1 /*
2  * Copyright (C) 2020 Collabora Ltd.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors (Collabora):
24  *      Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25  */
26 
27 #include "main/mtypes.h"
28 #include "compiler/glsl/glsl_to_nir.h"
29 #include "compiler/nir_types.h"
30 #include "compiler/nir/nir_builder.h"
31 #include "util/u_debug.h"
32 
33 #include "disassemble.h"
34 #include "bifrost_compile.h"
35 #include "bifrost_nir.h"
36 #include "compiler.h"
37 #include "bi_quirks.h"
38 #include "bi_print.h"
39 
40 static const struct debug_named_value debug_options[] = {
41         {"msgs",      BIFROST_DBG_MSGS,		"Print debug messages"},
42         {"shaders",   BIFROST_DBG_SHADERS,	"Dump shaders in NIR and MIR"},
43         DEBUG_NAMED_VALUE_END
44 };
45 
46 DEBUG_GET_ONCE_FLAGS_OPTION(bifrost_debug, "BIFROST_MESA_DEBUG", debug_options, 0)
47 
48 int bifrost_debug = 0;
49 
50 #define DBG(fmt, ...) \
51 		do { if (bifrost_debug & BIFROST_DBG_MSGS) \
52 			fprintf(stderr, "%s:%d: "fmt, \
53 				__FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
54 
55 static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
56 static bi_instruction *bi_emit_branch(bi_context *ctx);
57 
58 static void
emit_jump(bi_context * ctx,nir_jump_instr * instr)59 emit_jump(bi_context *ctx, nir_jump_instr *instr)
60 {
61         bi_instruction *branch = bi_emit_branch(ctx);
62 
63         switch (instr->type) {
64         case nir_jump_break:
65                 branch->branch_target = ctx->break_block;
66                 break;
67         case nir_jump_continue:
68                 branch->branch_target = ctx->continue_block;
69                 break;
70         default:
71                 unreachable("Unhandled jump type");
72         }
73 
74         pan_block_add_successor(&ctx->current_block->base, &branch->branch_target->base);
75         ctx->current_block->base.unconditional_jumps = true;
76 }
77 
78 static bi_instruction
bi_load(enum bi_class T,nir_intrinsic_instr * instr)79 bi_load(enum bi_class T, nir_intrinsic_instr *instr)
80 {
81         bi_instruction load = {
82                 .type = T,
83                 .vector_channels = instr->num_components,
84                 .src = { BIR_INDEX_CONSTANT },
85                 .src_types = { nir_type_uint32 },
86                 .constant = { .u64 = nir_intrinsic_base(instr) },
87         };
88 
89         const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
90 
91         if (info->has_dest)
92                 load.dest = pan_dest_index(&instr->dest);
93 
94         if (info->has_dest && nir_intrinsic_has_dest_type(instr))
95                 load.dest_type = nir_intrinsic_dest_type(instr);
96 
97         nir_src *offset = nir_get_io_offset_src(instr);
98 
99         if (nir_src_is_const(*offset))
100                 load.constant.u64 += nir_src_as_uint(*offset);
101         else
102                 load.src[0] = pan_src_index(offset);
103 
104         return load;
105 }
106 
107 static void
bi_emit_ld_output(bi_context * ctx,nir_intrinsic_instr * instr)108 bi_emit_ld_output(bi_context *ctx, nir_intrinsic_instr *instr)
109 {
110         assert(ctx->is_blend);
111 
112         bi_instruction ins = {
113                 .type = BI_LOAD_TILE,
114                 .vector_channels = instr->num_components,
115                 .dest = pan_dest_index(&instr->dest),
116                 .dest_type = nir_type_float16,
117                 .src = {
118                         /* PixelIndices */
119                         BIR_INDEX_CONSTANT,
120                         /* PixelCoverage: we simply pass r60 which contains the cumulative
121                          * coverage bitmap
122                          */
123                         BIR_INDEX_REGISTER | 60,
124                         /* InternalConversionDescriptor (see src/panfrost/lib/midgard.xml for more
125                          * details)
126 			 */
127                         BIR_INDEX_CONSTANT | 32
128                 },
129                 .src_types = { nir_type_uint32, nir_type_uint32, nir_type_uint32 },
130         };
131 
132         /* We want to load the current pixel.
133          * FIXME: The sample to load is currently hardcoded to 0. This should
134          * be addressed for multi-sample FBs.
135          */
136         struct bifrost_pixel_indices pix = {
137                 .y = BIFROST_CURRENT_PIXEL,
138         };
139         memcpy(&ins.constant.u64, &pix, sizeof(pix));
140 
141         /* Only keep the conversion part of the blend descriptor. */
142         ins.constant.u64 |= ctx->blend_desc & 0xffffffff00000000ULL;
143 
144         bi_emit(ctx, ins);
145 }
146 
147 static enum bifrost_interp_mode
bi_interp_for_intrinsic(nir_intrinsic_op op)148 bi_interp_for_intrinsic(nir_intrinsic_op op)
149 {
150         switch (op) {
151         case nir_intrinsic_load_barycentric_centroid:
152                 return BIFROST_INTERP_CENTROID;
153         case nir_intrinsic_load_barycentric_sample:
154                 return BIFROST_INTERP_SAMPLE;
155         case nir_intrinsic_load_barycentric_pixel:
156         default:
157                 return BIFROST_INTERP_CENTER;
158         }
159 }
160 
161 static void
bi_emit_ld_vary(bi_context * ctx,nir_intrinsic_instr * instr)162 bi_emit_ld_vary(bi_context *ctx, nir_intrinsic_instr *instr)
163 {
164         bi_instruction ins = bi_load(BI_LOAD_VAR, instr);
165         ins.load_vary.interp_mode = BIFROST_INTERP_CENTER; /* TODO */
166         ins.load_vary.reuse = false; /* TODO */
167         ins.load_vary.flat = instr->intrinsic != nir_intrinsic_load_interpolated_input;
168         ins.dest_type = nir_type_float | nir_dest_bit_size(instr->dest);
169         ins.format = ins.dest_type;
170 
171         if (instr->intrinsic == nir_intrinsic_load_interpolated_input) {
172                 nir_intrinsic_instr *parent = nir_src_as_intrinsic(instr->src[0]);
173                 if (parent) {
174                         ins.load_vary.interp_mode =
175                                 bi_interp_for_intrinsic(parent->intrinsic);
176                 }
177         }
178 
179         if (nir_src_is_const(*nir_get_io_offset_src(instr))) {
180                 /* Zero it out for direct */
181                 ins.src[1] = BIR_INDEX_ZERO;
182         } else {
183                 /* R61 contains sample mask stuff, TODO RA XXX */
184                 ins.src[1] = BIR_INDEX_REGISTER | 61;
185         }
186 
187         bi_emit(ctx, ins);
188 }
189 
190 static void
bi_emit_ld_blend_input(bi_context * ctx,nir_intrinsic_instr * instr)191 bi_emit_ld_blend_input(bi_context *ctx, nir_intrinsic_instr *instr)
192 {
193         ASSERTED nir_io_semantics sem = nir_intrinsic_io_semantics(instr);
194 
195         /* We don't support dual-source blending yet. */
196         assert(sem.location == VARYING_SLOT_COL0);
197 
198         bi_instruction ins = {
199                 .type = BI_COMBINE,
200                 .dest_type = nir_type_uint32,
201                 .dest = pan_dest_index(&instr->dest),
202                 .src_types = {
203                         nir_type_uint32, nir_type_uint32,
204                         nir_type_uint32, nir_type_uint32,
205                 },
206 
207                 /* Source color is passed through r0-r3.
