1 /*
2  *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <emmintrin.h>  // SSE2
12 
13 #include "./vpx_dsp_rtcd.h"
14 #include "vpx_dsp/txfm_common.h"
15 #include "vpx_dsp/x86/fwd_txfm_sse2.h"
16 #include "vpx_dsp/x86/txfm_common_sse2.h"
17 #include "vpx_ports/mem.h"
18 
19 // TODO(jingning) The high bit-depth functions need rework for performance.
20 // After we properly fix the high bit-depth function implementations, this
21 // file's dependency should be substantially simplified.
22 #if DCT_HIGH_BIT_DEPTH
23 #define ADD_EPI16 _mm_adds_epi16
24 #define SUB_EPI16 _mm_subs_epi16
25 
26 #else
27 #define ADD_EPI16 _mm_add_epi16
28 #define SUB_EPI16 _mm_sub_epi16
29 #endif
30 
FDCT4x4_2D(const int16_t * input,tran_low_t * output,int stride)31 void FDCT4x4_2D(const int16_t *input, tran_low_t *output, int stride) {
32   // This 2D transform implements 4 vertical 1D transforms followed
33   // by 4 horizontal 1D transforms.  The multiplies and adds are as given
34   // by Chen, Smith and Fralick ('77).  The commands for moving the data
35   // around have been minimized by hand.
36   // For the purposes of the comments, the 16 inputs are referred to at i0
37   // through iF (in raster order), intermediate variables are a0, b0, c0
38   // through f, and correspond to the in-place computations mapped to input
39   // locations.  The outputs, o0 through oF are labeled according to the
40   // output locations.
41 
42   // Constants
43   // These are the coefficients used for the multiplies.
44   // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64),
45   // where cospi_N_64 = cos(N pi /64)
46   const __m128i k__cospi_A =
47       octa_set_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64,
48                      cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64);
49   const __m128i k__cospi_B =
50       octa_set_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64,
51                      cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64);
52   const __m128i k__cospi_C =
53       octa_set_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64,
54                      cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64);
55   const __m128i k__cospi_D =
56       octa_set_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64,
57                      cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64);
58   const __m128i k__cospi_E =
59       octa_set_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64,
60                      cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64);
61   const __m128i k__cospi_F =
62       octa_set_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64,
63                      cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64);
64   const __m128i k__cospi_G =
65       octa_set_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64,
66                      -cospi_8_64, -cospi_24_64, -cospi_8_64, -cospi_24_64);
67   const __m128i k__cospi_H =
68       octa_set_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64,
69                      -cospi_24_64, cospi_8_64, -cospi_24_64, cospi_8_64);
70 
71   const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
72   // This second rounding constant saves doing some extra adds at the end
73   const __m128i k__DCT_CONST_ROUNDING2 =
74       _mm_set1_epi32(DCT_CONST_ROUNDING + (DCT_CONST_ROUNDING << 1));
75   const int DCT_CONST_BITS2 = DCT_CONST_BITS + 2;
76   const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
77   const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
78   __m128i in0, in1;
79 #if DCT_HIGH_BIT_DEPTH
80   __m128i cmp0, cmp1;
81   int test, overflow;
82 #endif
83 
84   // Load inputs.
85   in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
86   in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
87   in1 = _mm_unpacklo_epi64(
88       in1, _mm_loadl_epi64((const __m128i *)(input + 2 * stride)));
89   in0 = _mm_unpacklo_epi64(
90       in0, _mm_loadl_epi64((const __m128i *)(input + 3 * stride)));
91 // in0 = [i0 i1 i2 i3 iC iD iE iF]
92 // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
93 #if DCT_HIGH_BIT_DEPTH
94   // Check inputs small enough to use optimised code
95   cmp0 = _mm_xor_si128(_mm_cmpgt_epi16(in0, _mm_set1_epi16(0x3ff)),
96                        _mm_cmplt_epi16(in0, _mm_set1_epi16((int16_t)0xfc00)));
97   cmp1 = _mm_xor_si128(_mm_cmpgt_epi16(in1, _mm_set1_epi16(0x3ff)),
98                        _mm_cmplt_epi16(in1, _mm_set1_epi16((int16_t)0xfc00)));
99   test = _mm_movemask_epi8(_mm_or_si128(cmp0, cmp1));
100   if (test) {
101     vpx_highbd_fdct4x4_c(input, output, stride);
102     return;
103   }
104 #endif  // DCT_HIGH_BIT_DEPTH
105 
106   // multiply by 16 to give some extra precision
107   in0 = _mm_slli_epi16(in0, 4);
108   in1 = _mm_slli_epi16(in1, 4);
109   // if (i == 0 && input[0]) input[0] += 1;
110   // add 1 to the upper left pixel if it is non-zero, which helps reduce
111   // the round-trip error
112   {
113     // The mask will only contain whether the first value is zero, all
114     // other comparison will fail as something shifted by 4 (above << 4)
115     // can never be equal to one. To increment in the non-zero case, we
116     // add the mask and one for the first element:
117     //   - if zero, mask = -1, v = v - 1 + 1 = v
118     //   - if non-zero, mask = 0, v = v + 0 + 1 = v + 1
119     __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a);
120     in0 = _mm_add_epi16(in0, mask);
121     in0 = _mm_add_epi16(in0, k__nonzero_bias_b);
122   }
123   // There are 4 total stages, alternating between an add/subtract stage
124   // followed by an multiply-and-add stage.
