/external/tensorflow/tensorflow/python/distribute/ |
D | strategy_gather_test.py | 45 strategy=[ 62 strategy=[ 73 strategy): argument 74 distributed_values = strategy.experimental_distribute_values_from_function( 78 return strategy.gather(distributed_values, axis=axis) 84 value_on_replica for _ in range(strategy.num_replicas_in_sync) 89 def testGatherPerReplicaDense1D0Axis(self, strategy, pure_eager): argument 93 self._gather_same_shape_and_verify(single_value, axis, pure_eager, strategy) 95 def testGatherPerReplicaDense2D0Axis(self, strategy, pure_eager): argument 99 self._gather_same_shape_and_verify(single_value, axis, pure_eager, strategy) [all …]
|
D | strategy_common_test.py | 46 strategy=[ 53 def testCaptureReplicaId(self, strategy): argument 65 return strategy.run(f) 72 strategy=[ 79 def testBasic(self, strategy): argument 80 per_replica_value = strategy.experimental_distribute_values_from_function( 85 return strategy.reduce( 91 with strategy.scope(): 92 self.assertEqual(fn_eager().numpy(), 1.0 * strategy.num_replicas_in_sync) 93 self.assertEqual(fn_graph().numpy(), 1.0 * strategy.num_replicas_in_sync) [all …]
|
D | strategy_combinations_test.py | 43 strategy=strategy_combinations.two_replica_strategies, 45 def testTwoReplicaStrategy(self, strategy): argument 46 with strategy.scope(): 52 one_per_replica = strategy.run(one) 53 num_replicas = strategy.reduce( 59 strategy=strategy_combinations.four_replica_strategies, 61 def testFourReplicaStrategy(self, strategy): argument 62 with strategy.scope(): 68 one_per_replica = strategy.run(one) 69 num_replicas = strategy.reduce( [all …]
|
D | tpu_strategy_test.py | 84 strategy = tpu_lib.TPUStrategyV2(resolver) 85 strategy._enable_packed_variable_in_eager_mode = enable_packed_var 86 return strategy 172 strategy = get_tpu_strategy(enable_packed_var) 173 with strategy.scope(): 185 strategy = get_tpu_strategy(enable_packed_var) 186 with strategy.scope(): 203 strategy = tpu_lib.TPUStrategyV2( 205 strategy._enable_packed_variable_in_eager_mode = enable_packed_var 218 outputs = strategy.experimental_local_results( [all …]
|
D | strategy_test_lib.py | 341 self, strategy, input_fn, expected_values, ignore_order=False): argument 344 iterable = strategy.distribute_datasets_from_function(input_fn) 350 list(strategy.experimental_local_results(next(iterator)))) 354 self.evaluate(strategy.experimental_local_results(next(iterator))) 361 list(strategy.experimental_local_results(next(iterator)))) 365 self._test_input_fn_iterator(iterator, strategy.extended.worker_devices, 410 def _test_global_step_update(self, strategy): argument 411 with strategy.scope(): 426 train_ops, value = strategy.extended.call_for_each_replica(model_fn) 427 self.evaluate(strategy.group(train_ops)) [all …]
|
D | distribution_strategy_context.py | 44 self.strategy = dist 51 def __init__(self, strategy): argument 52 _ThreadMode.__init__(self, strategy, strategy, None) 58 _ThreadMode.__init__(self, replica_ctx.strategy, None, replica_ctx) 197 return _get_per_thread_mode().strategy 218 return (per_thread_mode.strategy, per_thread_mode.replica_context) 222 def experimental_set_strategy(strategy): argument 264 if strategy is not None: 265 new_scope = strategy.scope() 275 def enter_or_assert_strategy(strategy): argument [all …]
|
D | parameter_server_strategy_v2_test.py | 61 strategy = parameter_server_strategy_v2.ParameterServerStrategyV2( 64 with strategy.scope(): 95 strategy = parameter_server_strategy_v2.ParameterServerStrategyV2( 98 with strategy.scope(): 105 strategy.run(step_fn, args=(iter(dataset),)) 108 strategy = parameter_server_strategy_v2.ParameterServerStrategyV2( 111 strategy.reduce("SUM", None, axis=None) 114 strategy = parameter_server_strategy_v2.ParameterServerStrategyV2( 119 lambda: strategy.experimental_distribute_dataset(dataset))() 122 strategy = parameter_server_strategy_v2.ParameterServerStrategyV2( [all …]
