1 /*
2  * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 
12 /*-**************************************
13 *  Tuning parameters
14 ****************************************/
15 #define MINRATIO 4   /* minimum nb of apparition to be selected in dictionary */
16 #define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
17 #define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO)
18 
19 
20 /*-**************************************
21 *  Compiler Options
22 ****************************************/
23 /* Unix Large Files support (>4GB) */
24 #define _FILE_OFFSET_BITS 64
25 #if (defined(__sun__) && (!defined(__LP64__)))   /* Sun Solaris 32-bits requires specific definitions */
26 #  define _LARGEFILE_SOURCE
27 #elif ! defined(__LP64__)                        /* No point defining Large file for 64 bit */
28 #  define _LARGEFILE64_SOURCE
29 #endif
30 
31 
32 /*-*************************************
33 *  Dependencies
34 ***************************************/
35 #include <stdlib.h>        /* malloc, free */
36 #include <string.h>        /* memset */
37 #include <stdio.h>         /* fprintf, fopen, ftello64 */
38 #include <time.h>          /* clock */
39 
40 #include "../common/mem.h"           /* read */
41 #include "../common/fse.h"           /* FSE_normalizeCount, FSE_writeNCount */
42 #define HUF_STATIC_LINKING_ONLY
43 #include "../common/huf.h"           /* HUF_buildCTable, HUF_writeCTable */
44 #include "../common/zstd_internal.h" /* includes zstd.h */
45 #include "../common/xxhash.h"        /* XXH64 */
46 #include "divsufsort.h"
47 #ifndef ZDICT_STATIC_LINKING_ONLY
48 #  define ZDICT_STATIC_LINKING_ONLY
49 #endif
50 #include "zdict.h"
51 #include "../compress/zstd_compress_internal.h" /* ZSTD_loadCEntropy() */
52 
53 
54 /*-*************************************
55 *  Constants
56 ***************************************/
57 #define KB *(1 <<10)
58 #define MB *(1 <<20)
59 #define GB *(1U<<30)
60 
61 #define DICTLISTSIZE_DEFAULT 10000
62 
63 #define NOISELENGTH 32
64 
65 static const U32 g_selectivity_default = 9;
66 
67 
68 /*-*************************************
69 *  Console display
70 ***************************************/
71 #undef  DISPLAY
72 #define DISPLAY(...)         { fprintf(stderr, __VA_ARGS__); fflush( stderr ); }
73 #undef  DISPLAYLEVEL
74 #define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); }    /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
75 
ZDICT_clockSpan(clock_t nPrevious)76 static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }
77 
ZDICT_printHex(const void * ptr,size_t length)78 static void ZDICT_printHex(const void* ptr, size_t length)
79 {
80     const BYTE* const b = (const BYTE*)ptr;
81     size_t u;
82     for (u=0; u<length; u++) {
83         BYTE c = b[u];
84         if (c<32 || c>126) c = '.';   /* non-printable char */
85         DISPLAY("%c", c);
86     }
87 }
88 
89 
90 /*-********************************************************
91 *  Helper functions
92 **********************************************************/
ZDICT_isError(size_t errorCode)93 unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
94 
ZDICT_getErrorName(size_t errorCode)95 const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
96 
ZDICT_getDictID(const void * dictBuffer,size_t dictSize)97 unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
98 {
99     if (dictSize < 8) return 0;
100     if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0;
101     return MEM_readLE32((const char*)dictBuffer + 4);
102 }
103 
ZDICT_getDictHeaderSize(const void * dictBuffer,size_t dictSize)104 size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize)
105 {
106     size_t headerSize;
107     if (dictSize <= 8 || MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return ERROR(dictionary_corrupted);
108 
109     {   ZSTD_compressedBlockState_t* bs = (ZSTD_compressedBlockState_t*)malloc(sizeof(ZSTD_compressedBlockState_t));
110         U32* wksp = (U32*)malloc(HUF_WORKSPACE_SIZE);
111         if (!bs || !wksp) {
112             headerSize = ERROR(memory_allocation);
113         } else {
114             ZSTD_reset_compressedBlockState(bs);
115             headerSize = ZSTD_loadCEntropy(bs, wksp, dictBuffer, dictSize);
116         }
117 
118         free(bs);
119         free(wksp);
120     }
121 
122     return headerSize;
123 }
124 
125 /*-********************************************************
126 *  Dictionary training functions
127 **********************************************************/
ZDICT_NbCommonBytes(size_t val)128 static unsigned ZDICT_NbCommonBytes (size_t val)
129 {
130     if (MEM_isLittleEndian()) {
131         if (MEM_64bits()) {
132 #       if defined(_MSC_VER) && defined(_WIN64)
133             unsigned long r = 0;
134             _BitScanForward64( &r, (U64)val );
135             return (unsigned)(r>>3);
136 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
137             return (__builtin_ctzll((U64)val) >> 3);
138 #       else
139             static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
140             return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
141 #       endif
142         } else { /* 32 bits */
143 #       if defined(_MSC_VER)
144             unsigned long r=0;
145             _BitScanForward( &r, (U32)val );
146             return (unsigned)(r>>3);
147 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
148             return (__builtin_ctz((U32)val) >> 3);
149 #       else
150             static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
151             return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
152 #       endif
153         }
154     } else {  /* Big Endian CPU */
155         if (MEM_64bits()) {
156 #       if defined(_MSC_VER) && defined(_WIN64)
157             unsigned long r = 0;
158             _BitScanReverse64( &r, val );
159             return (unsigned)(r>>3);
160 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
161             return (__builtin_clzll(val) >> 3);
162 #       else
163             unsigned r;
164             const unsigned n32 = sizeof(size_t)*4;   /* calculate this way due to compiler complaining in 32-bits mode */
165             if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
166             if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
167             r += (!val);
168             return r;
169 #       endif
170         } else { /* 32 bits */
171 #       if defined(_MSC_VER)
172             unsigned long r = 0;
173             _BitScanReverse( &r, (unsigned long)val );
174             return (unsigned)(r>>3);
175 #       elif defined(__GNUC__) && (__GNUC__ >= 3)
176             return (__builtin_clz((U32)val) >> 3);
177 #       else
178             unsigned r;
179             if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
180             r += (!val);
181             return r;
182 #       endif
183     }   }
184 }
185 
186 
187 /*! ZDICT_count() :