125   {
126     // Stage 1: Add/subtract
127 
128     // in0 = [i0 i1 i2 i3 iC iD iE iF]
129     // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
130     const __m128i r0 = _mm_unpacklo_epi16(in0, in1);
131     const __m128i r1 = _mm_unpackhi_epi16(in0, in1);
132     // r0 = [i0 i4 i1 i5 i2 i6 i3 i7]
133     // r1 = [iC i8 iD i9 iE iA iF iB]
134     const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4);
135     const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4);
136     // r2 = [i0 i4 i1 i5 i3 i7 i2 i6]
137     // r3 = [iC i8 iD i9 iF iB iE iA]
138 
139     const __m128i t0 = _mm_add_epi16(r2, r3);
140     const __m128i t1 = _mm_sub_epi16(r2, r3);
141     // t0 = [a0 a4 a1 a5 a3 a7 a2 a6]
142     // t1 = [aC a8 aD a9 aF aB aE aA]
143 
144     // Stage 2: multiply by constants (which gets us into 32 bits).
145     // The constants needed here are:
146     // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16]
147     // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16]
148     // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08]
149     // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24]
150     const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A);
151     const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B);
152     const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C);
153     const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D);
154     // Then add and right-shift to get back to 16-bit range
155     const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
156     const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
157     const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
158     const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
159     const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
160     const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
161     const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
162     const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
163     // w0 = [b0 b1 b7 b6]
164     // w1 = [b8 b9 bF bE]
165     // w2 = [b4 b5 b3 b2]
166     // w3 = [bC bD bB bA]
167     const __m128i x0 = _mm_packs_epi32(w0, w1);
168     const __m128i x1 = _mm_packs_epi32(w2, w3);
169 #if DCT_HIGH_BIT_DEPTH
170     overflow = check_epi16_overflow_x2(&x0, &x1);
171     if (overflow) {
172       vpx_highbd_fdct4x4_c(input, output, stride);
173       return;
174     }
175 #endif  // DCT_HIGH_BIT_DEPTH
176     // x0 = [b0 b1 b7 b6 b8 b9 bF bE]
177     // x1 = [b4 b5 b3 b2 bC bD bB bA]
178     in0 = _mm_shuffle_epi32(x0, 0xD8);
179     in1 = _mm_shuffle_epi32(x1, 0x8D);
180     // in0 = [b0 b1 b8 b9 b7 b6 bF bE]
181     // in1 = [b3 b2 bB bA b4 b5 bC bD]
182   }
183   {
184     // vertical DCTs finished. Now we do the horizontal DCTs.
185     // Stage 3: Add/subtract
186 
187     const __m128i t0 = ADD_EPI16(in0, in1);
188     const __m128i t1 = SUB_EPI16(in0, in1);
189 // t0 = [c0 c1 c8 c9  c4  c5  cC  cD]
190 // t1 = [c3 c2 cB cA -c7 -c6 -cF -cE]
191 #if DCT_HIGH_BIT_DEPTH
192     overflow = check_epi16_overflow_x2(&t0, &t1);
193     if (overflow) {
194       vpx_highbd_fdct4x4_c(input, output, stride);
195       return;
196     }
197 #endif  // DCT_HIGH_BIT_DEPTH
198 
199     // Stage 4: multiply by constants (which gets us into 32 bits).
200     {
201       // The constants needed here are:
202       // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16]
203       // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16]
204       // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24]
205       // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08]
206       const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E);
207       const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F);
208       const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G);
209       const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H);
210       // Then add and right-shift to get back to 16-bit range
211       // but this combines the final right-shift as well to save operations
212       // This unusual rounding operations is to maintain bit-accurate
213       // compatibility with the c version of this function which has two
214       // rounding steps in a row.
215       const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2);
216       const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2);
217       const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2);
218       const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2);
219       const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2);
220       const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2);
221       const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2);
222       const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2);
223       // w0 = [o0 o4 o8 oC]
224       // w1 = [o2 o6 oA oE]
225       // w2 = [o1 o5 o9 oD]
226       // w3 = [o3 o7 oB oF]
227       // remember the o's are numbered according to the correct output location
228       const __m128i x0 = _mm_packs_epi32(w0, w1);
229       const __m128i x1 = _mm_packs_epi32(w2, w3);
230 #if DCT_HIGH_BIT_DEPTH
231       overflow = check_epi16_overflow_x2(&x0, &x1);
232       if (overflow) {
233         vpx_highbd_fdct4x4_c(input, output, stride);
234         return;
235       }
236 #endif  // DCT_HIGH_BIT_DEPTH
237       {
238         // x0 = [o0 o4 o8 oC o2 o6 oA oE]
239         // x1 = [o1 o5 o9 oD o3 o7 oB oF]
240         const __m128i y0 = _mm_unpacklo_epi16(x0, x1);
241         const __m128i y1 = _mm_unpackhi_epi16(x0, x1);
242         // y0 = [o0 o1 o4 o5 o8 o9 oC oD]
243         // y1 = [o2 o3 o6 o7 oA oB oE oF]
244         in0 = _mm_unpacklo_epi32(y0, y1);
245         // in0 = [o0 o1 o2 o3 o4 o5 o6 o7]
246         in1 = _mm_unpackhi_epi32(y0, y1);
247         // in1 = [o8 o9 oA oB oC oD oE oF]
248       }
249     }
250   }
251   // Post-condition (v + 1) >> 2 is now incorporated into previous
252   // add and right-shift commands.  Only 2 store instructions needed
253   // because we are using the fact that 1/3 are stored just after 0/2.
