1 /*
2 * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11 /*-*************************************
12 * Dependencies
13 ***************************************/
14 #include "zstd_compress_sequences.h"
15
16 /**
17 * -log2(x / 256) lookup table for x in [0, 256).
18 * If x == 0: Return 0
19 * Else: Return floor(-log2(x / 256) * 256)
20 */
21 static unsigned const kInverseProbabilityLog256[256] = {
22 0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
23 1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
24 874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
25 724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
26 618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
27 535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
28 468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
29 411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
30 362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
31 318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
32 279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
33 244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
34 212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
35 182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
36 155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
37 130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
38 106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
39 83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
40 62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
41 42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
42 23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
43 5, 4, 2, 1,
44 };
45
ZSTD_getFSEMaxSymbolValue(FSE_CTable const * ctable)46 static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
47 void const* ptr = ctable;
48 U16 const* u16ptr = (U16 const*)ptr;
49 U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
50 return maxSymbolValue;
51 }
52
53 /**
54 * Returns true if we should use ncount=-1 else we should
55 * use ncount=1 for low probability symbols instead.
56 */
ZSTD_useLowProbCount(size_t const nbSeq)57 static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
58 {
59 /* Heuristic: This should cover most blocks <= 16K and
60 * start to fade out after 16K to about 32K depending on
61 * comprssibility.
62 */
63 return nbSeq >= 2048;
64 }
65
66 /**
67 * Returns the cost in bytes of encoding the normalized count header.
68 * Returns an error if any of the helper functions return an error.
69 */
ZSTD_NCountCost(unsigned const * count,unsigned const max,size_t const nbSeq,unsigned const FSELog)70 static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
71 size_t const nbSeq, unsigned const FSELog)
72 {
73 BYTE wksp[FSE_NCOUNTBOUND];
74 S16 norm[MaxSeq + 1];
75 const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
76 FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
77 return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
78 }
79
80 /**
81 * Returns the cost in bits of encoding the distribution described by count
82 * using the entropy bound.
83 */
ZSTD_entropyCost(unsigned const * count,unsigned const max,size_t const total)84 static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
85 {
86 unsigned cost = 0;
87 unsigned s;
88 for (s = 0; s <= max; ++s) {
89 unsigned norm = (unsigned)((256 * count[s]) / total);
90 if (count[s] != 0 && norm == 0)
91 norm = 1;
92 assert(count[s] < total);
93 cost += count[s] * kInverseProbabilityLog256[norm];
94 }
95 return cost >> 8;
96 }
97
98 /**
99 * Returns the cost in bits of encoding the distribution in count using ctable.
100 * Returns an error if ctable cannot represent all the symbols in count.
101 */
ZSTD_fseBitCost(FSE_CTable const * ctable,unsigned const * count,unsigned const max)102 size_t ZSTD_fseBitCost(
103 FSE_CTable const* ctable,
104 unsigned const* count,
105 unsigned const max)
106 {
107 unsigned const kAccuracyLog = 8;
108 size_t cost = 0;
109 unsigned s;
110 FSE_CState_t cstate;
111 FSE_initCState(&cstate, ctable);
112 if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
113 DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
114 ZSTD_getFSEMaxSymbolValue(ctable), max);
115 return ERROR(GENERIC);
116 }
117 for (s = 0; s <= max; ++s) {
118 unsigned const tableLog = cstate.stateLog;
119 unsigned const badCost = (tableLog + 1) << kAccuracyLog;
120 unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
121 if (count[s] == 0)
122 continue;
123 if (bitCost >= badCost) {
124 DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
125 return ERROR(GENERIC);
126 }
127 cost += (size_t)count[s] * bitCost;
128 }
129 return cost >> kAccuracyLog;
130 }
131
132 /**
133 * Returns the cost in bits of encoding the distribution in count using the
134 * table described by norm. The max symbol support by norm is assumed >= max.
135 * norm must be valid for every symbol with non-zero probability in count.
136 */
ZSTD_crossEntropyCost(short const * norm,unsigned accuracyLog,unsigned const * count,unsigned const max)137 size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
138 unsigned const* count, unsigned const max)
139 {
140 unsigned const shift = 8 - accuracyLog;
141 size_t cost = 0;
142 unsigned s;
143 assert(accuracyLog <= 8);
144 for (s = 0; s <= max; ++s) {
145 unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
146 unsigned const norm256 = normAcc << shift;
147 assert(norm256 > 0);
148 assert(norm256 < 256);
149 cost += count[s] * kInverseProbabilityLog256[norm256];
150 }
151 return cost >> 8;
152 }
153
154 symbolEncodingType_e
ZSTD_selectEncodingType(FSE_repeat * repeatMode,unsigned const * count,unsigned const max,size_t const mostFrequent,size_t nbSeq,unsigned const FSELog,FSE_CTable const * prevCTable,short const * defaultNorm,U32 defaultNormLog,ZSTD_defaultPolicy_e const isDefaultAllowed,ZSTD_strategy const strategy)155 ZSTD_selectEncodingType(
156 FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
157 size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
158 FSE_CTable const* prevCTable,
159 short const* defaultNorm, U32 defaultNormLog,
160 ZSTD_defaultPolicy_e const isDefaultAllowed,
161 ZSTD_strategy const strategy)
162 {
163 ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
164 if (mostFrequent == nbSeq) {
165 *repeatMode = FSE_repeat_none;
166 if (isDefaultAllowed && nbSeq <= 2) {
167 /* Prefer set_basic over set_rle when there are 2 or less symbols,
168 * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
169 * If basic encoding isn't possible, always choose RLE.