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | distributed_file_utils.py | 56 def _get_base_dirpath(strategy): argument 57 task_id = strategy.extended._task_id # pylint: disable=protected-access 61 def _is_temp_dir(dirpath, strategy): argument 62 return dirpath.endswith(_get_base_dirpath(strategy)) 65 def _get_temp_dir(dirpath, strategy): argument 66 if _is_temp_dir(dirpath, strategy): 69 temp_dir = os.path.join(dirpath, _get_base_dirpath(strategy)) 74 def write_dirpath(dirpath, strategy): argument 86 if strategy is None: 88 strategy = distribution_strategy_context.get_strategy() [all …]
|
D | distributed_file_utils_test.py | 60 strategy = DistributedFileUtilsTest.MockedChiefStrategy() 62 distributed_file_utils.write_filepath(filepath, strategy), filepath) 64 distributed_file_utils.write_dirpath(dirpath, strategy), dirpath) 69 strategy = DistributedFileUtilsTest.MockedWorkerStrategy() 71 distributed_file_utils.write_filepath(filepath, strategy), 74 distributed_file_utils.write_dirpath(dirpath, strategy), 79 strategy = DistributedFileUtilsTest.MockedChiefStrategy() 80 dir_to_write = distributed_file_utils.write_dirpath(temp_dir, strategy) 86 file_to_write, strategy) 91 strategy = DistributedFileUtilsTest.MockedWorkerStrategy() [all …]
|
/external/squashfs-tools/squashfs-tools/ |
D | gzip_wrapper.c | 33 static struct strategy strategy[] = { variable 112 for(i = 0; strategy[i].name; i++) { in gzip_options() 113 int n = strlen(strategy[i].name); in gzip_options() 114 if((strncmp(name, strategy[i].name, n) == 0) && in gzip_options() 117 if(strategy[i].selected == 0) { in gzip_options() 118 strategy[i].selected = 1; in gzip_options() 125 if(strategy[i].name == NULL) { in gzip_options() 152 if(strategy_count == 1 && strategy[0].selected) { in gzip_options_post() 154 strategy[0].selected = 0; in gzip_options_post() 190 for(i = 0; strategy[i].name; i++) in gzip_dump_options() [all …]
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_outside_compilation_test.py | 135 strategy = get_tpu_strategy() 148 return strategy.run(tpu_fn, args=(25.0,)) 151 strategy.experimental_local_results(train_step()), 152 constant_op.constant(35., shape=(strategy.num_replicas_in_sync))) 155 strategy = get_tpu_strategy() 168 return strategy.run(tpu_fn, args=(25.0,)) 171 strategy.experimental_local_results(train_step()), 172 constant_op.constant(35., shape=(strategy.num_replicas_in_sync))) 175 strategy = get_tpu_strategy() 189 return strategy.run(tpu_fn, args=(25.0,)) [all …]
|
D | tpu_embedding_v2_test.py | 78 self.strategy = tpu_strategy.TPUStrategy(self.resolver) 79 self.num_rows = self.strategy.num_replicas_in_sync 83 with self.strategy.scope(): 190 with self.strategy.scope(): 192 self.strategy.num_replicas_in_sync * 2) 200 with self.strategy.scope(): 202 self.strategy.num_replicas_in_sync * 2) 207 with self.strategy.scope(): 213 self.assertAllClose(np.ones((self.strategy.num_replicas_in_sync * 2, 4)), 219 self.assertAllClose(np.ones((self.strategy.num_replicas_in_sync * 2, 4)), [all …]
|
D | tpu_embedding_v2_correctness_test.py | 135 strategy = self._get_strategy() 137 with strategy.scope(): 148 return strategy, mid_level_api, optimizer 156 strategy, mid_level_api, optimizer = ( 160 dataset = self._create_sparse_dataset(strategy) 162 dataset = self._create_ragged_dataset(strategy) 164 dist = strategy.experimental_distribute_dataset( 185 loss_per_replica = total_loss / strategy.num_replicas_in_sync 192 result = strategy.run(step) 202 input_data = next(iter(self._create_sparse_dataset(strategy))) [all …]
|
/external/jacoco/org.jacoco.core.test/src/org/jacoco/core/internal/instr/ |