254   storeu_output(&in0, output + 0 * 4);
255   storeu_output(&in1, output + 2 * 4);
256 }
257 
FDCT8x8_2D(const int16_t * input,tran_low_t * output,int stride)258 void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) {
259   int pass;
260   // Constants
261   //    When we use them, in one case, they are all the same. In all others
262   //    it's a pair of them that we need to repeat four times. This is done
263   //    by constructing the 32 bit constant corresponding to that pair.
264   const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
265   const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
266   const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
267   const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
268   const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
269   const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
270   const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
271   const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
272   const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
273 #if DCT_HIGH_BIT_DEPTH
274   int overflow;
275 #endif
276   // Load input
277   __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
278   __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
279   __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
280   __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
281   __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
282   __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
283   __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
284   __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
285   // Pre-condition input (shift by two)
286   in0 = _mm_slli_epi16(in0, 2);
287   in1 = _mm_slli_epi16(in1, 2);
288   in2 = _mm_slli_epi16(in2, 2);
289   in3 = _mm_slli_epi16(in3, 2);
290   in4 = _mm_slli_epi16(in4, 2);
291   in5 = _mm_slli_epi16(in5, 2);
292   in6 = _mm_slli_epi16(in6, 2);
293   in7 = _mm_slli_epi16(in7, 2);
294 
295   // We do two passes, first the columns, then the rows. The results of the
296   // first pass are transposed so that the same column code can be reused. The
297   // results of the second pass are also transposed so that the rows (processed
298   // as columns) are put back in row positions.
299   for (pass = 0; pass < 2; pass++) {
300     // To store results of each pass before the transpose.
301     __m128i res0, res1, res2, res3, res4, res5, res6, res7;
302     // Add/subtract
303     const __m128i q0 = ADD_EPI16(in0, in7);
304     const __m128i q1 = ADD_EPI16(in1, in6);
305     const __m128i q2 = ADD_EPI16(in2, in5);
306     const __m128i q3 = ADD_EPI16(in3, in4);
307     const __m128i q4 = SUB_EPI16(in3, in4);
308     const __m128i q5 = SUB_EPI16(in2, in5);
309     const __m128i q6 = SUB_EPI16(in1, in6);
310     const __m128i q7 = SUB_EPI16(in0, in7);
311 #if DCT_HIGH_BIT_DEPTH
312     if (pass == 1) {
313       overflow =
314           check_epi16_overflow_x8(&q0, &q1, &q2, &q3, &q4, &q5, &q6, &q7);
315       if (overflow) {
316         vpx_highbd_fdct8x8_c(input, output, stride);
317         return;
318       }
319     }
320 #endif  // DCT_HIGH_BIT_DEPTH
321     // Work on first four results
322     {
323       // Add/subtract
324       const __m128i r0 = ADD_EPI16(q0, q3);
325       const __m128i r1 = ADD_EPI16(q1, q2);
326       const __m128i r2 = SUB_EPI16(q1, q2);
327       const __m128i r3 = SUB_EPI16(q0, q3);
328 #if DCT_HIGH_BIT_DEPTH
329       overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
330       if (overflow) {
331         vpx_highbd_fdct8x8_c(input, output, stride);
332         return;
333       }
334 #endif  // DCT_HIGH_BIT_DEPTH
335       // Interleave to do the multiply by constants which gets us into 32bits
336       {
337         const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
338         const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
339         const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
340         const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
341         const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
342         const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
343         const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
344         const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
345         const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
346         const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
347         const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
348         const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
349         // dct_const_round_shift
350         const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
351         const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
352         const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
353         const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
354         const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
355         const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
356         const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
357         const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
358         const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
359         const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
360         const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
361         const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
362         const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
363         const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
364         const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
365         const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
366         // Combine
367         res0 = _mm_packs_epi32(w0, w1);
368         res4 = _mm_packs_epi32(w2, w3);
369         res2 = _mm_packs_epi32(w4, w5);
370         res6 = _mm_packs_epi32(w6, w7);
371 #if DCT_HIGH_BIT_DEPTH
372         overflow = check_epi16_overflow_x4(&res0, &res4, &res2, &res6);
373         if (overflow) {
374           vpx_highbd_fdct8x8_c(input, output, stride);
375           return;
376         }
377 #endif  // DCT_HIGH_BIT_DEPTH
378       }
379     }
380     // Work on next four results
381     {
382       // Interleave to do the multiply by constants which gets us into 32bits
383       const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
384       const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
385       const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
386       const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
387       const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
388       const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
389       // dct_const_round_shift
390       const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
391       const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
392       const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
393       const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
394       const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
395       const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
396       const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
397       const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
398       // Combine
399       const __m128i r0 = _mm_packs_epi32(s0, s1);
400       const __m128i r1 = _mm_packs_epi32(s2, s3);
401 #if DCT_HIGH_BIT_DEPTH
402       overflow = check_epi16_overflow_x2(&r0, &r1);
403       if (overflow) {
404         vpx_highbd_fdct8x8_c(input, output, stride);
405         return;
406       }
407 #endif  // DCT_HIGH_BIT_DEPTH
408       {
409         // Add/subtract
410         const __m128i x0 = ADD_EPI16(q4, r0);
411         const __m128i x1 = SUB_EPI16(q4, r0);
412         const __m128i x2 = SUB_EPI16(q7, r1);
413         const __m128i x3 = ADD_EPI16(q7, r1);
414 #if DCT_HIGH_BIT_DEPTH
415         overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