208                  * TODO: We should probably find a way to avoid this
209                  * combine/mov and use r0-r3 directly.
210                  */
211                 .src = {
212                         BIR_INDEX_REGISTER | 0,
213                         BIR_INDEX_REGISTER | 1,
214                         BIR_INDEX_REGISTER | 2,
215                         BIR_INDEX_REGISTER | 3,
216                 },
217         };
218 
219         bi_emit(ctx, ins);
220 }
221 
222 static void
bi_emit_atest(bi_context * ctx,unsigned rgba,nir_alu_type T)223 bi_emit_atest(bi_context *ctx, unsigned rgba, nir_alu_type T)
224 {
225         bi_instruction ins = {
226                 .type = BI_ATEST,
227                 .src = {
228                         BIR_INDEX_REGISTER | 60 /* TODO: RA */,
229                         rgba,
230                 },
231                 .src_types = { nir_type_uint32, T },
232                 .swizzle = {
233                         { 0 },
234                         { 3, 0 } /* swizzle out the alpha */
235                 },
236                 .dest = BIR_INDEX_REGISTER | 60 /* TODO: RA */,
237                 .dest_type = nir_type_uint32,
238         };
239 
240         bi_emit(ctx, ins);
241 }
242 
243 static void
bi_emit_blend(bi_context * ctx,unsigned rgba,nir_alu_type T,unsigned rt)244 bi_emit_blend(bi_context *ctx, unsigned rgba, nir_alu_type T, unsigned rt)
245 {
246         bi_instruction blend = {
247                 .type = BI_BLEND,
248                 .blend_location = rt,
249                 .src = {
250                         rgba,
251                         BIR_INDEX_REGISTER | 60 /* TODO: RA */
252                 },
253                 .src_types = {
254                         T,
255                         nir_type_uint32,
256                         nir_type_uint32,
257                         nir_type_uint32,
258                 },
259                 .swizzle = {
260                         { 0, 1, 2, 3 },
261                         { 0 }
262                 },
263                 .dest_type = nir_type_uint32,
264                 .vector_channels = 4
265         };
266 
267         if (ctx->is_blend) {
268                 /* Blend descriptor comes from the compile inputs */
269                 blend.src[2] = BIR_INDEX_CONSTANT | 0;
270                 blend.src[3] = BIR_INDEX_CONSTANT | 32;
271                 blend.constant.u64 = ctx->blend_desc;
272 
273                 /* Put the result in r0 */
274                 blend.dest = BIR_INDEX_REGISTER | 0;
275         } else {
276                 /* Blend descriptor comes from the FAU RAM */
277                 blend.src[2] = BIR_INDEX_BLEND | BIFROST_SRC_FAU_LO;
278                 blend.src[3] = BIR_INDEX_BLEND | BIFROST_SRC_FAU_HI;
279 
280                 /* By convention, the return address is stored in r48 and will
281                  * be used by the blend shader to jump back to the fragment
282                  * shader when it's done.
283                  */
284                 blend.dest = BIR_INDEX_REGISTER | 48;
285         }
286 
287         assert(blend.blend_location < 8);
288         assert(ctx->blend_types);
289         assert(blend.src_types[0]);
290         ctx->blend_types[blend.blend_location] = blend.src_types[0];
291 
292         bi_emit(ctx, blend);
293 }
294 
295 static void
bi_emit_zs_emit(bi_context * ctx,unsigned z,unsigned stencil)296 bi_emit_zs_emit(bi_context *ctx, unsigned z, unsigned stencil)
297 {
298         bi_instruction ins = {
299                 .type = BI_ZS_EMIT,
300                 .src = {
301                         z,
302                         stencil,
303                         BIR_INDEX_REGISTER | 60 /* TODO: RA */,
304                 },
305                 .src_types = {
306                         nir_type_float32,
307                         nir_type_uint8,
308                         nir_type_uint32,
309                 },
310                 .swizzle = { { 0 }, { 0 }, { 0 } },
311                 .dest = BIR_INDEX_REGISTER | 60 /* TODO: RA */,
312                 .dest_type = nir_type_uint32,
313         };
314 
315         bi_emit(ctx, ins);
316 }
317 
318 static void
bi_emit_frag_out(bi_context * ctx,nir_intrinsic_instr * instr)319 bi_emit_frag_out(bi_context *ctx, nir_intrinsic_instr *instr)
320 {
321         bool combined = instr->intrinsic ==
322                 nir_intrinsic_store_combined_output_pan;
323 
324         unsigned writeout = combined ? nir_intrinsic_component(instr) :
325                 PAN_WRITEOUT_C;
326 
327         bool emit_blend = writeout & (PAN_WRITEOUT_C);
328         bool emit_zs = writeout & (PAN_WRITEOUT_Z | PAN_WRITEOUT_S);
329 
330         const nir_variable *var =
331                 nir_find_variable_with_driver_location(ctx->nir, nir_var_shader_out,
332                          nir_intrinsic_base(instr));
333         assert(var);
334 
335         if (!ctx->emitted_atest && !ctx->is_blend) {
336                 bi_emit_atest(ctx,
337                         pan_src_index(&instr->src[0]),
338                         nir_intrinsic_src_type(instr));
339 
340                 ctx->emitted_atest = true;
341         }
342 
343         if (emit_zs) {
344                 unsigned z = writeout & PAN_WRITEOUT_Z ?
345                         pan_src_index(&instr->src[2]) : 0;
346                 unsigned s = writeout & PAN_WRITEOUT_S ?
347                         pan_src_index(&instr->src[3]) : 0;
348 
349                 bi_emit_zs_emit(ctx, z, s);
350         }
351 
352         if (emit_blend) {
353                 unsigned loc = var->data.location;
354                 assert(loc == FRAG_RESULT_COLOR || loc >= FRAG_RESULT_DATA0);
355 
356                 unsigned rt = loc == FRAG_RESULT_COLOR ? 0 :
357                         (loc - FRAG_RESULT_DATA0);
358 
359                 bi_emit_blend(ctx,
360                                 pan_src_index(&instr->src[0]),
361                                 nir_intrinsic_src_type(instr),
362                                 rt);
363         }
364 
365         if (ctx->is_blend) {
366                 /* Jump back to the fragment shader, return address is stored
367                  * in r48 (see above).
368                  */
369                 bi_instruction *ret = bi_emit_branch(ctx);
370                 ret->src[2] = BIR_INDEX_REGISTER | 48;
371         }
372 }
373 
374 static bi_instruction
bi_load_with_r61(enum bi_class T,nir_intrinsic_instr * instr)375 bi_load_with_r61(enum bi_class T, nir_intrinsic_instr *instr)
376 {
377         bi_instruction ld = bi_load(T, instr);
378         ld.src[1] = BIR_INDEX_REGISTER | 61; /* TODO: RA */
379         ld.src[2] = BIR_INDEX_REGISTER | 62;
380         ld.src_types[1] = nir_type_uint32;
381         ld.src_types[2] = nir_type_uint32;
382         ld.format = instr->intrinsic == nir_intrinsic_store_output ?