188     Count the nb of common bytes between 2 pointers.
189     Note : this function presumes end of buffer followed by noisy guard band.
190 */
ZDICT_count(const void * pIn,const void * pMatch)191 static size_t ZDICT_count(const void* pIn, const void* pMatch)
192 {
193     const char* const pStart = (const char*)pIn;
194     for (;;) {
195         size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
196         if (!diff) {
197             pIn = (const char*)pIn+sizeof(size_t);
198             pMatch = (const char*)pMatch+sizeof(size_t);
199             continue;
200         }
201         pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff);
202         return (size_t)((const char*)pIn - pStart);
203     }
204 }
205 
206 
207 typedef struct {
208     U32 pos;
209     U32 length;
210     U32 savings;
211 } dictItem;
212 
ZDICT_initDictItem(dictItem * d)213 static void ZDICT_initDictItem(dictItem* d)
214 {
215     d->pos = 1;
216     d->length = 0;
217     d->savings = (U32)(-1);
218 }
219 
220 
221 #define LLIMIT 64          /* heuristic determined experimentally */
222 #define MINMATCHLENGTH 7   /* heuristic determined experimentally */
ZDICT_analyzePos(BYTE * doneMarks,const int * suffix,U32 start,const void * buffer,U32 minRatio,U32 notificationLevel)223 static dictItem ZDICT_analyzePos(
224                        BYTE* doneMarks,
225                        const int* suffix, U32 start,
226                        const void* buffer, U32 minRatio, U32 notificationLevel)
227 {
228     U32 lengthList[LLIMIT] = {0};
229     U32 cumulLength[LLIMIT] = {0};
230     U32 savings[LLIMIT] = {0};
231     const BYTE* b = (const BYTE*)buffer;
232     size_t maxLength = LLIMIT;
233     size_t pos = suffix[start];
234     U32 end = start;
235     dictItem solution;
236 
237     /* init */
238     memset(&solution, 0, sizeof(solution));
239     doneMarks[pos] = 1;
240 
241     /* trivial repetition cases */
242     if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
243        ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
244        ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
245         /* skip and mark segment */
246         U16 const pattern16 = MEM_read16(b+pos+4);
247         U32 u, patternEnd = 6;
248         while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ;
249         if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++;
250         for (u=1; u<patternEnd; u++)
251             doneMarks[pos+u] = 1;
252         return solution;
253     }
254 
255     /* look forward */
256     {   size_t length;
257         do {
258             end++;
259             length = ZDICT_count(b + pos, b + suffix[end]);
260         } while (length >= MINMATCHLENGTH);
261     }
262 
263     /* look backward */
264     {   size_t length;
265         do {
266             length = ZDICT_count(b + pos, b + *(suffix+start-1));
267             if (length >=MINMATCHLENGTH) start--;
268         } while(length >= MINMATCHLENGTH);
269     }
270 
271     /* exit if not found a minimum nb of repetitions */
272     if (end-start < minRatio) {
273         U32 idx;
274         for(idx=start; idx<end; idx++)
275             doneMarks[suffix[idx]] = 1;
276         return solution;
277     }
278 
279     {   int i;
280         U32 mml;
281         U32 refinedStart = start;
282         U32 refinedEnd = end;
283 
284         DISPLAYLEVEL(4, "\n");
285         DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u  ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos);
286         DISPLAYLEVEL(4, "\n");
287 
288         for (mml = MINMATCHLENGTH ; ; mml++) {
289             BYTE currentChar = 0;
290             U32 currentCount = 0;
291             U32 currentID = refinedStart;
292             U32 id;
293             U32 selectedCount = 0;
294             U32 selectedID = currentID;
295             for (id =refinedStart; id < refinedEnd; id++) {
296                 if (b[suffix[id] + mml] != currentChar) {
297                     if (currentCount > selectedCount) {
298                         selectedCount = currentCount;
299                         selectedID = currentID;
300                     }
301                     currentID = id;
302                     currentChar = b[ suffix[id] + mml];
303                     currentCount = 0;
304                 }
305                 currentCount ++;
306             }
307             if (currentCount > selectedCount) {  /* for last */
308                 selectedCount = currentCount;
309                 selectedID = currentID;
310             }
311 
312             if (selectedCount < minRatio)
313                 break;
314             refinedStart = selectedID;
315             refinedEnd = refinedStart + selectedCount;
316         }
317 
318         /* evaluate gain based on new dict */
319         start = refinedStart;
320         pos = suffix[refinedStart];
321         end = start;
322         memset(lengthList, 0, sizeof(lengthList));
323 
324         /* look forward */