416         if (overflow) {
417           vpx_highbd_fdct8x8_c(input, output, stride);
418           return;
419         }
420 #endif  // DCT_HIGH_BIT_DEPTH
421         // Interleave to do the multiply by constants which gets us into 32bits
422         {
423           const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
424           const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
425           const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
426           const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
427           const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
428           const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
429           const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
430           const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
431           const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
432           const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
433           const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
434           const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
435           // dct_const_round_shift
436           const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
437           const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
438           const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
439           const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
440           const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
441           const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
442           const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
443           const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
444           const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
445           const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
446           const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
447           const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
448           const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
449           const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
450           const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
451           const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
452           // Combine
453           res1 = _mm_packs_epi32(w0, w1);
454           res7 = _mm_packs_epi32(w2, w3);
455           res5 = _mm_packs_epi32(w4, w5);
456           res3 = _mm_packs_epi32(w6, w7);
457 #if DCT_HIGH_BIT_DEPTH
458           overflow = check_epi16_overflow_x4(&res1, &res7, &res5, &res3);
459           if (overflow) {
460             vpx_highbd_fdct8x8_c(input, output, stride);
461             return;
462           }
463 #endif  // DCT_HIGH_BIT_DEPTH
464         }
465       }
466     }
467     // Transpose the 8x8.
468     {
469       // 00 01 02 03 04 05 06 07
470       // 10 11 12 13 14 15 16 17
471       // 20 21 22 23 24 25 26 27
472       // 30 31 32 33 34 35 36 37
473       // 40 41 42 43 44 45 46 47
474       // 50 51 52 53 54 55 56 57
475       // 60 61 62 63 64 65 66 67
476       // 70 71 72 73 74 75 76 77
477       const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
478       const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
479       const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
480       const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
481       const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
482       const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
483       const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
484       const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
485       // 00 10 01 11 02 12 03 13
486       // 20 30 21 31 22 32 23 33
487       // 04 14 05 15 06 16 07 17
488       // 24 34 25 35 26 36 27 37
489       // 40 50 41 51 42 52 43 53
490       // 60 70 61 71 62 72 63 73
491       // 54 54 55 55 56 56 57 57
492       // 64 74 65 75 66 76 67 77
493       const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
494       const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
495       const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
496       const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
497       const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
498       const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
499       const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
500       const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
501       // 00 10 20 30 01 11 21 31
502       // 40 50 60 70 41 51 61 71
503       // 02 12 22 32 03 13 23 33
504       // 42 52 62 72 43 53 63 73
505       // 04 14 24 34 05 15 21 36
506       // 44 54 64 74 45 55 61 76
507       // 06 16 26 36 07 17 27 37
508       // 46 56 66 76 47 57 67 77
509       in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
510       in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
511       in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
512       in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
513       in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
514       in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
515       in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
516       in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
517       // 00 10 20 30 40 50 60 70
518       // 01 11 21 31 41 51 61 71
519       // 02 12 22 32 42 52 62 72
520       // 03 13 23 33 43 53 63 73
521       // 04 14 24 34 44 54 64 74
522       // 05 15 25 35 45 55 65 75
523       // 06 16 26 36 46 56 66 76
524       // 07 17 27 37 47 57 67 77
525     }
526   }
527   // Post-condition output and store it
528   {
529     // Post-condition (division by two)
530     //    division of two 16 bits signed numbers using shifts
531     //    n / 2 = (n - (n >> 15)) >> 1
532     const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
533     const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
534     const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
535     const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
536     const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
537     const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
538     const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
539     const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
540     in0 = _mm_sub_epi16(in0, sign_in0);
541     in1 = _mm_sub_epi16(in1, sign_in1);
542     in2 = _mm_sub_epi16(in2, sign_in2);
543     in3 = _mm_sub_epi16(in3, sign_in3);
544     in4 = _mm_sub_epi16(in4, sign_in4);
545     in5 = _mm_sub_epi16(in5, sign_in5);
546     in6 = _mm_sub_epi16(in6, sign_in6);
547     in7 = _mm_sub_epi16(in7, sign_in7);
548     in0 = _mm_srai_epi16(in0, 1);
549     in1 = _mm_srai_epi16(in1, 1);
550     in2 = _mm_srai_epi16(in2, 1);
551     in3 = _mm_srai_epi16(in3, 1);
552     in4 = _mm_srai_epi16(in4, 1);
553     in5 = _mm_srai_epi16(in5, 1);
554     in6 = _mm_srai_epi16(in6, 1);
555     in7 = _mm_srai_epi16(in7, 1);
556     // store results
557     store_output(&in0, (output + 0 * 8));
558     store_output(&in1, (output + 1 * 8));
559     store_output(&in2, (output + 2 * 8));
560     store_output(&in3, (output + 3 * 8));
561     store_output(&in4, (output + 4 * 8));
562     store_output(&in5, (output + 5 * 8));
563     store_output(&in6, (output + 6 * 8));
564     store_output(&in7, (output + 7 * 8));
565   }
566 }
567 
FDCT16x16_2D(const int16_t * input,tran_low_t * output,int stride)568 void FDCT16x16_2D(const int16_t *input, tran_low_t *output, int stride) {
569   // The 2D transform is done with two passes which are actually pretty
570   // similar. In the first one, we transform the columns and transpose
571   // the results. In the second one, we transform the rows. To achieve that,
572   // as the first pass results are transposed, we transpose the columns (that
573   // is the transposed rows) and transpose the results (so that it goes back
574   // in normal/row positions).