383                 nir_intrinsic_src_type(instr) :
384                 nir_intrinsic_dest_type(instr);
385         return ld;
386 }
387 
388 static void
bi_emit_st_vary(bi_context * ctx,nir_intrinsic_instr * instr)389 bi_emit_st_vary(bi_context *ctx, nir_intrinsic_instr *instr)
390 {
391         bi_instruction address = bi_load_with_r61(BI_LOAD_VAR_ADDRESS, instr);
392         address.dest = bi_make_temp(ctx);
393         address.dest_type = nir_type_uint32;
394         address.vector_channels = 3;
395 
396         unsigned nr = nir_intrinsic_src_components(instr, 0);
397         assert(nir_intrinsic_write_mask(instr) == ((1 << nr) - 1));
398 
399         bi_instruction st = {
400                 .type = BI_STORE_VAR,
401                 .src = {
402                         pan_src_index(&instr->src[0]),
403                         address.dest, address.dest, address.dest,
404                 },
405                 .src_types = {
406                         nir_type_uint32,
407                         nir_type_uint32, nir_type_uint32, nir_type_uint32,
408                 },
409                 .swizzle = {
410                         { 0 },
411                         { 0 }, { 1 }, { 2}
412                 },
413                 .vector_channels = nr,
414         };
415 
416         for (unsigned i = 0; i < nr; ++i)
417                 st.swizzle[0][i] = i;
418 
419         bi_emit(ctx, address);
420         bi_emit(ctx, st);
421 }
422 
423 static void
bi_emit_ld_ubo(bi_context * ctx,nir_intrinsic_instr * instr)424 bi_emit_ld_ubo(bi_context *ctx, nir_intrinsic_instr *instr)
425 {
426         /* nir_lower_uniforms_to_ubo() should have been called, reserving
427          * UBO #0 for uniforms even if the shaders doesn't have uniforms.
428          */
429         assert(ctx->nir->info.first_ubo_is_default_ubo);
430 
431         bool offset_is_const = nir_src_is_const(instr->src[1]);
432         unsigned dyn_offset = pan_src_index(&instr->src[1]);
433         uint32_t const_offset = 0;
434 
435         if (nir_src_is_const(instr->src[1]))
436                 const_offset = nir_src_as_uint(instr->src[1]);
437 
438         if (nir_src_is_const(instr->src[0]) &&
439             nir_src_as_uint(instr->src[0]) == 0 &&
440             ctx->sysvals.sysval_count) {
441                 if (offset_is_const) {
442                         const_offset += 16 * ctx->sysvals.sysval_count;
443                 } else {
444                         bi_instruction add = {
445                                 .type = BI_IMATH,
446                                 .op.imath = BI_IMATH_ADD,
447                                 .dest = bi_make_temp(ctx),
448                                 .dest_type = nir_type_uint32,
449                                 .src = { dyn_offset, BIR_INDEX_CONSTANT | 0, BIR_INDEX_ZERO },
450                                 .src_types = { nir_type_uint32, nir_type_uint32, nir_type_uint32 },
451                                 .constant.u64 = 16 * ctx->sysvals.sysval_count,
452                         };
453 
454                         bi_emit(ctx, add);
455                         dyn_offset = add.dest;
456                 }
457         }
458 
459         bi_instruction ld = {
460                 .type = BI_LOAD_UNIFORM,
461                 .segment = BI_SEGMENT_UBO,
462                 .vector_channels = instr->num_components,
463                 .src_types = { nir_type_uint32, nir_type_uint32 },
464                 .dest = pan_dest_index(&instr->dest),
465                 .dest_type = nir_type_uint | nir_dest_bit_size(instr->dest),
466         };
467 
468         if (offset_is_const) {
469                 ld.src[0] = BIR_INDEX_CONSTANT | 0;
470                 ld.constant.u64 |= const_offset;
471         } else {
472                 ld.src[0] = dyn_offset;
473         }
474 
475         if (nir_src_is_const(instr->src[0])) {
476                 ld.src[1] = BIR_INDEX_CONSTANT | 32;
477                 ld.constant.u64 |= nir_src_as_uint(instr->src[0]) << 32;
478         } else {
479                 ld.src[1] = pan_src_index(&instr->src[0]);
480         }
481 
482         bi_emit(ctx, ld);
483 }
484 
485 static void
bi_emit_sysval(bi_context * ctx,nir_instr * instr,unsigned nr_components,unsigned offset)486 bi_emit_sysval(bi_context *ctx, nir_instr *instr,
487                 unsigned nr_components, unsigned offset)
488 {
489         nir_dest nir_dest;
490 
491         /* Figure out which uniform this is */
492         int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
493         void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
494 
495         /* Sysvals are prefix uniforms */
496         unsigned uniform = ((uintptr_t) val) - 1;
497 
498         /* Emit the read itself -- this is never indirect */
499 
500         bi_instruction load = {
501                 .type = BI_LOAD_UNIFORM,
502                 .segment = BI_SEGMENT_UBO,
503                 .vector_channels = nr_components,
504                 .src = { BIR_INDEX_CONSTANT, BIR_INDEX_ZERO },
505                 .src_types = { nir_type_uint32, nir_type_uint32 },
506                 .constant = { (uniform * 16) + offset },
507                 .dest = pan_dest_index(&nir_dest),
508                 .dest_type = nir_type_uint32, /* TODO */
509         };
510 
511         bi_emit(ctx, load);
512 }
513 
514 /* gl_FragCoord.xy = u16_to_f32(R59.xy) + 0.5
515  * gl_FragCoord.z = ld_vary(fragz)
516  * gl_FragCoord.w = ld_vary(fragw)
517  */
518 
519 static void
bi_emit_ld_frag_coord(bi_context * ctx,nir_intrinsic_instr * instr)520 bi_emit_ld_frag_coord(bi_context *ctx, nir_intrinsic_instr *instr)
521 {
522         /* Future proofing for mediump fragcoord at some point.. */
523         nir_alu_type T = nir_type_float32;
524 
525         /* First, sketch a combine */
526         bi_instruction combine = {
527                 .type = BI_COMBINE,
528                 .dest_type = nir_type_uint32,
529                 .dest = pan_dest_index(&instr->dest),
530                 .src_types = { T, T, T, T },
531         };
532 
533         /* Second, handle xy */
534         for (unsigned i = 0; i < 2; ++i) {
535                 bi_instruction conv = {
536                         .type = BI_CONVERT,
537                         .dest_type = T,
538                         .dest = bi_make_temp(ctx),
539                         .src = {
540                                 /* TODO: RA XXX */
541                                 BIR_INDEX_REGISTER | 59
542                         },
543                         .src_types = { nir_type_uint16 },
544                         .swizzle = { { i } }
545                 };
546 
547                 bi_instruction add = {
548                         .type = BI_ADD,
549                         .dest_type = T,
550                         .dest = bi_make_temp(ctx),
551                         .src = { conv.dest, BIR_INDEX_CONSTANT },
552                         .src_types = { T, T },
553                 };
554 
555                 float half = 0.5;
556                 memcpy(&add.constant.u32, &half, sizeof(float));
557 
558                 bi_emit(ctx, conv);
559                 bi_emit(ctx, add);
560 
561                 combine.src[i] = add.dest;
562         }
563 
564         /* Third, zw */
565         for (unsigned i = 0; i < 2; ++i) {
566                 bi_instruction load = {
567                         .type = BI_LOAD_VAR,