325         {   size_t length;
326             do {
327                 end++;
328                 length = ZDICT_count(b + pos, b + suffix[end]);
329                 if (length >= LLIMIT) length = LLIMIT-1;
330                 lengthList[length]++;
331             } while (length >=MINMATCHLENGTH);
332         }
333 
334         /* look backward */
335         {   size_t length = MINMATCHLENGTH;
336             while ((length >= MINMATCHLENGTH) & (start > 0)) {
337                 length = ZDICT_count(b + pos, b + suffix[start - 1]);
338                 if (length >= LLIMIT) length = LLIMIT - 1;
339                 lengthList[length]++;
340                 if (length >= MINMATCHLENGTH) start--;
341             }
342         }
343 
344         /* largest useful length */
345         memset(cumulLength, 0, sizeof(cumulLength));
346         cumulLength[maxLength-1] = lengthList[maxLength-1];
347         for (i=(int)(maxLength-2); i>=0; i--)
348             cumulLength[i] = cumulLength[i+1] + lengthList[i];
349 
350         for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
351         maxLength = i;
352 
353         /* reduce maxLength in case of final into repetitive data */
354         {   U32 l = (U32)maxLength;
355             BYTE const c = b[pos + maxLength-1];
356             while (b[pos+l-2]==c) l--;
357             maxLength = l;
358         }
359         if (maxLength < MINMATCHLENGTH) return solution;   /* skip : no long-enough solution */
360 
361         /* calculate savings */
362         savings[5] = 0;
363         for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
364             savings[i] = savings[i-1] + (lengthList[i] * (i-3));
365 
366         DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f)  \n",
367                      (unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / maxLength);
368 
369         solution.pos = (U32)pos;
370         solution.length = (U32)maxLength;
371         solution.savings = savings[maxLength];
372 
373         /* mark positions done */
374         {   U32 id;
375             for (id=start; id<end; id++) {
376                 U32 p, pEnd, length;
377                 U32 const testedPos = suffix[id];
378                 if (testedPos == pos)
379                     length = solution.length;
380                 else {
381                     length = (U32)ZDICT_count(b+pos, b+testedPos);
382                     if (length > solution.length) length = solution.length;
383                 }
384                 pEnd = (U32)(testedPos + length);
385                 for (p=testedPos; p<pEnd; p++)
386                     doneMarks[p] = 1;
387     }   }   }
388 
389     return solution;
390 }
391 
392 
isIncluded(const void * in,const void * container,size_t length)393 static int isIncluded(const void* in, const void* container, size_t length)
394 {
395     const char* const ip = (const char*) in;
396     const char* const into = (const char*) container;
397     size_t u;
398 
399     for (u=0; u<length; u++) {  /* works because end of buffer is a noisy guard band */
400         if (ip[u] != into[u]) break;
401     }
402 
403     return u==length;
404 }
405 
406 /*! ZDICT_tryMerge() :
407     check if dictItem can be merged, do it if possible
408     @return : id of destination elt, 0 if not merged
409 */
ZDICT_tryMerge(dictItem * table,dictItem elt,U32 eltNbToSkip,const void * buffer)410 static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer)
411 {
412     const U32 tableSize = table->pos;
413     const U32 eltEnd = elt.pos + elt.length;
414     const char* const buf = (const char*) buffer;
415 
416     /* tail overlap */
417     U32 u; for (u=1; u<tableSize; u++) {
418         if (u==eltNbToSkip) continue;
419         if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) {  /* overlap, existing > new */
420             /* append */
421             U32 const addedLength = table[u].pos - elt.pos;
422             table[u].length += addedLength;
423             table[u].pos = elt.pos;
424             table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
425             table[u].savings += elt.length / 8;    /* rough approx bonus */
426             elt = table[u];
427             /* sort : improve rank */
428             while ((u>1) && (table[u-1].savings < elt.savings))
429             table[u] = table[u-1], u--;
430             table[u] = elt;
431             return u;
432     }   }
433 
434     /* front overlap */
435     for (u=1; u<tableSize; u++) {
436         if (u==eltNbToSkip) continue;
437 
438         if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) {  /* overlap, existing < new */
439             /* append */
440             int const addedLength = (int)eltEnd - (table[u].pos + table[u].length);
441             table[u].savings += elt.length / 8;    /* rough approx bonus */
442             if (addedLength > 0) {   /* otherwise, elt fully included into existing */
443                 table[u].length += addedLength;