575   int pass;
576   // We need an intermediate buffer between passes.
577   DECLARE_ALIGNED(16, int16_t, intermediate[256]);
578   const int16_t *in = input;
579   int16_t *out0 = intermediate;
580   tran_low_t *out1 = output;
581   // Constants
582   //    When we use them, in one case, they are all the same. In all others
583   //    it's a pair of them that we need to repeat four times. This is done
584   //    by constructing the 32 bit constant corresponding to that pair.
585   const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
586   const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
587   const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
588   const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64);
589   const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
590   const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
591   const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
592   const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
593   const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
594   const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
595   const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
596   const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
597   const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
598   const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
599   const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
600   const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
601   const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
602   const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
603   const __m128i kOne = _mm_set1_epi16(1);
604   // Do the two transform/transpose passes
605   for (pass = 0; pass < 2; ++pass) {
606     // We process eight columns (transposed rows in second pass) at a time.
607     int column_start;
608 #if DCT_HIGH_BIT_DEPTH
609     int overflow;
610 #endif
611     for (column_start = 0; column_start < 16; column_start += 8) {
612       __m128i in00, in01, in02, in03, in04, in05, in06, in07;
613       __m128i in08, in09, in10, in11, in12, in13, in14, in15;
614       __m128i input0, input1, input2, input3, input4, input5, input6, input7;
615       __m128i step1_0, step1_1, step1_2, step1_3;
616       __m128i step1_4, step1_5, step1_6, step1_7;
617       __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6;
618       __m128i step3_0, step3_1, step3_2, step3_3;
619       __m128i step3_4, step3_5, step3_6, step3_7;
620       __m128i res00, res01, res02, res03, res04, res05, res06, res07;
621       __m128i res08, res09, res10, res11, res12, res13, res14, res15;
622       // Load and pre-condition input.
623       if (0 == pass) {
624         in00 = _mm_load_si128((const __m128i *)(in + 0 * stride));
625         in01 = _mm_load_si128((const __m128i *)(in + 1 * stride));
626         in02 = _mm_load_si128((const __m128i *)(in + 2 * stride));
627         in03 = _mm_load_si128((const __m128i *)(in + 3 * stride));
628         in04 = _mm_load_si128((const __m128i *)(in + 4 * stride));
629         in05 = _mm_load_si128((const __m128i *)(in + 5 * stride));
630         in06 = _mm_load_si128((const __m128i *)(in + 6 * stride));
631         in07 = _mm_load_si128((const __m128i *)(in + 7 * stride));
632         in08 = _mm_load_si128((const __m128i *)(in + 8 * stride));
633         in09 = _mm_load_si128((const __m128i *)(in + 9 * stride));
634         in10 = _mm_load_si128((const __m128i *)(in + 10 * stride));
635         in11 = _mm_load_si128((const __m128i *)(in + 11 * stride));
636         in12 = _mm_load_si128((const __m128i *)(in + 12 * stride));
637         in13 = _mm_load_si128((const __m128i *)(in + 13 * stride));
638         in14 = _mm_load_si128((const __m128i *)(in + 14 * stride));
639         in15 = _mm_load_si128((const __m128i *)(in + 15 * stride));
640         // x = x << 2
641         in00 = _mm_slli_epi16(in00, 2);
642         in01 = _mm_slli_epi16(in01, 2);
643         in02 = _mm_slli_epi16(in02, 2);