D | ProbeArrayStrategyFactoryTest.java | 51 final IProbeArrayStrategy strategy = test(Opcodes.V1_1, 0, false, true, in testClass1() local 53 assertEquals(ClassFieldProbeArrayStrategy.class, strategy.getClass()); in testClass1() 60 final IProbeArrayStrategy strategy = test(Opcodes.V1_2, 0, false, true, in testClass2() local 62 assertEquals(ClassFieldProbeArrayStrategy.class, strategy.getClass()); in testClass2() 69 final IProbeArrayStrategy strategy = test(Opcodes.V1_3, 0, false, true, in testClass3() local 71 assertEquals(ClassFieldProbeArrayStrategy.class, strategy.getClass()); in testClass3() 78 final IProbeArrayStrategy strategy = test(Opcodes.V1_4, 0, false, true, in testClass4() local 80 assertEquals(ClassFieldProbeArrayStrategy.class, strategy.getClass()); in testClass4() 87 final IProbeArrayStrategy strategy = test(Opcodes.V1_5, 0, false, true, in testClass5() local 89 assertEquals(ClassFieldProbeArrayStrategy.class, strategy.getClass()); in testClass5() [all …]
|
/external/perfetto/src/traced/probes/ftrace/ |
D | event_info_unittest.cc | 50 ASSERT_FALSE(field.strategy); in TEST() 67 ASSERT_FALSE(field.strategy); in TEST() 73 TranslationStrategy strategy = kUint32ToUint32; in TEST() local 75 &strategy)); in TEST() 76 ASSERT_EQ(strategy, kUint32ToUint32); in TEST() 78 &strategy)); in TEST() 79 ASSERT_EQ(strategy, kCStringToString); in TEST() 81 SetTranslationStrategy(kFtracePid32, ProtoSchemaType::kInt32, &strategy)); in TEST() 82 ASSERT_EQ(strategy, kPid32ToInt32); in TEST() 84 &strategy)); in TEST() [all …]
|
/external/tensorflow/tensorflow/python/distribute/integration_test/ |
D | saved_model_test.py | 51 strategy=[ 78 def test_read_sync_on_read_variable(self, strategy): argument 95 with strategy.scope(): 101 self.evaluate(strategy.experimental_local_results(m.v)), [0.5, 0.5]) 109 def test_read_mirrored_variable(self, strategy): argument 126 with strategy.scope(): 134 def test_update_sync_on_read_variable(self, strategy): argument 153 with strategy.scope(): 161 def test_update_mirrored_variable(self, strategy): argument 178 with strategy.scope(): [all …]
|
D | mwms_peer_failure_test.py | 44 def get_attempt(strategy, attempts): argument 45 task_type = strategy.cluster_resolver.task_type 46 task_id = strategy.cluster_resolver.task_id 80 strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() 81 with strategy.scope(): 84 if strategy.cluster_resolver.task_id == 1: 114 strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() 116 strategy.reduce("sum", value, axis=None) 118 if strategy.cluster_resolver.task_id == 1: 120 strategy.reduce("sum", value, axis=None) [all …]
|
/external/glide/library/src/main/java/com/bumptech/glide/load/engine/bitmap_recycle/ |
D | LruBitmapPool.java | 24 private final LruPoolStrategy strategy; field in LruBitmapPool 36 LruBitmapPool(int maxSize, LruPoolStrategy strategy) { in LruBitmapPool() argument 39 this.strategy = strategy; in LruBitmapPool() 65 if (!bitmap.isMutable() || strategy.getSize(bitmap) > maxSize) { in put() 67 Log.v(TAG, "Reject bitmap from pool=" + strategy.logBitmap(bitmap) + " is mutable=" in put() 73 final int size = strategy.getSize(bitmap); in put() 74 strategy.put(bitmap); in put() 81 Log.v(TAG, "Put bitmap in pool=" + strategy.logBitmap(bitmap)); in put() 111 final Bitmap result = strategy.get(width, height, config != null ? config : DEFAULT_CONFIG); in getDirty() 114 Log.d(TAG, "Missing bitmap=" + strategy.logBitmap(width, height, config)); in getDirty() [all …]
|
/external/objenesis/main/src/main/java/org/objenesis/ |
D | ObjenesisBase.java | 19 import org.objenesis.strategy.InstantiatorStrategy; 32 protected final InstantiatorStrategy strategy; field in ObjenesisBase 42 public ObjenesisBase(InstantiatorStrategy strategy) { in ObjenesisBase() argument 43 this(strategy, true); in ObjenesisBase() 52 public ObjenesisBase(InstantiatorStrategy strategy, boolean useCache) { in ObjenesisBase() argument 53 if(strategy == null) { in ObjenesisBase() 56 this.strategy = strategy; in ObjenesisBase() 62 return getClass().getName() + " using " + strategy.getClass().getName() in toString() 90 return strategy.newInstantiatorOf(clazz); in getInstantiatorOf() 94 ObjectInstantiator<?> newInstantiator = strategy.newInstantiatorOf(clazz); in getInstantiatorOf()
|
/external/guava/android/guava/src/com/google/common/hash/ |