444                 table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
445             }
446             /* sort : improve rank */
447             elt = table[u];
448             while ((u>1) && (table[u-1].savings < elt.savings))
449                 table[u] = table[u-1], u--;
450             table[u] = elt;
451             return u;
452         }
453 
454         if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) {
455             if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) {
456                 size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 );
457                 table[u].pos = elt.pos;
458                 table[u].savings += (U32)(elt.savings * addedLength / elt.length);
459                 table[u].length = MIN(elt.length, table[u].length + 1);
460                 return u;
461             }
462         }
463     }
464 
465     return 0;
466 }
467 
468 
ZDICT_removeDictItem(dictItem * table,U32 id)469 static void ZDICT_removeDictItem(dictItem* table, U32 id)
470 {
471     /* convention : table[0].pos stores nb of elts */
472     U32 const max = table[0].pos;
473     U32 u;
474     if (!id) return;   /* protection, should never happen */
475     for (u=id; u<max-1; u++)
476         table[u] = table[u+1];
477     table->pos--;
478 }
479 
480 
ZDICT_insertDictItem(dictItem * table,U32 maxSize,dictItem elt,const void * buffer)481 static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer)
482 {
483     /* merge if possible */
484     U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer);
485     if (mergeId) {
486         U32 newMerge = 1;
487         while (newMerge) {
488             newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer);
489             if (newMerge) ZDICT_removeDictItem(table, mergeId);
490             mergeId = newMerge;
491         }
492         return;
493     }
494 
495     /* insert */
496     {   U32 current;
497         U32 nextElt = table->pos;
498         if (nextElt >= maxSize) nextElt = maxSize-1;
499         current = nextElt-1;
500         while (table[current].savings < elt.savings) {
501             table[current+1] = table[current];
502             current--;
503         }
504         table[current+1] = elt;
505         table->pos = nextElt+1;
506     }
507 }
508 
509 
ZDICT_dictSize(const dictItem * dictList)510 static U32 ZDICT_dictSize(const dictItem* dictList)
511 {
512     U32 u, dictSize = 0;
513     for (u=1; u<dictList[0].pos; u++)
514         dictSize += dictList[u].length;
515     return dictSize;
516 }
517 
518 
ZDICT_trainBuffer_legacy(dictItem * dictList,U32 dictListSize,const void * const buffer,size_t bufferSize,const size_t * fileSizes,unsigned nbFiles,unsigned minRatio,U32 notificationLevel)519 static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize,
520                             const void* const buffer, size_t bufferSize,   /* buffer must end with noisy guard band */
521                             const size_t* fileSizes, unsigned nbFiles,
522                             unsigned minRatio, U32 notificationLevel)
523 {
524     int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
525     int* const suffix = suffix0+1;
526     U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
527     BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks));   /* +16 for overflow security */
528     U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
529     size_t result = 0;
530     clock_t displayClock = 0;
531     clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;
532 
533 #   undef  DISPLAYUPDATE
534 #   define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \
535             if (ZDICT_clockSpan(displayClock) > refreshRate)  \
536             { displayClock = clock(); DISPLAY(__VA_ARGS__); \
537             if (notificationLevel>=4) fflush(stderr); } }
538 
539     /* init */
540     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
541     if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
542         result = ERROR(memory_allocation);
543         goto _cleanup;
544     }
545     if (minRatio < MINRATIO) minRatio = MINRATIO;
546     memset(doneMarks, 0, bufferSize+16);
547 
548     /* limit sample set size (divsufsort limitation)*/
549     if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20));
550     while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];
551 
552     /* sort */
553     DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20));
554     {   int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
555         if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
556     }
557     suffix[bufferSize] = (int)bufferSize;   /* leads into noise */
558     suffix0[0] = (int)bufferSize;           /* leads into noise */
559     /* build reverse suffix sort */
560     {   size_t pos;
561         for (pos=0; pos < bufferSize; pos++)
562             reverseSuffix[suffix[pos]] = (U32)pos;
563         /* note filePos tracks borders between samples.