568                         .load_vary = {
569                                 .interp_mode = BIFROST_INTERP_CENTER,
570                                 .reuse = false,
571                                 .flat = true
572                         },
573                         .vector_channels = 1,
574                         .dest_type = nir_type_float32,
575                         .format = nir_type_float32,
576                         .dest = bi_make_temp(ctx),
577                         .src = {
578                                 BIR_INDEX_CONSTANT,
579                                 BIR_INDEX_PASS | BIFROST_SRC_FAU_LO
580                         },
581                         .src_types = { nir_type_uint32, nir_type_uint32 },
582                         .constant = {
583                                 .u32 = (i == 0) ? BIFROST_FRAGZ : BIFROST_FRAGW
584                         }
585                 };
586 
587                 bi_emit(ctx, load);
588 
589                 combine.src[i + 2] = load.dest;
590         }
591 
592         /* Finally, emit the combine */
593         bi_emit(ctx, combine);
594 }
595 
596 static void
bi_emit_discard(bi_context * ctx,nir_intrinsic_instr * instr)597 bi_emit_discard(bi_context *ctx, nir_intrinsic_instr *instr)
598 {
599         /* Goofy lowering */
600         bi_instruction discard = {
601                 .type = BI_DISCARD,
602                 .cond = BI_COND_EQ,
603                 .src_types = { nir_type_uint32, nir_type_uint32 },
604                 .src = { BIR_INDEX_ZERO, BIR_INDEX_ZERO },
605         };
606 
607         bi_emit(ctx, discard);
608 }
609 
610 static void
611 bi_fuse_cond(bi_instruction *csel, nir_alu_src cond,
612                 unsigned *constants_left, unsigned *constant_shift,
613                 unsigned comps, bool float_only);
614 
615 static void
bi_emit_discard_if(bi_context * ctx,nir_intrinsic_instr * instr)616 bi_emit_discard_if(bi_context *ctx, nir_intrinsic_instr *instr)
617 {
618         nir_src cond = instr->src[0];
619         nir_alu_type T = nir_type_uint | nir_src_bit_size(cond);
620 
621         bi_instruction discard = {
622                 .type = BI_DISCARD,
623                 .cond = BI_COND_NE,
624                 .src_types = { T, T },
625                 .src = {
626                         pan_src_index(&cond),
627                         BIR_INDEX_ZERO
628                 },
629         };
630 
631         /* Try to fuse in the condition */
632         unsigned constants_left = 1, constant_shift = 0;
633 
634         /* Scalar so no swizzle */
635         nir_alu_src wrap = {
636                 .src = instr->src[0]
637         };
638 
639         /* May or may not succeed but we're optimistic */
640         bi_fuse_cond(&discard, wrap, &constants_left, &constant_shift, 1, true);
641 
642         bi_emit(ctx, discard);
643 }
644 
645 static void
bi_emit_blend_const(bi_context * ctx,nir_intrinsic_instr * instr)646 bi_emit_blend_const(bi_context *ctx, nir_intrinsic_instr *instr)
647 {
648         assert(ctx->is_blend);
649 
650         unsigned comp;
651         switch (instr->intrinsic) {
652         case nir_intrinsic_load_blend_const_color_r_float: comp = 0; break;
653         case nir_intrinsic_load_blend_const_color_g_float: comp = 1; break;
654         case nir_intrinsic_load_blend_const_color_b_float: comp = 2; break;
655         case nir_intrinsic_load_blend_const_color_a_float: comp = 3; break;
656         default: unreachable("Invalid load blend constant intrinsic");
657         }
658 
659         bi_instruction move = {
660                 .type = BI_MOV,
661                 .dest = pan_dest_index(&instr->dest),
662                 .dest_type = nir_type_uint32,
663                 .src = { BIR_INDEX_CONSTANT },
664                 .src_types = { nir_type_uint32 },
665         };
666 
667         memcpy(&move.constant.u32, &ctx->blend_constants[comp], sizeof(float));
668 
669         bi_emit(ctx, move);
670 }
671 
672 static void
bi_emit_sample_id(bi_context * ctx,nir_intrinsic_instr * instr)673 bi_emit_sample_id(bi_context *ctx, nir_intrinsic_instr *instr)
674 {
675         bi_instruction ins = {
676                 .type = BI_BITWISE,
677                 .op.bitwise = BI_BITWISE_AND,
678                 .bitwise.rshift = true,
679                 .dest = pan_dest_index(&instr->dest),
680                 .dest_type = nir_type_uint32,
681                 .src = {
682                         /* r61[16:23] contains the sampleID */
683                         BIR_INDEX_REGISTER | 61,
684                         /* mask */
685                         BIR_INDEX_CONSTANT | 0,
686                         /* shift */
687                         BIR_INDEX_CONSTANT | 32,
688                 },
689                 .src_types = {
690                         nir_type_uint32,
691                         nir_type_uint32,
692                         nir_type_uint8,
693                 },
694                 .constant.u64 = 0xffull | (0x10ull << 32ull)
695         };
696 
697         bi_emit(ctx, ins);
698 }
699 
700 static void
bi_emit_front_face(bi_context * ctx,nir_intrinsic_instr * instr)701 bi_emit_front_face(bi_context *ctx, nir_intrinsic_instr *instr)
702 {
703         bi_instruction ins = {
704                 .type = BI_CMP,
705                 .cond = BI_COND_EQ,
706                 .dest = pan_dest_index(&instr->dest),
707                 .dest_type = nir_type_uint32,
708                 .src = {
709                         /* r58 == 0 means primitive is front facing */
710                         BIR_INDEX_REGISTER | 58,
711                         BIR_INDEX_ZERO,
712                 },
713                 .src_types = {
714                         nir_type_uint32,
715                         nir_type_uint32,
716                 },
717         };
718 
719         bi_emit(ctx, ins);
720 }
721 
722 static void
bi_emit_point_coord(bi_context * ctx,nir_intrinsic_instr * instr)723 bi_emit_point_coord(bi_context *ctx, nir_intrinsic_instr *instr)
724 {
725         bi_instruction ins = {
726                 .type = BI_LOAD_VAR,
727                 .vector_channels = 2,
728                 .dest = pan_dest_index(&instr->dest),
729                 .dest_type = nir_type_float32,
730                 .format = nir_type_float32,
731                 .src = {
732                         BIR_INDEX_CONSTANT,
733                         BIR_INDEX_ZERO,
734                 },
735                 .src_types = {
736                         nir_type_uint32,
737                 },
738                 .constant.u64 = 20,
739         };
740 
741         bi_emit(ctx, ins);
742 }
743 
744 static void
bi_emit_vertex_id(bi_context * ctx,nir_intrinsic_instr * instr)745 bi_emit_vertex_id(bi_context *ctx, nir_intrinsic_instr *instr)
746 {
747         bi_instruction mov = {
748                 .type = BI_MOV,
749                 .dest = pan_dest_index(&instr->dest),
750                 .dest_type = nir_type_int32,
751                 .src = { BIR_INDEX_REGISTER | 61 },
752                 .src_types = { nir_type_int32 },
753         };
754 
755         bi_emit(ctx, mov);
756 }
757 
758 static void
bi_emit_instance_id(bi_context * ctx,nir_intrinsic_instr * instr)759 bi_emit_instance_id(bi_context *ctx, nir_intrinsic_instr *instr)
760 {
761         bi_instruction mov = {
762                 .type = BI_MOV,