170 */
171 DEBUGLOG(5, "Selected set_basic");
172 return set_basic;
173 }
174 DEBUGLOG(5, "Selected set_rle");
175 return set_rle;
176 }
177 if (strategy < ZSTD_lazy) {
178 if (isDefaultAllowed) {
179 size_t const staticFse_nbSeq_max = 1000;
180 size_t const mult = 10 - strategy;
181 size_t const baseLog = 3;
182 size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
183 assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
184 assert(mult <= 9 && mult >= 7);
185 if ( (*repeatMode == FSE_repeat_valid)
186 && (nbSeq < staticFse_nbSeq_max) ) {
187 DEBUGLOG(5, "Selected set_repeat");
188 return set_repeat;
189 }
190 if ( (nbSeq < dynamicFse_nbSeq_min)
191 || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
192 DEBUGLOG(5, "Selected set_basic");
193 /* The format allows default tables to be repeated, but it isn't useful.
194 * When using simple heuristics to select encoding type, we don't want
195 * to confuse these tables with dictionaries. When running more careful
196 * analysis, we don't need to waste time checking both repeating tables
197 * and default tables.
198 */
199 *repeatMode = FSE_repeat_none;
200 return set_basic;
201 }
202 }
203 } else {
204 size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
205 size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
206 size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
207 size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
208
209 if (isDefaultAllowed) {
210 assert(!ZSTD_isError(basicCost));
211 assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
212 }
213 assert(!ZSTD_isError(NCountCost));
214 assert(compressedCost < ERROR(maxCode));
215 DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
216 (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
217 if (basicCost <= repeatCost && basicCost <= compressedCost) {
218 DEBUGLOG(5, "Selected set_basic");
219 assert(isDefaultAllowed);
220 *repeatMode = FSE_repeat_none;
221 return set_basic;
222 }
223 if (repeatCost <= compressedCost) {
224 DEBUGLOG(5, "Selected set_repeat");
225 assert(!ZSTD_isError(repeatCost));
226 return set_repeat;
227 }
228 assert(compressedCost < basicCost && compressedCost < repeatCost);
229 }
230 DEBUGLOG(5, "Selected set_compressed");
231 *repeatMode = FSE_repeat_check;
232 return set_compressed;
233 }
234
235 size_t
ZSTD_buildCTable(void * dst,size_t dstCapacity,FSE_CTable * nextCTable,U32 FSELog,symbolEncodingType_e type,unsigned * count,U32 max,const BYTE * codeTable,size_t nbSeq,const S16 * defaultNorm,U32 defaultNormLog,U32 defaultMax,const FSE_CTable * prevCTable,size_t prevCTableSize,void * entropyWorkspace,size_t entropyWorkspaceSize)236 ZSTD_buildCTable(void* dst, size_t dstCapacity,
237 FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
238 unsigned* count, U32 max,
239 const BYTE* codeTable, size_t nbSeq,
240 const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
241 const FSE_CTable* prevCTable, size_t prevCTableSize,
242 void* entropyWorkspace, size_t entropyWorkspaceSize)
243 {
244 BYTE* op = (BYTE*)dst;
245 const BYTE* const oend = op + dstCapacity;
246 DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
247
248 switch (type) {
249 case set_rle:
250 FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
251 RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
252 *op = codeTable[0];
253 return 1;
254 case set_repeat:
255 ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
256 return 0;
257 case set_basic:
258 FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), ""); /* note : could be pre-calculated */
259 return 0;
260 case set_compressed: {
261 S16 norm[MaxSeq + 1];
262 size_t nbSeq_1 = nbSeq;
263 const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
264 if (count[codeTable[nbSeq-1]] > 1) {
265 count[codeTable[nbSeq-1]]--;
266 nbSeq_1--;
267 }
268 assert(nbSeq_1 > 1);
269 assert(entropyWorkspaceSize >= FSE_BUILD_CTABLE_WORKSPACE_SIZE(MaxSeq, MaxFSELog));
270 FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "");
271 { size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
272 FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
273 FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, entropyWorkspace, entropyWorkspaceSize), "");
274 return NCountSize;
275 }
276 }
277 default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
278 }
279 }
280
281 FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets)282 ZSTD_encodeSequences_body(
283 void* dst, size_t dstCapacity,
284 FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
285 FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
286 FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
287 seqDef const* sequences, size_t nbSeq, int longOffsets)
288 {
289 BIT_CStream_t blockStream;
290 FSE_CState_t stateMatchLength;
291 FSE_CState_t stateOffsetBits;
292 FSE_CState_t stateLitLength;
293
294 RETURN_ERROR_IF(
295 ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
296 dstSize_tooSmall, "not enough space remaining");
297 DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
298 (int)(blockStream.endPtr - blockStream.startPtr),
299 (unsigned)dstCapacity);
300
301 /* first symbols */
302 FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
303 FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