564            It's not used at this stage, but planned to become useful in a later update */
565         filePos[0] = 0;
566         for (pos=1; pos<nbFiles; pos++)
567             filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
568     }
569 
570     DISPLAYLEVEL(2, "finding patterns ... \n");
571     DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
572 
573     {   U32 cursor; for (cursor=0; cursor < bufferSize; ) {
574             dictItem solution;
575             if (doneMarks[cursor]) { cursor++; continue; }
576             solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
577             if (solution.length==0) { cursor++; continue; }
578             ZDICT_insertDictItem(dictList, dictListSize, solution, buffer);
579             cursor += solution.length;
580             DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
581     }   }
582 
583 _cleanup:
584     free(suffix0);
585     free(reverseSuffix);
586     free(doneMarks);
587     free(filePos);
588     return result;
589 }
590 
591 
ZDICT_fillNoise(void * buffer,size_t length)592 static void ZDICT_fillNoise(void* buffer, size_t length)
593 {
594     unsigned const prime1 = 2654435761U;
595     unsigned const prime2 = 2246822519U;
596     unsigned acc = prime1;
597     size_t p=0;
598     for (p=0; p<length; p++) {
599         acc *= prime2;
600         ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
601     }
602 }
603 
604 
605 typedef struct
606 {
607     ZSTD_CDict* dict;    /* dictionary */
608     ZSTD_CCtx* zc;     /* working context */
609     void* workPlace;   /* must be ZSTD_BLOCKSIZE_MAX allocated */
610 } EStats_ress_t;
611 
612 #define MAXREPOFFSET 1024
613 
ZDICT_countEStats(EStats_ress_t esr,const ZSTD_parameters * params,unsigned * countLit,unsigned * offsetcodeCount,unsigned * matchlengthCount,unsigned * litlengthCount,U32 * repOffsets,const void * src,size_t srcSize,U32 notificationLevel)614 static void ZDICT_countEStats(EStats_ress_t esr, const ZSTD_parameters* params,
615                               unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets,
616                               const void* src, size_t srcSize,
617                               U32 notificationLevel)
618 {
619     size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params->cParams.windowLog);
620     size_t cSize;
621 
622     if (srcSize > blockSizeMax) srcSize = blockSizeMax;   /* protection vs large samples */
623     {   size_t const errorCode = ZSTD_compressBegin_usingCDict(esr.zc, esr.dict);
624         if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; }
625 
626     }
627     cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize);
628     if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; }
629 
630     if (cSize) {  /* if == 0; block is not compressible */
631         const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc);
632 
633         /* literals stats */
634         {   const BYTE* bytePtr;
635             for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
636                 countLit[*bytePtr]++;
637         }
638 
639         /* seqStats */
640         {   U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
641             ZSTD_seqToCodes(seqStorePtr);
642 
643             {   const BYTE* codePtr = seqStorePtr->ofCode;
644                 U32 u;
645                 for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
646             }
647 
648             {   const BYTE* codePtr = seqStorePtr->mlCode;
649                 U32 u;
650                 for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
651             }
652 
653             {   const BYTE* codePtr = seqStorePtr->llCode;
654                 U32 u;
655                 for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
656             }
657 
658             if (nbSeq >= 2) { /* rep offsets */
659                 const seqDef* const seq = seqStorePtr->sequencesStart;
660                 U32 offset1 = seq[0].offset - 3;
661                 U32 offset2 = seq[1].offset - 3;
662                 if (offset1 >= MAXREPOFFSET) offset1 = 0;
663                 if (offset2 >= MAXREPOFFSET) offset2 = 0;
664                 repOffsets[offset1] += 3;
665                 repOffsets[offset2] += 1;
666     }   }   }
667 }
668 
ZDICT_totalSampleSize(const size_t * fileSizes,unsigned nbFiles)669 static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
670 {
671     size_t total=0;
672     unsigned u;
673     for (u=0; u<nbFiles; u++) total += fileSizes[u];
674     return total;
675 }
676 
677 typedef struct { U32 offset; U32 count; } offsetCount_t;
678 
ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1],U32 val,U32 count)679 static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
680 {
681     U32 u;
682     table[ZSTD_REP_NUM].offset = val;
683     table[ZSTD_REP_NUM].count = count;
684     for (u=ZSTD_REP_NUM; u>0; u--) {
685         offsetCount_t tmp;
686         if (table[u-1].count >= table[u].count) break;
687         tmp = table[u-1];
688         table[u-1] = table[u];
689         table[u] = tmp;
690     }
691 }
692 
693 /* ZDICT_flatLit() :
694  * rewrite `countLit` to contain a mostly flat but still compressible distribution of literals.
695  * necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode.