D | BloomFilter.java | 109 private final Strategy strategy; field in BloomFilter 113 LockFreeBitArray bits, int numHashFunctions, Funnel<? super T> funnel, Strategy strategy) { in BloomFilter() argument 120 this.strategy = checkNotNull(strategy); in BloomFilter() 130 return new BloomFilter<T>(bits.copy(), numHashFunctions, funnel, strategy); in copy() 138 return strategy.mightContain(object, funnel, numHashFunctions, bits); in mightContain() 164 return strategy.put(object, funnel, numHashFunctions, bits); in put() 230 && this.strategy.equals(that.strategy) in isCompatible() 257 this.strategy.equals(that.strategy), in putAll() 259 this.strategy, in putAll() 260 that.strategy); in putAll() [all …]
|
/external/tensorflow/tensorflow/python/training/experimental/ |
D | loss_scale_optimizer_test.py | 124 def _run_fn_with_grad_check(self, strategy, var, opt, expected_grad): argument 127 loss = lambda: grad_check_fn(var) / strategy.num_replicas_in_sync 133 with strategy_fn().scope() as strategy: 142 self.assertEqual(loss_scale % strategy.num_replicas_in_sync, 0) 144 strategy, var, opt, loss_scale / strategy.num_replicas_in_sync) 145 run_op = strategy.experimental_run(run_fn) 169 strategy = strategy_fn() 172 learning_rate / strategy.num_replicas_in_sync) 173 with strategy.scope(): 181 loss_scale.initial_loss_scale % strategy.num_replicas_in_sync, 0) [all …]
|
D | loss_scaling_gradient_tape_test.py | 53 def _run_with_strategy(self, run_fn, strategy, use_tf_function=False): argument 69 strategy_fn = lambda: strategy.run(run_fn) 77 return strategy.experimental_local_results(tensor) 90 strategy = strategy_fn() 91 with strategy.scope(): 97 dy_dx_list = self._run_with_strategy(run_fn, strategy, use_tf_function) 110 strategy = strategy_fn() 111 with strategy.scope(): 117 dy_dx_list = self._run_with_strategy(run_fn, strategy, use_tf_function) 131 strategy = strategy_fn() [all …]
|
/external/guava/guava/src/com/google/common/hash/ |
D | BloomFilter.java | 110 private final Strategy strategy; field in BloomFilter 114 LockFreeBitArray bits, int numHashFunctions, Funnel<? super T> funnel, Strategy strategy) { in BloomFilter() argument 121 this.strategy = checkNotNull(strategy); in BloomFilter() 131 return new BloomFilter<T>(bits.copy(), numHashFunctions, funnel, strategy); in copy() 139 return strategy.mightContain(object, funnel, numHashFunctions, bits); in mightContain() 165 return strategy.put(object, funnel, numHashFunctions, bits); in put() 231 && this.strategy.equals(that.strategy) in isCompatible() 258 this.strategy.equals(that.strategy), in putAll() 260 this.strategy, in putAll() 261 that.strategy); in putAll() [all …]
|
/external/autotest/client/common_lib/hosts/ |
D | repair_unittest.py | 1024 strategy = hosts.RepairStrategy(verify_data, [], 'unittest') 1027 strategy._verify_root._dependency_list, 1043 strategy = hosts.RepairStrategy(verify_data, [], 'unittest') 1047 strategy._verify_root._dependency_list, [parent]) 1068 strategy = hosts.RepairStrategy(verify_data, [], 'unittest') 1073 strategy._verify_root._dependency_list, 1100 strategy = hosts.RepairStrategy(verify_data, [], 'unittest') 1105 strategy._verify_root._dependency_list, 1124 strategy = hosts.RepairStrategy(verify_data, [], 'unittest') 1130 strategy.verify(self._fake_host, silent) [all …]
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/ |
D | loss_scale_optimizer_test.py | 84 def _run_fn_with_grad_check(self, strategy, var, opt, expected_grad): argument 87 loss = lambda: grad_check_fn(var) / strategy.num_replicas_in_sync 92 with strategy_fn().scope() as strategy: 103 self.assertEqual(loss_scale % strategy.num_replicas_in_sync, 0) 105 strategy, var, opt, loss_scale / strategy.num_replicas_in_sync) 106 run_op = strategy.experimental_run(run_fn) 176 strategy = strategy_fn() 179 strategy.num_replicas_in_sync) 180 with strategy.scope(): 190 self.assertEqual(opt.initial_scale % strategy.num_replicas_in_sync, 0) [all …]
|