763                 .dest = pan_dest_index(&instr->dest),
764                 .dest_type = nir_type_int32,
765                 .src = { BIR_INDEX_REGISTER | 62 },
766                 .src_types = { nir_type_int32 },
767         };
768 
769         bi_emit(ctx, mov);
770 }
771 
772 static void
emit_intrinsic(bi_context * ctx,nir_intrinsic_instr * instr)773 emit_intrinsic(bi_context *ctx, nir_intrinsic_instr *instr)
774 {
775 
776         switch (instr->intrinsic) {
777         case nir_intrinsic_load_barycentric_pixel:
778         case nir_intrinsic_load_barycentric_centroid:
779         case nir_intrinsic_load_barycentric_sample:
780                 /* stub */
781                 break;
782         case nir_intrinsic_load_interpolated_input:
783         case nir_intrinsic_load_input:
784                 if (ctx->is_blend)
785                         bi_emit_ld_blend_input(ctx, instr);
786                 else if (ctx->stage == MESA_SHADER_FRAGMENT)
787                         bi_emit_ld_vary(ctx, instr);
788                 else if (ctx->stage == MESA_SHADER_VERTEX)
789                         bi_emit(ctx, bi_load_with_r61(BI_LOAD_ATTR, instr));
790                 else {
791                         unreachable("Unsupported shader stage");
792                 }
793                 break;
794 
795         case nir_intrinsic_store_output:
796                 if (ctx->stage == MESA_SHADER_FRAGMENT)
797                         bi_emit_frag_out(ctx, instr);
798                 else if (ctx->stage == MESA_SHADER_VERTEX)
799                         bi_emit_st_vary(ctx, instr);
800                 else
801                         unreachable("Unsupported shader stage");
802                 break;
803 
804         case nir_intrinsic_store_combined_output_pan:
805                 assert(ctx->stage == MESA_SHADER_FRAGMENT);
806                 bi_emit_frag_out(ctx, instr);
807                 break;
808 
809         case nir_intrinsic_load_ubo:
810                 bi_emit_ld_ubo(ctx, instr);
811                 break;
812 
813         case nir_intrinsic_load_frag_coord:
814                 bi_emit_ld_frag_coord(ctx, instr);
815                 break;
816 
817         case nir_intrinsic_discard:
818                 bi_emit_discard(ctx, instr);
819                 break;
820 
821         case nir_intrinsic_discard_if:
822                 bi_emit_discard_if(ctx, instr);
823                 break;
824 
825         case nir_intrinsic_load_ssbo_address:
826                 bi_emit_sysval(ctx, &instr->instr, 1, 0);
827                 break;
828 
829         case nir_intrinsic_get_ssbo_size:
830                 bi_emit_sysval(ctx, &instr->instr, 1, 8);
831                 break;
832 
833         case nir_intrinsic_load_output:
834                 bi_emit_ld_output(ctx, instr);
835                 break;
836 
837         case nir_intrinsic_load_viewport_scale:
838         case nir_intrinsic_load_viewport_offset:
839         case nir_intrinsic_load_num_work_groups:
840         case nir_intrinsic_load_sampler_lod_parameters_pan:
841                 bi_emit_sysval(ctx, &instr->instr, 3, 0);
842                 break;
843 
844         case nir_intrinsic_load_blend_const_color_r_float:
845         case nir_intrinsic_load_blend_const_color_g_float:
846         case nir_intrinsic_load_blend_const_color_b_float:
847         case nir_intrinsic_load_blend_const_color_a_float:
848                 bi_emit_blend_const(ctx, instr);
849                 break;
850 
851 	case nir_intrinsic_load_sample_id:
852                 bi_emit_sample_id(ctx, instr);
853                 break;
854 
855 	case nir_intrinsic_load_front_face:
856                 bi_emit_front_face(ctx, instr);
857                 break;
858 
859         case nir_intrinsic_load_point_coord:
860                 bi_emit_point_coord(ctx, instr);
861                 break;
862 
863         case nir_intrinsic_load_vertex_id:
864                 bi_emit_vertex_id(ctx, instr);
865                 break;
866 
867         case nir_intrinsic_load_instance_id:
868                 bi_emit_instance_id(ctx, instr);
869                 break;
870 
871         default:
872                 unreachable("Unknown intrinsic");
873                 break;
874         }
875 }
876 
877 static void
emit_load_const(bi_context * ctx,nir_load_const_instr * instr)878 emit_load_const(bi_context *ctx, nir_load_const_instr *instr)
879 {
880         /* Make sure we've been lowered */
881         assert(instr->def.num_components <= (32 / instr->def.bit_size));
882 
883         /* Accumulate all the channels of the constant, as if we did an
884          * implicit SEL over them */
885         uint32_t acc = 0;
886 
887         for (unsigned i = 0; i < instr->def.num_components; ++i) {
888                 unsigned v = nir_const_value_as_uint(instr->value[i], instr->def.bit_size);
889                 acc |= (v << (i * instr->def.bit_size));
890         }
891 
892         bi_instruction move = {
893                 .type = BI_MOV,
894                 .dest = pan_ssa_index(&instr->def),
895                 .dest_type = nir_type_uint32,
896                 .src = {
897                         BIR_INDEX_CONSTANT
898                 },
899                 .src_types = {
900                         nir_type_uint32,
901                 },
902                 .constant = {
903                         .u32 = acc
904                 }
905         };
906 
907         bi_emit(ctx, move);
908 }
909 
910 #define BI_CASE_CMP(op) \
911         case op##8: \
912         case op##16: \
913         case op##32: \
914 
915 static enum bi_class
bi_class_for_nir_alu(nir_op op)916 bi_class_for_nir_alu(nir_op op)
917 {
918         switch (op) {
919         case nir_op_fadd:
920         case nir_op_fsub:
921                 return BI_ADD;
922 
923         case nir_op_iadd:
924         case nir_op_isub:
925                 return BI_IMATH;
926 
927         case nir_op_imul:
928                 return BI_IMUL;
929 
930         case nir_op_iand:
931         case nir_op_ior:
932         case nir_op_ixor:
933         case nir_op_inot:
934         case nir_op_ishl:
935         case nir_op_ishr:
936         case nir_op_ushr:
937                 return BI_BITWISE;
938 
939         BI_CASE_CMP(nir_op_flt)
940         BI_CASE_CMP(nir_op_fge)
941         BI_CASE_CMP(nir_op_feq)
942         BI_CASE_CMP(nir_op_fneu)
943         BI_CASE_CMP(nir_op_ilt)
944         BI_CASE_CMP(nir_op_ige)
945         BI_CASE_CMP(nir_op_ieq)
946         BI_CASE_CMP(nir_op_ine)
947         BI_CASE_CMP(nir_op_uge)
948         BI_CASE_CMP(nir_op_ult)
949                 return BI_CMP;
950 
951         case nir_op_b8csel:
952         case nir_op_b16csel:
953         case nir_op_b32csel:
954                 return BI_CSEL;
955 
956         case nir_op_i2i8:
957         case nir_op_i2i16:
958         case nir_op_i2i32:
959         case nir_op_i2i64:
960         case nir_op_u2u8:
961         case nir_op_u2u16:
962         case nir_op_u2u32:
963         case nir_op_u2u64:
964         case nir_op_f2i16:
965         case nir_op_f2i32:
966         case nir_op_f2i64:
967         case nir_op_f2u16:
968         case nir_op_f2u32:
969         case nir_op_f2u64:
970         case nir_op_i2f16:
971         case nir_op_i2f32:
972         case nir_op_i2f64:
973         case nir_op_u2f16:
974         case nir_op_u2f32:
975         case nir_op_u2f64:
976         case nir_op_f2f16:
977         case nir_op_f2f32:
978         case nir_op_f2f64:
979         case nir_op_f2fmp:
980                 return BI_CONVERT;
981 
982         case nir_op_vec2:
983         case nir_op_vec3:
984         case nir_op_vec4:
985                 return BI_COMBINE;
986 
987         case nir_op_vec8:
988         case nir_op_vec16:
989                 unreachable("should've been lowered");
990 
991         case nir_op_ffma:
992         case nir_op_fmul:
993                 return BI_FMA;
994 
995         case nir_op_imin:
996         case nir_op_imax:
997         case nir_op_umin:
998         case nir_op_umax:
999         case nir_op_fmin:
1000         case nir_op_fmax:
1001                 return BI_MINMAX;
1002 
1003         case nir_op_fsat:
1004         case nir_op_fneg:
1005         case nir_op_fabs:
1006                 return BI_FMOV;
1007         case nir_op_mov:
1008                 return BI_MOV;
1009 
1010         case nir_op_fround_even:
1011         case nir_op_fceil:
1012         case nir_op_ffloor:
1013         case nir_op_ftrunc:
1014                 return BI_ROUND;
1015 
1016         case nir_op_frcp:
1017         case nir_op_frsq:
1018         case nir_op_iabs:
1019                 return BI_SPECIAL_ADD;
1020 
1021         default:
1022                 unreachable("Unknown ALU op");
1023         }
1024 }
1025 
1026 /* Gets a bi_cond for a given NIR comparison opcode. In soft mode, it will
1027  * return BI_COND_ALWAYS as a sentinel if it fails to do so (when used for
1028  * optimizations). Otherwise it will bail (when used for primary code
1029  * generation). */
1030 
1031 static enum bi_cond
bi_cond_for_nir(nir_op op,bool soft)1032 bi_cond_for_nir(nir_op op, bool soft)
1033 {
1034         switch (op) {
1035         BI_CASE_CMP(nir_op_flt)
1036         BI_CASE_CMP(nir_op_ilt)
1037         BI_CASE_CMP(nir_op_ult)
1038                 return BI_COND_LT;
1039 
1040         BI_CASE_CMP(nir_op_fge)
1041         BI_CASE_CMP(nir_op_ige)
1042         BI_CASE_CMP(nir_op_uge)
1043                 return BI_COND_GE;
1044 
1045         BI_CASE_CMP(nir_op_feq)
1046         BI_CASE_CMP(nir_op_ieq)
1047                 return BI_COND_EQ;
1048 
1049         BI_CASE_CMP(nir_op_fneu)
1050         BI_CASE_CMP(nir_op_ine)
1051                 return BI_COND_NE;
1052         default:
1053                 if (soft)
1054                         return BI_COND_ALWAYS;
1055                 else
1056                         unreachable("Invalid compare");
1057         }
1058 }
1059 
1060 static void
bi_copy_src(bi_instruction * alu,nir_alu_instr * instr,unsigned i,unsigned to,unsigned * constants_left,unsigned * constant_shift)1061 bi_copy_src(bi_instruction *alu, nir_alu_instr *instr, unsigned i, unsigned to,
1062             unsigned *constants_left, unsigned *constant_shift)
1063 {
1064         unsigned bits = nir_src_bit_size(instr->src[i].src);
1065         unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
1066 
1067         alu->src_types[to] = nir_op_infos[instr->op].input_types[i]
1068                 | bits;
1069 
1070         /* Try to inline a constant */
1071         if (nir_src_is_const(instr->src[i].src) && *constants_left && (dest_bits == bits)) {
1072                 uint64_t mask = (1ull << dest_bits) - 1;
1073                 uint64_t cons = nir_src_as_uint(instr->src[i].src);
1074 
1075                 /* Try to reuse a constant */
1076                 for (unsigned i = 0; i < (*constant_shift); i += dest_bits) {
1077                         if (((alu->constant.u64 >> i) & mask) == cons) {
1078                                 alu->src[to] = BIR_INDEX_CONSTANT | i;
1079                                 return;
1080                         }
1081                 }
1082 
1083                 alu->constant.u64 |= cons << *constant_shift;
1084                 alu->src[to] = BIR_INDEX_CONSTANT | (*constant_shift);
1085                 --(*constants_left);
1086                 (*constant_shift) += MAX2(dest_bits, 32); /* lo/hi */
1087                 return;
1088         }
1089 
1090         alu->src[to] = pan_src_index(&instr->src[i].src);
1091 
1092         /* Copy swizzle for all vectored components, replicating last component
1093          * to fill undersized */
1094 
1095         unsigned vec = alu->type == BI_COMBINE ? 1 :
1096                 MAX2(1, 32 / bits);
1097 
1098         unsigned comps = nir_ssa_alu_instr_src_components(instr, i);
1099         for (unsigned j = 0; j < vec; ++j)
1100                 alu->swizzle[to][j] = instr->src[i].swizzle[MIN2(j, comps - 1)];
1101 }
1102 
1103 static void
bi_fuse_cond(bi_instruction * csel,nir_alu_src cond,unsigned * constants_left,unsigned * constant_shift,unsigned comps,bool float_only)1104 bi_fuse_cond(bi_instruction *csel, nir_alu_src cond,
1105                 unsigned *constants_left, unsigned *constant_shift,
1106                 unsigned comps, bool float_only)
1107 {
1108         /* Bail for vector weirdness */
1109         if (cond.swizzle[0] != 0)
1110                 return;
1111 
1112         if (!cond.src.is_ssa)
1113                 return;
1114 
1115         nir_ssa_def *def = cond.src.ssa;
1116         nir_instr *parent = def->parent_instr;
1117 
1118         if (parent->type != nir_instr_type_alu)
1119                 return;
1120 
1121         nir_alu_instr *alu = nir_instr_as_alu(parent);
1122 
1123         /* Try to match a condition */
1124         enum bi_cond bcond = bi_cond_for_nir(alu->op, true);
1125 
1126         if (bcond == BI_COND_ALWAYS)
1127                 return;
1128 
1129         /* Some instructions can't compare ints */
1130         if (float_only) {
1131                 nir_alu_type T = nir_op_infos[alu->op].input_types[0];
1132                 T = nir_alu_type_get_base_type(T);
1133 
1134                 if (T != nir_type_float)
1135                         return;
1136         }
1137 
1138         /* We found one, let's fuse it in */
1139         csel->cond = bcond;
1140         bi_copy_src(csel, alu, 0, 0, constants_left, constant_shift);
1141         bi_copy_src(csel, alu, 1, 1, constants_left, constant_shift);
1142 }
1143 
1144 static void
emit_alu(bi_context * ctx,nir_alu_instr * instr)1145 emit_alu(bi_context *ctx, nir_alu_instr *instr)
1146 {
1147         /* Try some special functions */
1148         switch (instr->op) {
1149         case nir_op_fexp2:
1150                 bi_emit_fexp2(ctx, instr);
1151                 return;
1152         case nir_op_flog2:
1153                 bi_emit_flog2(ctx, instr);
1154                 return;
1155         default:
1156                 break;
1157         }
1158 
1159         /* Otherwise, assume it's something we can handle normally */
1160         bi_instruction alu = {
1161                 .type = bi_class_for_nir_alu(instr->op),
1162                 .dest = pan_dest_index(&instr->dest.dest),
1163                 .dest_type = nir_op_infos[instr->op].output_type
1164                         | nir_dest_bit_size(instr->dest.dest),
1165         };
1166 
1167         /* TODO: Implement lowering of special functions for older Bifrost */
1168         assert(alu.type != BI_SPECIAL_ADD || !(ctx->quirks & BIFROST_NO_FAST_OP));
1169 
1170         unsigned comps = nir_dest_num_components(instr->dest.dest);
1171         bool vector = comps > MAX2(1, 32 / nir_dest_bit_size(instr->dest.dest));
1172         assert(!vector || alu.type == BI_COMBINE || alu.type == BI_MOV);
1173 