696  */
ZDICT_flatLit(unsigned * countLit)697 static void ZDICT_flatLit(unsigned* countLit)
698 {
699     int u;
700     for (u=1; u<256; u++) countLit[u] = 2;
701     countLit[0]   = 4;
702     countLit[253] = 1;
703     countLit[254] = 1;
704 }
705 
706 #define OFFCODE_MAX 30  /* only applicable to first block */
ZDICT_analyzeEntropy(void * dstBuffer,size_t maxDstSize,int compressionLevel,const void * srcBuffer,const size_t * fileSizes,unsigned nbFiles,const void * dictBuffer,size_t dictBufferSize,unsigned notificationLevel)707 static size_t ZDICT_analyzeEntropy(void*  dstBuffer, size_t maxDstSize,
708                                    int compressionLevel,
709                              const void*  srcBuffer, const size_t* fileSizes, unsigned nbFiles,
710                              const void* dictBuffer, size_t  dictBufferSize,
711                                    unsigned notificationLevel)
712 {
713     unsigned countLit[256];
714     HUF_CREATE_STATIC_CTABLE(hufTable, 255);
715     unsigned offcodeCount[OFFCODE_MAX+1];
716     short offcodeNCount[OFFCODE_MAX+1];
717     U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
718     unsigned matchLengthCount[MaxML+1];
719     short matchLengthNCount[MaxML+1];
720     unsigned litLengthCount[MaxLL+1];
721     short litLengthNCount[MaxLL+1];
722     U32 repOffset[MAXREPOFFSET];
723     offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
724     EStats_ress_t esr = { NULL, NULL, NULL };
725     ZSTD_parameters params;
726     U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
727     size_t pos = 0, errorCode;
728     size_t eSize = 0;
729     size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
730     size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
731     BYTE* dstPtr = (BYTE*)dstBuffer;
732 
733     /* init */
734     DEBUGLOG(4, "ZDICT_analyzeEntropy");
735     if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; }   /* too large dictionary */
736     for (u=0; u<256; u++) countLit[u] = 1;   /* any character must be described */
737     for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1;
738     for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1;
739     for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1;
740     memset(repOffset, 0, sizeof(repOffset));
741     repOffset[1] = repOffset[4] = repOffset[8] = 1;
742     memset(bestRepOffset, 0, sizeof(bestRepOffset));
743     if (compressionLevel==0) compressionLevel = ZSTD_CLEVEL_DEFAULT;
744     params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
745 
746     esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem);
747     esr.zc = ZSTD_createCCtx();
748     esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX);
749     if (!esr.dict || !esr.zc || !esr.workPlace) {
750         eSize = ERROR(memory_allocation);
751         DISPLAYLEVEL(1, "Not enough memory \n");
752         goto _cleanup;
753     }
754 
755     /* collect stats on all samples */
756     for (u=0; u<nbFiles; u++) {
757         ZDICT_countEStats(esr, &params,
758                           countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
759                          (const char*)srcBuffer + pos, fileSizes[u],
760                           notificationLevel);
761         pos += fileSizes[u];
762     }
763 
764     /* analyze, build stats, starting with literals */
765     {   size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
766         if (HUF_isError(maxNbBits)) {
767             eSize = maxNbBits;
768             DISPLAYLEVEL(1, " HUF_buildCTable error \n");
769             goto _cleanup;
770         }
771         if (maxNbBits==8) {  /* not compressible : will fail on HUF_writeCTable() */
772             DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n");
773             ZDICT_flatLit(countLit);  /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */
774             maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
775             assert(maxNbBits==9);
776         }
777         huffLog = (U32)maxNbBits;
778     }
779 
780     /* looking for most common first offsets */
781     {   U32 offset;
782         for (offset=1; offset<MAXREPOFFSET; offset++)
783             ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
784     }
785     /* note : the result of this phase should be used to better appreciate the impact on statistics */
786 
787     total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
788     errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax, /* useLowProbCount */ 1);
789     if (FSE_isError(errorCode)) {
790         eSize = errorCode;
791         DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
792         goto _cleanup;
793     }
794     Offlog = (U32)errorCode;
795 
796     total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
797     errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML, /* useLowProbCount */ 1);
798     if (FSE_isError(errorCode)) {
799         eSize = errorCode;
800         DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
801         goto _cleanup;
802     }
803     mlLog = (U32)errorCode;
804 
805     total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
806     errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL, /* useLowProbCount */ 1);
807     if (FSE_isError(errorCode)) {
808         eSize = errorCode;
809         DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
810         goto _cleanup;
811     }
812     llLog = (U32)errorCode;
813 
814     /* write result to buffer */
815     {   size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog);
816         if (HUF_isError(hhSize)) {
817             eSize = hhSize;
818             DISPLAYLEVEL(1, "HUF_writeCTable error \n");
819             goto _cleanup;
820         }
821         dstPtr += hhSize;
822         maxDstSize -= hhSize;
823         eSize += hhSize;
824     }
825 
826     {   size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
827         if (FSE_isError(ohSize)) {
828             eSize = ohSize;
829             DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
830             goto _cleanup;
831         }
832         dstPtr += ohSize;
833         maxDstSize -= ohSize;
834         eSize += ohSize;
835     }
836 
837     {   size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