644         in03 = _mm_slli_epi16(in03, 2);
645         in04 = _mm_slli_epi16(in04, 2);
646         in05 = _mm_slli_epi16(in05, 2);
647         in06 = _mm_slli_epi16(in06, 2);
648         in07 = _mm_slli_epi16(in07, 2);
649         in08 = _mm_slli_epi16(in08, 2);
650         in09 = _mm_slli_epi16(in09, 2);
651         in10 = _mm_slli_epi16(in10, 2);
652         in11 = _mm_slli_epi16(in11, 2);
653         in12 = _mm_slli_epi16(in12, 2);
654         in13 = _mm_slli_epi16(in13, 2);
655         in14 = _mm_slli_epi16(in14, 2);
656         in15 = _mm_slli_epi16(in15, 2);
657       } else {
658         in00 = _mm_load_si128((const __m128i *)(in + 0 * 16));
659         in01 = _mm_load_si128((const __m128i *)(in + 1 * 16));
660         in02 = _mm_load_si128((const __m128i *)(in + 2 * 16));
661         in03 = _mm_load_si128((const __m128i *)(in + 3 * 16));
662         in04 = _mm_load_si128((const __m128i *)(in + 4 * 16));
663         in05 = _mm_load_si128((const __m128i *)(in + 5 * 16));
664         in06 = _mm_load_si128((const __m128i *)(in + 6 * 16));
665         in07 = _mm_load_si128((const __m128i *)(in + 7 * 16));
666         in08 = _mm_load_si128((const __m128i *)(in + 8 * 16));
667         in09 = _mm_load_si128((const __m128i *)(in + 9 * 16));
668         in10 = _mm_load_si128((const __m128i *)(in + 10 * 16));
669         in11 = _mm_load_si128((const __m128i *)(in + 11 * 16));
670         in12 = _mm_load_si128((const __m128i *)(in + 12 * 16));
671         in13 = _mm_load_si128((const __m128i *)(in + 13 * 16));
672         in14 = _mm_load_si128((const __m128i *)(in + 14 * 16));
673         in15 = _mm_load_si128((const __m128i *)(in + 15 * 16));
674         // x = (x + 1) >> 2
675         in00 = _mm_add_epi16(in00, kOne);
676         in01 = _mm_add_epi16(in01, kOne);
677         in02 = _mm_add_epi16(in02, kOne);
678         in03 = _mm_add_epi16(in03, kOne);
679         in04 = _mm_add_epi16(in04, kOne);
680         in05 = _mm_add_epi16(in05, kOne);
681         in06 = _mm_add_epi16(in06, kOne);
682         in07 = _mm_add_epi16(in07, kOne);
683         in08 = _mm_add_epi16(in08, kOne);
684         in09 = _mm_add_epi16(in09, kOne);
685         in10 = _mm_add_epi16(in10, kOne);
686         in11 = _mm_add_epi16(in11, kOne);
687         in12 = _mm_add_epi16(in12, kOne);
688         in13 = _mm_add_epi16(in13, kOne);
689         in14 = _mm_add_epi16(in14, kOne);
690         in15 = _mm_add_epi16(in15, kOne);
691         in00 = _mm_srai_epi16(in00, 2);
692         in01 = _mm_srai_epi16(in01, 2);
693         in02 = _mm_srai_epi16(in02, 2);
694         in03 = _mm_srai_epi16(in03, 2);
695         in04 = _mm_srai_epi16(in04, 2);
696         in05 = _mm_srai_epi16(in05, 2);
697         in06 = _mm_srai_epi16(in06, 2);
698         in07 = _mm_srai_epi16(in07, 2);
699         in08 = _mm_srai_epi16(in08, 2);
700         in09 = _mm_srai_epi16(in09, 2);
701         in10 = _mm_srai_epi16(in10, 2);
702         in11 = _mm_srai_epi16(in11, 2);
703         in12 = _mm_srai_epi16(in12, 2);
704         in13 = _mm_srai_epi16(in13, 2);
705         in14 = _mm_srai_epi16(in14, 2);
706         in15 = _mm_srai_epi16(in15, 2);
707       }
708       in += 8;
709       // Calculate input for the first 8 results.
710       {
711         input0 = ADD_EPI16(in00, in15);
712         input1 = ADD_EPI16(in01, in14);
713         input2 = ADD_EPI16(in02, in13);
714         input3 = ADD_EPI16(in03, in12);
715         input4 = ADD_EPI16(in04, in11);
716         input5 = ADD_EPI16(in05, in10);
717         input6 = ADD_EPI16(in06, in09);
718         input7 = ADD_EPI16(in07, in08);
719 #if DCT_HIGH_BIT_DEPTH
720         overflow = check_epi16_overflow_x8(&input0, &input1, &input2, &input3,
721                                            &input4, &input5, &input6, &input7);
722         if (overflow) {
723           vpx_highbd_fdct16x16_c(input, output, stride);
724           return;
725         }
726 #endif  // DCT_HIGH_BIT_DEPTH
727       }
728       // Calculate input for the next 8 results.