1174         if (!instr->dest.dest.is_ssa) {
1175                 for (unsigned i = 0; i < comps; ++i)
1176                         assert(instr->dest.write_mask);
1177         }
1178 
1179         /* We inline constants as we go. This tracks how many constants have
1180          * been inlined, since we're limited to 64-bits of constants per
1181          * instruction */
1182 
1183         unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
1184         unsigned constants_left = (64 / dest_bits);
1185         unsigned constant_shift = 0;
1186 
1187         if (alu.type == BI_COMBINE)
1188                 constants_left = 0;
1189 
1190         /* Copy sources */
1191 
1192         unsigned num_inputs = nir_op_infos[instr->op].num_inputs;
1193         assert(num_inputs <= ARRAY_SIZE(alu.src));
1194 
1195         for (unsigned i = 0; i < num_inputs; ++i) {
1196                 unsigned f = 0;
1197 
1198                 if (i && alu.type == BI_CSEL)
1199                         f++;
1200 
1201                 bi_copy_src(&alu, instr, i, i + f, &constants_left, &constant_shift);
1202         }
1203 
1204         /* Op-specific fixup */
1205         switch (instr->op) {
1206         case nir_op_fmul:
1207                 alu.src[2] = BIR_INDEX_ZERO; /* FMA */
1208                 alu.src_types[2] = alu.src_types[1];
1209                 break;
1210         case nir_op_fsat:
1211                 alu.outmod = BIFROST_SAT; /* FMOV */
1212                 break;
1213         case nir_op_fneg:
1214                 alu.src_neg[0] = true; /* FMOV */
1215                 break;
1216         case nir_op_fabs:
1217                 alu.src_abs[0] = true; /* FMOV */
1218                 break;
1219         case nir_op_fsub:
1220                 alu.src_neg[1] = true; /* FADD */
1221                 break;
1222         case nir_op_iadd:
1223                 alu.op.imath = BI_IMATH_ADD;
1224                 /* Carry */
1225                 alu.src[2] = BIR_INDEX_ZERO;
1226                 break;
1227         case nir_op_isub:
1228                 alu.op.imath = BI_IMATH_SUB;
1229                 /* Borrow */
1230                 alu.src[2] = BIR_INDEX_ZERO;
1231                 break;
1232         case nir_op_iabs:
1233                 alu.op.special = BI_SPECIAL_IABS;
1234                 break;
1235         case nir_op_inot:
1236                 /* no dedicated bitwise not, but we can invert sources. convert to ~(a | 0) */
1237                 alu.op.bitwise = BI_BITWISE_OR;
1238                 alu.bitwise.dest_invert = true;
1239                 alu.src[1] = BIR_INDEX_ZERO;
1240                 /* zero shift */
1241                 alu.src[2] = BIR_INDEX_ZERO;
1242                 alu.src_types[2] = nir_type_uint8;
1243                 break;
1244         case nir_op_ushr:
1245                 alu.bitwise.rshift = true;
1246                 /* fallthrough */
1247         case nir_op_ishl:
1248                 alu.op.bitwise = BI_BITWISE_OR;
1249                 /* move src1 to src2 and replace with zero. underlying op is (src0 << src2) | src1 */
1250                 alu.src[2] = alu.src[1];
1251                 alu.src_types[2] = nir_type_uint8;
1252                 alu.src[1] = BIR_INDEX_ZERO;
1253                 break;
1254         case nir_op_ishr:
1255                 alu.op.bitwise = BI_BITWISE_ARSHIFT;
1256                 alu.bitwise.rshift = true;
1257                 /* move src1 to src2 and replace with zero. underlying op is (src0 >> src2) */
1258                 alu.src[2] = alu.src[1];
1259                 alu.src_types[2] = nir_type_uint8;
1260                 alu.src[1] = BIR_INDEX_ZERO;
1261                 break;
1262         case nir_op_imul:
1263                 alu.op.imul = BI_IMUL_IMUL;
1264                 break;
1265         case nir_op_fmax:
1266         case nir_op_imax:
1267         case nir_op_umax:
1268                 alu.op.minmax = BI_MINMAX_MAX; /* MINMAX */
1269                 break;
1270         case nir_op_frcp:
1271                 alu.op.special = BI_SPECIAL_FRCP;
1272                 break;
1273         case nir_op_frsq:
1274                 alu.op.special = BI_SPECIAL_FRSQ;
1275                 break;
1276         BI_CASE_CMP(nir_op_flt)
1277         BI_CASE_CMP(nir_op_ilt)
1278         BI_CASE_CMP(nir_op_fge)
1279         BI_CASE_CMP(nir_op_ige)
1280         BI_CASE_CMP(nir_op_feq)
1281         BI_CASE_CMP(nir_op_ieq)
1282         BI_CASE_CMP(nir_op_fneu)
1283         BI_CASE_CMP(nir_op_ine)
1284         BI_CASE_CMP(nir_op_uge)
1285         BI_CASE_CMP(nir_op_ult)
1286                 alu.cond = bi_cond_for_nir(instr->op, false);
1287                 break;
1288         case nir_op_fround_even:
1289                 alu.roundmode = BIFROST_RTE;
1290                 break;
1291         case nir_op_fceil:
1292                 alu.roundmode = BIFROST_RTP;
1293                 break;
1294         case nir_op_ffloor:
1295                 alu.roundmode = BIFROST_RTN;
1296                 break;
1297         case nir_op_ftrunc:
1298                 alu.roundmode = BIFROST_RTZ;
1299                 break;
1300         case nir_op_iand:
1301                 alu.op.bitwise = BI_BITWISE_AND;
1302                 /* zero shift */
1303                 alu.src[2] = BIR_INDEX_ZERO;
1304                 alu.src_types[2] = nir_type_uint8;
1305                 break;
1306         case nir_op_ior:
1307                 alu.op.bitwise = BI_BITWISE_OR;
1308                 /* zero shift */
1309                 alu.src[2] = BIR_INDEX_ZERO;
1310                 alu.src_types[2] = nir_type_uint8;
1311                 break;
1312         case nir_op_ixor:
1313                 alu.op.bitwise = BI_BITWISE_XOR;
1314                 /* zero shift */
1315                 alu.src[2] = BIR_INDEX_ZERO;
1316                 alu.src_types[2] = nir_type_uint8;
1317                 break;
1318         case nir_op_f2i32:
1319                 alu.roundmode = BIFROST_RTZ;
1320                 break;
1321 
1322         case nir_op_f2f16:
1323         case nir_op_i2i16:
1324         case nir_op_u2u16: {
1325                 if (nir_src_bit_size(instr->src[0].src) != 32)
1326                         break;
1327 
1328                 /* Should have been const folded */
1329                 assert(!nir_src_is_const(instr->src[0].src));
1330 
1331                 alu.src_types[1] = alu.src_types[0];
1332                 alu.src[1] = alu.src[0];
1333 
1334                 unsigned last = nir_dest_num_components(instr->dest.dest) - 1;
1335                 assert(last <= 1);
1336 
1337                 alu.swizzle[1][0] = instr->src[0].swizzle[last];
1338                 break;
1339         }
1340 
1341         default:
1342                 break;
1343         }
1344 
1345         if (alu.type == BI_MOV && vector) {
1346                 alu.type = BI_COMBINE;
1347 
1348                 for (unsigned i = 0; i < comps; ++i) {
1349                         alu.src[i] = alu.src[0];
1350                         alu.swizzle[i][0] = instr->src[0].swizzle[i];
1351                 }
1352         }
1353 
1354         if (alu.type == BI_CSEL) {
1355                 /* Default to csel3 */
1356                 alu.cond = BI_COND_NE;
1357                 alu.src[1] = BIR_INDEX_ZERO;
1358                 alu.src_types[1] = alu.src_types[0];
1359 
1360                 /* TODO: Reenable cond fusing when we can split up registers