838         if (FSE_isError(mhSize)) {
839             eSize = mhSize;
840             DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
841             goto _cleanup;
842         }
843         dstPtr += mhSize;
844         maxDstSize -= mhSize;
845         eSize += mhSize;
846     }
847 
848     {   size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
849         if (FSE_isError(lhSize)) {
850             eSize = lhSize;
851             DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
852             goto _cleanup;
853         }
854         dstPtr += lhSize;
855         maxDstSize -= lhSize;
856         eSize += lhSize;
857     }
858 
859     if (maxDstSize<12) {
860         eSize = ERROR(dstSize_tooSmall);
861         DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
862         goto _cleanup;
863     }
864 # if 0
865     MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
866     MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
867     MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
868 #else
869     /* at this stage, we don't use the result of "most common first offset",
870        as the impact of statistics is not properly evaluated */
871     MEM_writeLE32(dstPtr+0, repStartValue[0]);
872     MEM_writeLE32(dstPtr+4, repStartValue[1]);
873     MEM_writeLE32(dstPtr+8, repStartValue[2]);
874 #endif
875     eSize += 12;
876 
877 _cleanup:
878     ZSTD_freeCDict(esr.dict);
879     ZSTD_freeCCtx(esr.zc);
880     free(esr.workPlace);
881 
882     return eSize;
883 }
884 
885 
886 
ZDICT_finalizeDictionary(void * dictBuffer,size_t dictBufferCapacity,const void * customDictContent,size_t dictContentSize,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples,ZDICT_params_t params)887 size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
888                           const void* customDictContent, size_t dictContentSize,
889                           const void* samplesBuffer, const size_t* samplesSizes,
890                           unsigned nbSamples, ZDICT_params_t params)
891 {
892     size_t hSize;
893 #define HBUFFSIZE 256   /* should prove large enough for all entropy headers */
894     BYTE header[HBUFFSIZE];
895     int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
896     U32 const notificationLevel = params.notificationLevel;
897 
898     /* check conditions */
899     DEBUGLOG(4, "ZDICT_finalizeDictionary");
900     if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall);
901     if (dictContentSize < ZDICT_CONTENTSIZE_MIN) return ERROR(srcSize_wrong);
902     if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall);
903 
904     /* dictionary header */
905     MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY);
906     {   U64 const randomID = XXH64(customDictContent, dictContentSize, 0);
907         U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
908         U32 const dictID = params.dictID ? params.dictID : compliantID;
909         MEM_writeLE32(header+4, dictID);
910     }
911     hSize = 8;
912 
913     /* entropy tables */
914     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
915     DISPLAYLEVEL(2, "statistics ... \n");
916     {   size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize,
917                                   compressionLevel,
918                                   samplesBuffer, samplesSizes, nbSamples,
919                                   customDictContent, dictContentSize,
920                                   notificationLevel);
921         if (ZDICT_isError(eSize)) return eSize;
922         hSize += eSize;
923     }
924 
925     /* copy elements in final buffer ; note : src and dst buffer can overlap */
926     if (hSize + dictContentSize > dictBufferCapacity) dictContentSize = dictBufferCapacity - hSize;
927     {   size_t const dictSize = hSize + dictContentSize;
928         char* dictEnd = (char*)dictBuffer + dictSize;
929         memmove(dictEnd - dictContentSize, customDictContent, dictContentSize);
930         memcpy(dictBuffer, header, hSize);
931         return dictSize;
932     }
933 }
934 
935 
ZDICT_addEntropyTablesFromBuffer_advanced(void * dictBuffer,size_t dictContentSize,size_t dictBufferCapacity,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples,ZDICT_params_t params)936 static size_t ZDICT_addEntropyTablesFromBuffer_advanced(
937         void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
938         const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
939         ZDICT_params_t params)
940 {
941     int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
942     U32 const notificationLevel = params.notificationLevel;
943     size_t hSize = 8;
944 
945     /* calculate entropy tables */
946     DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
947     DISPLAYLEVEL(2, "statistics ... \n");
948     {   size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
949                                   compressionLevel,
950                                   samplesBuffer, samplesSizes, nbSamples,
951                                   (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
952                                   notificationLevel);
953         if (ZDICT_isError(eSize)) return eSize;
954         hSize += eSize;
955     }
956 
957     /* add dictionary header (after entropy tables) */
958     MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY);
959     {   U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
960         U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
961         U32 const dictID = params.dictID ? params.dictID : compliantID;
962         MEM_writeLE32((char*)dictBuffer+4, dictID);
963     }
964 
965     if (hSize + dictContentSize < dictBufferCapacity)
966         memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
967     return MIN(dictBufferCapacity, hSize+dictContentSize);
968 }
969 
970 /* Hidden declaration for dbio.c */
971 size_t ZDICT_trainFromBuffer_unsafe_legacy(
972                             void* dictBuffer, size_t maxDictSize,
973                             const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
974                             ZDICT_legacy_params_t params);
975 /*! ZDICT_trainFromBuffer_unsafe_legacy() :
976 *   Warning : `samplesBuffer` must be followed by noisy guard band.