729       {
730         step1_0 = SUB_EPI16(in07, in08);
731         step1_1 = SUB_EPI16(in06, in09);
732         step1_2 = SUB_EPI16(in05, in10);
733         step1_3 = SUB_EPI16(in04, in11);
734         step1_4 = SUB_EPI16(in03, in12);
735         step1_5 = SUB_EPI16(in02, in13);
736         step1_6 = SUB_EPI16(in01, in14);
737         step1_7 = SUB_EPI16(in00, in15);
738 #if DCT_HIGH_BIT_DEPTH
739         overflow =
740             check_epi16_overflow_x8(&step1_0, &step1_1, &step1_2, &step1_3,
741                                     &step1_4, &step1_5, &step1_6, &step1_7);
742         if (overflow) {
743           vpx_highbd_fdct16x16_c(input, output, stride);
744           return;
745         }
746 #endif  // DCT_HIGH_BIT_DEPTH
747       }
748       // Work on the first eight values; fdct8(input, even_results);
749       {
750         // Add/subtract
751         const __m128i q0 = ADD_EPI16(input0, input7);
752         const __m128i q1 = ADD_EPI16(input1, input6);
753         const __m128i q2 = ADD_EPI16(input2, input5);
754         const __m128i q3 = ADD_EPI16(input3, input4);
755         const __m128i q4 = SUB_EPI16(input3, input4);
756         const __m128i q5 = SUB_EPI16(input2, input5);
757         const __m128i q6 = SUB_EPI16(input1, input6);
758         const __m128i q7 = SUB_EPI16(input0, input7);
759 #if DCT_HIGH_BIT_DEPTH
760         overflow =
761             check_epi16_overflow_x8(&q0, &q1, &q2, &q3, &q4, &q5, &q6, &q7);
762         if (overflow) {
763           vpx_highbd_fdct16x16_c(input, output, stride);
764           return;
765         }
766 #endif  // DCT_HIGH_BIT_DEPTH
767         // Work on first four results
768         {
769           // Add/subtract
770           const __m128i r0 = ADD_EPI16(q0, q3);
771           const __m128i r1 = ADD_EPI16(q1, q2);
772           const __m128i r2 = SUB_EPI16(q1, q2);
773           const __m128i r3 = SUB_EPI16(q0, q3);
774 #if DCT_HIGH_BIT_DEPTH
775           overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
776           if (overflow) {
777             vpx_highbd_fdct16x16_c(input, output, stride);
778             return;
779           }
780 #endif  // DCT_HIGH_BIT_DEPTH
781 
782           // Interleave to do the multiply by constants which gets us
783           // into 32 bits.
784           {
785             const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
786             const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
787             const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
788             const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
789             res00 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16,
790                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
791             res08 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16,
792                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
793             res04 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08,
794                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
795             res12 = mult_round_shift(&t2, &t3, &k__cospi_m08_p24,
796                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
797 #if DCT_HIGH_BIT_DEPTH
798             overflow = check_epi16_overflow_x4(&res00, &res08, &res04, &res12);
799             if (overflow) {
800               vpx_highbd_fdct16x16_c(input, output, stride);
801               return;
802             }
803 #endif  // DCT_HIGH_BIT_DEPTH
804           }
805         }
806         // Work on next four results
807         {
808           // Interleave to do the multiply by constants which gets us
809           // into 32 bits.
810           const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
811           const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
812           const __m128i r0 =
813               mult_round_shift(&d0, &d1, &k__cospi_p16_m16,
814                                &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
815           const __m128i r1 =
816               mult_round_shift(&d0, &d1, &k__cospi_p16_p16,
817                                &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
818 #if DCT_HIGH_BIT_DEPTH
819           overflow = check_epi16_overflow_x2(&r0, &r1);
820           if (overflow) {
821             vpx_highbd_fdct16x16_c(input, output, stride);
822             return;
823           }
824 #endif  // DCT_HIGH_BIT_DEPTH
825           {
826             // Add/subtract
827             const __m128i x0 = ADD_EPI16(q4, r0);
828             const __m128i x1 = SUB_EPI16(q4, r0);
829             const __m128i x2 = SUB_EPI16(q7, r1);
830             const __m128i x3 = ADD_EPI16(q7, r1);
831 #if DCT_HIGH_BIT_DEPTH
832             overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
833             if (overflow) {
834               vpx_highbd_fdct16x16_c(input, output, stride);
835               return;
836             }
837 #endif  // DCT_HIGH_BIT_DEPTH
838 
839             // Interleave to do the multiply by constants which gets us
840             // into 32 bits.
841             {
842               const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
843               const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
844               const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
845               const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
846               res02 = mult_round_shift(&t0, &t1, &k__cospi_p28_p04,
847                                        &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
848               res14 = mult_round_shift(&t0, &t1, &k__cospi_m04_p28,
849                                        &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
850               res10 = mult_round_shift(&t2, &t3, &k__cospi_p12_p20,
851                                        &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
852               res06 = mult_round_shift(&t2, &t3, &k__cospi_m20_p12,
853                                        &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
854 #if DCT_HIGH_BIT_DEPTH
855               overflow =
856                   check_epi16_overflow_x4(&res02, &res14, &res10, &res06);
857               if (overflow) {
858                 vpx_highbd_fdct16x16_c(input, output, stride);
859                 return;
860               }
861 #endif  // DCT_HIGH_BIT_DEPTH
862             }
863           }
864         }
865       }
866       // Work on the next eight values; step1 -> odd_results
867       {
868         // step 2
869         {
870           const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
871           const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
872           const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
873           const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
874           step2_2 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16,
