponent of the smallest normal value (encoded as 1).
1206     shift += -exponent + 1;
1207 
1208     // Handle inputs that would produce a zero output.
1209     //
1210     // Shifts higher than highest_significant_bit+1 will always produce a zero
1211     // result. A shift of exactly highest_significant_bit+1 might produce a
1212     // non-zero result after rounding.
1213     if (shift > (highest_significant_bit + 1)) {
1214       if (round_mode == FPTieEven) {
1215         // The result will always be +/-0.0.
1216         return static_cast<T>(sign << sign_offset);
1217       } else {
1218         VIXL_ASSERT(round_mode == FPRoundOdd);
1219         VIXL_ASSERT(mantissa != 0);
1220         // For FPRoundOdd, if the mantissa is too small to represent and
1221         // non-zero return the next "odd" value.
1222         return static_cast<T>((sign << sign_offset) | 1);
1223       }
1224     }
1225 
1226     // Properly encode the exponent for a subnormal output.
1227     exponent = 0;
1228   } else {
1229     // Clear the topmost mantissa bit, since this is not encoded in IEEE-754
1230     // normal values.
1231     mantissa &= ~(UINT64_C(1) << highest_significant_bit);
1232   }
1233 
1234   // The casts below are only well-defined for unsigned integers.
1235   VIXL_STATIC_ASSERT(std::numeric_limits<T>::is_integer);
1236   VIXL_STATIC_ASSERT(!std::numeric_limits<T>::is_signed);
1237 
1238   if (shift > 0) {
1239     if (round_mode == FPTieEven) {
1240       // We have to shift the mantissa to the right. Some precision is lost, so
1241       // we need to apply rounding.
1242       uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
1243       uint64_t halfbit_mantissa = (mantissa >> (shift - 1)) & 1;
1244       uint64_t adjustment = (halfbit_mantissa & ~onebit_mantissa);
1245       uint64_t adjusted = mantissa - adjustment;
1246       T halfbit_adjusted = (adjusted >> (shift - 1)) & 1;
1247 
1248       T result =
1249           static_cast<T>((sign << sign_offset) | (exponent << exponent_offset) |
1250                          ((mantissa >> shift) << mantissa_offset));
1251 
1252       // A very large mantissa can overflow during rounding. If this happens,
1253       // the exponent should be incremented and the mantissa set to 1.0
1254       // (encoded as 0). Applying halfbit_adjusted after assembling the float
1255       // has the nice side-effect that this case is handled for free.
1256       //
1257       // This also handles cases where a very large finite value overflows to
1258       // infinity, or where a very large subnormal value overflows to become
1259       // normal.
1260       return result + halfbit_adjusted;
1261     } else {
1262       VIXL_ASSERT(round_mode == FPRoundOdd);
1263       // If any bits at position halfbit or below are set, onebit (ie. the
1264       // bottom bit of the resulting mantissa) must be set.
1265       uint64_t fractional_bits = mantissa & ((UINT64_C(1) << shift) - 1);
1266       if (fractional_bits != 0) {
1267         mantissa |= UINT64_C(1) << shift;
1268       }
1269 
1270       return static_cast<T>((sign << sign_offset) |
1271                             (exponent << exponent_offset) |
1272                             ((mantissa >> shift) << mantissa_offset));
1273     }
1274   } else {
1275     // We have to shift the mantissa to the left (or not at all). The input
1276     // mantissa is exactly representable in the output mantissa, so apply no
1277     // rounding correction.
1278     return static_cast<T>((sign << sign_offset) |
1279                           (exponent << exponent_offset) |
1280                           ((mantissa << -shift) << mantissa_offset));
1281   }
1282 }
1283 
1284 
1285 // See FPRound for a description of this function.
FPRoundToDouble(int64_t sign,int64_t exponent,uint64_t mantissa,FPRounding round_mode)1286 inline double FPRoundToDouble(int64_t sign,
1287                               int64_t exponent,
1288                               uint64_t mantissa,
1289                               FPRounding round_mode) {
1290   uint64_t bits =
1291       FPRound<uint64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign,
1292                                                                   exponent,
1293                                                                   mantissa,
1294                                                                   round_mode);
1295   return RawbitsToDouble(bits);
1296 }
1297 
1298 
1299 // See FPRound for a description of this function.