977 *   @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
978 */
ZDICT_trainFromBuffer_unsafe_legacy(void * dictBuffer,size_t maxDictSize,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples,ZDICT_legacy_params_t params)979 size_t ZDICT_trainFromBuffer_unsafe_legacy(
980                             void* dictBuffer, size_t maxDictSize,
981                             const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
982                             ZDICT_legacy_params_t params)
983 {
984     U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
985     dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
986     unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
987     unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
988     size_t const targetDictSize = maxDictSize;
989     size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
990     size_t dictSize = 0;
991     U32 const notificationLevel = params.zParams.notificationLevel;
992 
993     /* checks */
994     if (!dictList) return ERROR(memory_allocation);
995     if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); }   /* requested dictionary size is too small */
996     if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); }   /* not enough source to create dictionary */
997 
998     /* init */
999     ZDICT_initDictItem(dictList);
1000 
1001     /* build dictionary */
1002     ZDICT_trainBuffer_legacy(dictList, dictListSize,
1003                        samplesBuffer, samplesBuffSize,
1004                        samplesSizes, nbSamples,
1005                        minRep, notificationLevel);
1006 
1007     /* display best matches */
1008     if (params.zParams.notificationLevel>= 3) {
1009         unsigned const nb = MIN(25, dictList[0].pos);
1010         unsigned const dictContentSize = ZDICT_dictSize(dictList);
1011         unsigned u;
1012         DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize);
1013         DISPLAYLEVEL(3, "list %u best segments \n", nb-1);
1014         for (u=1; u<nb; u++) {
1015             unsigned const pos = dictList[u].pos;
1016             unsigned const length = dictList[u].length;
1017             U32 const printedLength = MIN(40, length);
1018             if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) {
1019                 free(dictList);
1020                 return ERROR(GENERIC);   /* should never happen */
1021             }
1022             DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
1023                          u, length, pos, (unsigned)dictList[u].savings);
1024             ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
1025             DISPLAYLEVEL(3, "| \n");
1026     }   }
1027 
1028 
1029     /* create dictionary */
1030     {   unsigned dictContentSize = ZDICT_dictSize(dictList);
1031         if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); }   /* dictionary content too small */
1032         if (dictContentSize < targetDictSize/4) {
1033             DISPLAYLEVEL(2, "!  warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize);
1034             if (samplesBuffSize < 10 * targetDictSize)
1035                 DISPLAYLEVEL(2, "!  consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20));
1036             if (minRep > MINRATIO) {
1037                 DISPLAYLEVEL(2, "!  consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
1038                 DISPLAYLEVEL(2, "!  note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
1039             }
1040         }
1041 
1042         if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
1043             unsigned proposedSelectivity = selectivity-1;
1044             while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
1045             DISPLAYLEVEL(2, "!  note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize);
1046             DISPLAYLEVEL(2, "!  consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
1047             DISPLAYLEVEL(2, "!  always test dictionary efficiency on real samples \n");
1048         }
1049 
1050         /* limit dictionary size */
1051         {   U32 const max = dictList->pos;   /* convention : nb of useful elts within dictList */
1052             U32 currentSize = 0;
1053             U32 n; for (n=1; n<max; n++) {
1054                 currentSize += dictList[n].length;
1055                 if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
1056             }
1057             dictList->pos = n;
1058             dictContentSize = currentSize;
1059         }
1060 
1061         /* build dict content */
1062         {   U32 u;
1063             BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
1064             for (u=1; u<dictList->pos; u++) {
1065                 U32 l = dictList[u].length;
1066                 ptr -= l;
1067                 if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); }   /* should not happen */
1068                 memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
1069         }   }
1070 
1071         dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
1072                                                              samplesBuffer, samplesSizes, nbSamples,
1073                                                              params.zParams);
1074     }
1075 
1076     /* clean up */
1077     free(dictList);
1078     return dictSize;
1079 }
1080 
1081 
1082 /* ZDICT_trainFromBuffer_legacy() :
1083  * issue : samplesBuffer need to be followed by a noisy guard band.
1084  * work around : duplicate the buffer, and add the noise */
ZDICT_trainFromBuffer_legacy(void * dictBuffer,size_t dictBufferCapacity,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples,ZDICT_legacy_params_t params)1085 size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity,
1086                               const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
1087                               ZDICT_legacy_params_t params)
1088 {
1089     size_t result;
1090     void* newBuff;
1091     size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
1092     if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0;   /* not enough content => no dictionary */
1093 
1094     newBuff = malloc(sBuffSize + NOISELENGTH);
1095     if (!newBuff) return ERROR(memory_allocation);
1096 
1097     memcpy(newBuff, samplesBuffer, sBuffSize);
1098     ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH);   /* guard band, for end of buffer condition */
1099 
1100     result =
1101         ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff,
1102                                             samplesSizes, nbSamples, params);
1103     free(newBuff);
1104     return result;
1105 }
1106 
1107 
ZDICT_trainFromBuffer(void * dictBuffer,size_t dictBufferCapacity,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples)1108 size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
1109                              const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1110 {
1111     ZDICT_fastCover_params_t params;
1112     DEBUGLOG(3, "ZDICT_trainFromBuffer");
1113     memset(&params, 0, sizeof(params));
1114     params.d = 8;
1115     params.steps = 4;
1116     /* Use default level since no compression level information is available */
1117     params.zParams.compressionLevel = ZSTD_CLEVEL_DEFAULT;
1118 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1)
1119     params.zParams.notificationLevel = DEBUGLEVEL;
1120 #endif
1121     return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity,
1122                                                samplesBuffer, samplesSizes, nbSamples,
1123                                                &params);
1124 }
1125 
ZDICT_addEntropyTablesFromBuffer(void * dictBuffer,size_t dictContentSize,size_t dictBufferCapacity,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples)1126 size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
1127                                   const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1128 {
1129     ZDICT_params_t params;
1130     memset(&params, 0, sizeof(params));
1131     return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
1132                                                      samplesBuffer, samplesSizes, nbSamples,
1133                                                      params);
1134 }
1135