304 FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
305 BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
306 if (MEM_32bits()) BIT_flushBits(&blockStream);
307 BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
308 if (MEM_32bits()) BIT_flushBits(&blockStream);
309 if (longOffsets) {
310 U32 const ofBits = ofCodeTable[nbSeq-1];
311 unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
312 if (extraBits) {
313 BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
314 BIT_flushBits(&blockStream);
315 }
316 BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
317 ofBits - extraBits);
318 } else {
319 BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
320 }
321 BIT_flushBits(&blockStream);
322
323 { size_t n;
324 for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
325 BYTE const llCode = llCodeTable[n];
326 BYTE const ofCode = ofCodeTable[n];
327 BYTE const mlCode = mlCodeTable[n];
328 U32 const llBits = LL_bits[llCode];
329 U32 const ofBits = ofCode;
330 U32 const mlBits = ML_bits[mlCode];
331 DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
332 (unsigned)sequences[n].litLength,
333 (unsigned)sequences[n].matchLength + MINMATCH,
334 (unsigned)sequences[n].offset);
335 /* 32b*/ /* 64b*/
336 /* (7)*/ /* (7)*/
337 FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
338 FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
339 if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
340 FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
341 if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
342 BIT_flushBits(&blockStream); /* (7)*/
343 BIT_addBits(&blockStream, sequences[n].litLength, llBits);
344 if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
345 BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
346 if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
347 if (longOffsets) {
348 unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
349 if (extraBits) {
350 BIT_addBits(&blockStream, sequences[n].offset, extraBits);
351 BIT_flushBits(&blockStream); /* (7)*/
352 }
353 BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
354 ofBits - extraBits); /* 31 */
355 } else {
356 BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
357 }
358 BIT_flushBits(&blockStream); /* (7)*/
359 DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
360 } }
361
362 DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
363 FSE_flushCState(&blockStream, &stateMatchLength);
364 DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
365 FSE_flushCState(&blockStream, &stateOffsetBits);
366 DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
367 FSE_flushCState(&blockStream, &stateLitLength);
368
369 { size_t const streamSize = BIT_closeCStream(&blockStream);
370 RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
371 return streamSize;
372 }
373 }
374
375 static size_t
ZSTD_encodeSequences_default(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets)376 ZSTD_encodeSequences_default(
377 void* dst, size_t dstCapacity,
378 FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
379 FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
380 FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
381 seqDef const* sequences, size_t nbSeq, int longOffsets)
382 {
383 return ZSTD_encodeSequences_body(dst, dstCapacity,
384 CTable_MatchLength, mlCodeTable,
385 CTable_OffsetBits, ofCodeTable,
386 CTable_LitLength, llCodeTable,
387 sequences, nbSeq, longOffsets);
388 }
389
390
391 #if DYNAMIC_BMI2
392
393 static TARGET_ATTRIBUTE("bmi2") size_t
ZSTD_encodeSequences_bmi2(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets)394 ZSTD_encodeSequences_bmi2(
395 void* dst, size_t dstCapacity,
396 FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
397 FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
398 FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
399 seqDef const* sequences, size_t nbSeq, int longOffsets)
400 {
401 return ZSTD_encodeSequences_body(dst, dstCapacity,
402 CTable_MatchLength, mlCodeTable,
403 CTable_OffsetBits, ofCodeTable,
404 CTable_LitLength, llCodeTable,
405 sequences, nbSeq, longOffsets);
406 }
407
408 #endif
409
ZSTD_encodeSequences(void * dst,size_t dstCapacity,FSE_CTable const * CTable_MatchLength,BYTE const * mlCodeTable,FSE_CTable const * CTable_OffsetBits,BYTE const * ofCodeTable,FSE_CTable const * CTable_LitLength,BYTE const * llCodeTable,seqDef const * sequences,size_t nbSeq,int longOffsets,int bmi2)410 size_t ZSTD_encodeSequences(
411 void* dst, size_t dstCapacity,
412 FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
413 FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
414 FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
415 seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
416 {
417 DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
418 #if DYNAMIC_BMI2
419 if (bmi2) {
420 return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
421 CTable_MatchLength, mlCodeTable,
422 CTable_OffsetBits, ofCodeTable,
423 CTable_LitLength, llCodeTable,
424 sequences, nbSeq, longOffsets);
425 }
426 #endif
427 (void)bmi2;
428 return ZSTD_encodeSequences_default(dst, dstCapacity,
429 CTable_MatchLength, mlCodeTable,
430 CTable_OffsetBits, ofCodeTable,
431 CTable_LitLength, llCodeTable,
432 sequences, nbSeq, longOffsets);
433 }
434