875                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
876           step2_3 = mult_round_shift(&t2, &t3, &k__cospi_p16_m16,
877                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
878           step2_5 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16,
879                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
880           step2_4 = mult_round_shift(&t2, &t3, &k__cospi_p16_p16,
881                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
882 #if DCT_HIGH_BIT_DEPTH
883           overflow =
884               check_epi16_overflow_x4(&step2_2, &step2_3, &step2_5, &step2_4);
885           if (overflow) {
886             vpx_highbd_fdct16x16_c(input, output, stride);
887             return;
888           }
889 #endif  // DCT_HIGH_BIT_DEPTH
890         }
891         // step 3
892         {
893           step3_0 = ADD_EPI16(step1_0, step2_3);
894           step3_1 = ADD_EPI16(step1_1, step2_2);
895           step3_2 = SUB_EPI16(step1_1, step2_2);
896           step3_3 = SUB_EPI16(step1_0, step2_3);
897           step3_4 = SUB_EPI16(step1_7, step2_4);
898           step3_5 = SUB_EPI16(step1_6, step2_5);
899           step3_6 = ADD_EPI16(step1_6, step2_5);
900           step3_7 = ADD_EPI16(step1_7, step2_4);
901 #if DCT_HIGH_BIT_DEPTH
902           overflow =
903               check_epi16_overflow_x8(&step3_0, &step3_1, &step3_2, &step3_3,
904                                       &step3_4, &step3_5, &step3_6, &step3_7);
905           if (overflow) {
906             vpx_highbd_fdct16x16_c(input, output, stride);
907             return;
908           }
909 #endif  // DCT_HIGH_BIT_DEPTH
910         }
911         // step 4
912         {
913           const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
914           const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
915           const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
916           const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
917           step2_1 = mult_round_shift(&t0, &t1, &k__cospi_m08_p24,
918                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
919           step2_2 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08,
920                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
921           step2_6 = mult_round_shift(&t0, &t1, &k__cospi_p24_p08,
922                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
923           step2_5 = mult_round_shift(&t2, &t3, &k__cospi_p08_m24,
924                                      &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
925 #if DCT_HIGH_BIT_DEPTH
926           overflow =
927               check_epi16_overflow_x4(&step2_1, &step2_2, &step2_6, &step2_5);
928           if (overflow) {
929             vpx_highbd_fdct16x16_c(input, output, stride);
930             return;
931           }
932 #endif  // DCT_HIGH_BIT_DEPTH
933         }
934         // step 5
935         {
936           step1_0 = ADD_EPI16(step3_0, step2_1);
937           step1_1 = SUB_EPI16(step3_0, step2_1);
938           step1_2 = ADD_EPI16(step3_3, step2_2);
939           step1_3 = SUB_EPI16(step3_3, step2_2);
940           step1_4 = SUB_EPI16(step3_4, step2_5);
941           step1_5 = ADD_EPI16(step3_4, step2_5);
942           step1_6 = SUB_EPI16(step3_7, step2_6);
943           step1_7 = ADD_EPI16(step3_7, step2_6);
944 #if DCT_HIGH_BIT_DEPTH
945           overflow =
946               check_epi16_overflow_x8(&step1_0, &step1_1, &step1_2, &step1_3,
947                                       &step1_4, &step1_5, &step1_6, &step1_7);
948           if (overflow) {
949             vpx_highbd_fdct16x16_c(input, output, stride);
950             return;
951           }
952 #endif  // DCT_HIGH_BIT_DEPTH
953         }
954         // step 6
955         {
956           const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
957           const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
958           const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
959           const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
960           res01 = mult_round_shift(&t0, &t1, &k__cospi_p30_p02,
961                                    &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
962           res09 = mult_round_shift(&t2, &t3, &k__cospi_p14_p18,
963                                    &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
964           res15 = mult_round_shift(&t0, &t1, &k__cospi_m02_p30,
965                                    &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
966           res07 = mult_round_shift(&t2, &t3, &k__cospi_m18_p14,
967                                    &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
968 #if DCT_HIGH_BIT_DEPTH
969           overflow = check_epi16_overflow_x4(&res01, &res09, &res15, &res07);
970           if (overflow) {
971             vpx_highbd_fdct16x16_c(input, output, stride);
972             return;
973           }
974 #endif  // DCT_HIGH_BIT_DEPTH
975         }
976         {
977           const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
978           const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
979           const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
980           const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
981           res05 = mult_round_shift(&t0, &t1, &k__cospi_p22_p10,
982                                    &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
983           res13 = mult_round_shift(&t2, &t3, &k__cospi_p06_p26,
984                                    &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
985           res11 = mult_round_shift(&t0, &t1, &k__cospi_m10_p22,
986                                    &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
987           res03 = mult_round_shift(&t2, &t3, &k__cospi_m26_p06,
988                                    &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
989 #if DCT_HIGH_BIT_DEPTH
990           overflow = check_epi16_overflow_x4(&res05, &res13, &res11, &res03);
991           if (overflow) {
992             vpx_highbd_fdct16x16_c(input, output, stride);
993             return;
994           }
995 #endif  // DCT_HIGH_BIT_DEPTH
996         }
997       }
998       // Transpose the results, do it as two 8x8 transposes.
999       transpose_and_output8x8(&res00, &res01, &res02, &res03, &res04, &res05,
1000                               &res06, &res07, pass, out0, out1);
1001       transpose_and_output8x8(&res08, &res09, &res10, &res11, &res12, &res13,
1002                               &res14, &res15, pass, out0 + 8, out1 + 8);
1003       if (pass == 0) {
1004         out0 += 8 * 16;
1005       } else {
1006         out1 += 8 * 16;
1007       }
1008     }
1009     // Setup in/out for next pass.
1010     in = intermediate;
1011   }
1012 }
1013 
1014 #undef ADD_EPI16
1015 #undef SUB_EPI16
1016