FPRoundToFloat16(int64_t sign,int64_t exponent,uint64_t mantissa,FPRounding round_mode)1300 inline Float16 FPRoundToFloat16(int64_t sign,
1301                                 int64_t exponent,
1302                                 uint64_t mantissa,
1303                                 FPRounding round_mode) {
1304   return RawbitsToFloat16(
1305       FPRound<uint16_t, kFloat16ExponentBits, kFloat16MantissaBits>(
1306           sign, exponent, mantissa, round_mode));
1307 }
1308 
1309 
1310 // See FPRound for a description of this function.
FPRoundToFloat(int64_t sign,int64_t exponent,uint64_t mantissa,FPRounding round_mode)1311 static inline float FPRoundToFloat(int64_t sign,
1312                                    int64_t exponent,
1313                                    uint64_t mantissa,
1314                                    FPRounding round_mode) {
1315   uint32_t bits =
1316       FPRound<uint32_t, kFloatExponentBits, kFloatMantissaBits>(sign,
1317                                                                 exponent,
1318                                                                 mantissa,
1319                                                                 round_mode);
1320   return RawbitsToFloat(bits);
1321 }
1322 
1323 
1324 float FPToFloat(Float16 value, UseDefaultNaN DN, bool* exception = NULL);
1325 float FPToFloat(double value,
1326                 FPRounding round_mode,
1327                 UseDefaultNaN DN,
1328                 bool* exception = NULL);
1329 
1330 double FPToDouble(Float16 value, UseDefaultNaN DN, bool* exception = NULL);
1331 double FPToDouble(float value, UseDefaultNaN DN, bool* exception = NULL);
1332 
1333 Float16 FPToFloat16(float value,
1334                     FPRounding round_mode,
1335                     UseDefaultNaN DN,
1336                     bool* exception = NULL);
1337 
1338 Float16 FPToFloat16(double value,
1339                     FPRounding round_mode,
1340                     UseDefaultNaN DN,
1341                     bool* exception = NULL);
1342 
1343 // Like static_cast<T>(value), but with specialisations for the Float16 type.
1344 template <typename T, typename F>
StaticCastFPTo(F value)1345 T StaticCastFPTo(F value) {
1346   return static_cast<T>(value);
1347 }
1348 
1349 template <>
1350 inline float StaticCastFPTo<float, Float16>(Float16 value) {
1351   return FPToFloat(value, kIgnoreDefaultNaN);
1352 }
1353 
1354 template <>
1355 inline double StaticCastFPTo<double, Float16>(Float16 value) {
1356   return FPToDouble(value, kIgnoreDefaultNaN);
1357 }
1358 
1359 template <>
1360 inline Float16 StaticCastFPTo<Float16, float>(float value) {
1361   return FPToFloat16(value, FPTieEven, kIgnoreDefaultNaN);
1362 }
1363 
1364 template <>
1365 inline Float16 StaticCastFPTo<Float16, double>(double value) {
1366   return FPToFloat16(value, FPTieEven, kIgnoreDefaultNaN);
1367 }
1368 
1369 template <typename T>
FPToRawbitsWithSize(unsigned size_in_bits,T value)1370 uint64_t FPToRawbitsWithSize(unsigned size_in_bits, T value) {
1371   switch (size_in_bits) {
1372     case 16:
1373       return Float16ToRawbits(StaticCastFPTo<Float16>(value));
1374     case 32:
1375       return FloatToRawbits(StaticCastFPTo<float>(value));
1376     case 64:
1377       return DoubleToRawbits(StaticCastFPTo<double>(value));
1378   }
1379   VIXL_UNREACHABLE();
1380   return 0;
1381 }
1382 
1383 template <typename T>
RawbitsWithSizeToFP(unsigned size_in_bits,uint64_t value)1384 T RawbitsWithSizeToFP(unsigned size_in_bits, uint64_t value) {
1385   VIXL_ASSERT(IsUintN(size_in_bits, value));
1386   switch (size_in_bits) {
1387     case 16:
1388       return StaticCastFPTo<T>(RawbitsToFloat16(static_cast<uint16_t>(value)));
1389     case 32:
1390       return StaticCastFPTo<T>(RawbitsToFloat(static_cast<uint32_t>(value)));
1391     case 64:
1392       return StaticCastFPTo<T>(RawbitsToDouble(value));
1393   }
1394   VIXL_UNREACHABLE();
1395   return 0;
1396 }
1397 
1398 }  // namespace vixl
1399 
1400 #endif  // VIXL_UTILS_H
1401