1361                  * when scheduling */
1362 #if 0
1363                 bi_fuse_cond(&alu, instr->src[0],
1364                                 &constants_left, &constant_shift, comps, false);
1365 #endif
1366         }
1367 
1368         bi_emit(ctx, alu);
1369 }
1370 
1371 /* TEXS instructions assume normal 2D f32 operation but are more
1372  * space-efficient and with simpler RA/scheduling requirements*/
1373 
1374 static void
emit_texs(bi_context * ctx,nir_tex_instr * instr)1375 emit_texs(bi_context *ctx, nir_tex_instr *instr)
1376 {
1377         bi_instruction tex = {
1378                 .type = BI_TEXS,
1379                 .texture = {
1380                         .texture_index = instr->texture_index,
1381                         .sampler_index = instr->sampler_index,
1382                         .compute_lod = instr->op == nir_texop_tex,
1383                 },
1384                 .dest = pan_dest_index(&instr->dest),
1385                 .dest_type = instr->dest_type,
1386                 .src_types = { nir_type_float32, nir_type_float32 },
1387                 .vector_channels = 4
1388         };
1389 
1390         for (unsigned i = 0; i < instr->num_srcs; ++i) {
1391                 int index = pan_src_index(&instr->src[i].src);
1392 
1393                 /* We were checked ahead-of-time */
1394                 if (instr->src[i].src_type == nir_tex_src_lod)
1395                         continue;
1396 
1397                 assert (instr->src[i].src_type == nir_tex_src_coord);
1398 
1399                 tex.src[0] = index;
1400                 tex.src[1] = index;
1401                 tex.swizzle[0][0] = 0;
1402                 tex.swizzle[1][0] = 1;
1403         }
1404 
1405         bi_emit(ctx, tex);
1406 }
1407 
1408 /* Returns dimension with 0 special casing cubemaps. Shamelessly copied from Midgard */
1409 static unsigned
bifrost_tex_format(enum glsl_sampler_dim dim)1410 bifrost_tex_format(enum glsl_sampler_dim dim)
1411 {
1412         switch (dim) {
1413         case GLSL_SAMPLER_DIM_1D:
1414         case GLSL_SAMPLER_DIM_BUF:
1415                 return 1;
1416 
1417         case GLSL_SAMPLER_DIM_2D:
1418         case GLSL_SAMPLER_DIM_MS:
1419         case GLSL_SAMPLER_DIM_EXTERNAL:
1420         case GLSL_SAMPLER_DIM_RECT:
1421                 return 2;
1422 
1423         case GLSL_SAMPLER_DIM_3D:
1424                 return 3;
1425 
1426         case GLSL_SAMPLER_DIM_CUBE:
1427                 return 0;
1428 
1429         default:
1430                 DBG("Unknown sampler dim type\n");
1431                 assert(0);
1432                 return 0;
1433         }
1434 }
1435 
1436 static enum bifrost_texture_format_full
bi_texture_format(nir_alu_type T,enum bifrost_outmod outmod)1437 bi_texture_format(nir_alu_type T, enum bifrost_outmod outmod)
1438 {
1439         switch (T) {
1440         case nir_type_float16: return BIFROST_TEXTURE_FORMAT_F16 + outmod;
1441         case nir_type_float32: return BIFROST_TEXTURE_FORMAT_F32 + outmod;
1442         case nir_type_uint16:  return BIFROST_TEXTURE_FORMAT_U16;
1443         case nir_type_int16:   return BIFROST_TEXTURE_FORMAT_S16;
1444         case nir_type_uint32:  return BIFROST_TEXTURE_FORMAT_U32;
1445         case nir_type_int32:   return BIFROST_TEXTURE_FORMAT_S32;
1446         default:              unreachable("Invalid type for texturing");
1447         }
1448 }
1449 
1450 /* Array indices are specified as 32-bit uints, need to convert. In .z component from NIR */
1451 static unsigned
bi_emit_array_index(bi_context * ctx,unsigned idx,nir_alu_type T,unsigned * c)1452 bi_emit_array_index(bi_context *ctx, unsigned idx, nir_alu_type T, unsigned *c)
1453 {
1454         /* For (u)int we can just passthrough */
1455         nir_alu_type base = nir_alu_type_get_base_type(T);
1456         if (base == nir_type_int || base == nir_type_uint) {
1457                 *c = 2;
1458                 return idx;
1459         }
1460 
1461         /* Otherwise we convert */
1462         assert(T == nir_type_float16 || T == nir_type_float32);
1463 
1464         /* OpenGL ES 3.2 specification section 8.14.2 ("Coordinate Wrapping and
1465          * Texel Selection") defines the layer to be taken from clamp(RNE(r),
1466          * 0, dt - 1). So we use roundmode RTE, clamping is handled at the data
1467          * structure level */
1468         bi_instruction f2i = {
1469                 .type = BI_CONVERT,
1470                 .dest = bi_make_temp(ctx),
1471                 .dest_type = nir_type_uint32,
1472                 .src = { idx },
1473                 .src_types = { T },
1474                 .swizzle = { { 2 } },
1475                 .roundmode = BIFROST_RTE
1476         };
1477 
1478         *c = 0;
1479         bi_emit(ctx, f2i);
1480         return f2i.dest;
1481 }
1482 
1483 /* TEXC's explicit and bias LOD modes requires the LOD to be transformed to a
1484  * 16-bit 8:8 fixed-point format. We lower as:
1485  *
1486  * F32_TO_S32(clamp(x, -16.0, +16.0) * 256.0) & 0xFFFF =
1487  * MKVEC(F32_TO_S32(clamp(x * 1.0/16.0, -1.0, 1.0) * (16.0 * 256.0)), #0)
1488  */
1489 
1490 static unsigned
bi_emit_lod_88(bi_context * ctx,unsigned lod,bool fp16)1491 bi_emit_lod_88(bi_context *ctx, unsigned lod, bool fp16)
1492 {
1493         nir_alu_type T = fp16 ? nir_type_float16 : nir_type_float32;
1494 
1495         /* Sort of arbitrary. Must be less than 128.0, greater than or equal to
1496          * the max LOD (16 since we cap at 2^16 texture dimensions), and
1497          * preferably small to minimize precision loss */
1498         const float max_lod = 16.0;
1499 
1500         /* FMA.f16/f32.sat_signed, saturated, lod, #1.0/max_lod, #0 */
1501         bi_instruction fsat = {
1502                 .type = BI_FMA,
1503                 .dest = bi_make_temp(ctx),
1504                 .dest_type = nir_type_float32,
1505                 .src = { lod, BIR_INDEX_CONSTANT, BIR_INDEX_ZERO },
1506                 .src_types = { T, nir_type_float32, nir_type_float32 },
1507                 .outmod = BIFROST_SAT_SIGNED,
1508                 .roundmode = BIFROST_RTE,
1509                 .constant = {
1510                         .u64 = fui(1.0 / max_lod)
1511                 },
1512         };
1513 
1514         /* FMA.f32 scaled, saturated, lod, #(max_lod * 256.0), #0 */
1515         bi_instruction fmul = {
1516                 .type = BI_FMA,
1517                 .dest = bi_make_temp(ctx),
1518                 .dest_type = T,
1519                 .src = { fsat.dest, BIR_INDEX_CONSTANT, BIR_INDEX_ZERO },
1520                 .src_types = { nir_type_float32, nir_type_float32, nir_type_float32 },
1521                 .roundmode = BIFROST_RTE,
1522                 .constant = {
1523                         .u64 = fui(max_lod * 256.0)
1524                 },
1525         };
1526 
1527         /* F32_TO_S32 s32, scaled */
1528         bi_instruction f2i = {
1529                 .type = BI_CONVERT,
1530                 .dest = bi_make_temp(ctx),
1531                 .dest_type = nir_type_int32,
1532                 .src = { fmul.dest },
1533                 .src_types = { T },
1534                 .roundmode = BIFROST_RTZ
1535         };
1536 
1537         /* MKVEC.v2i16 s32.h0, #0 */
1538         bi_instruction mkvec = {
1539                 .type = BI_SELECT,
1540                 .dest = bi_make_temp(ctx),
1541                 .dest_type = nir_type_int16,
1542                 .src = { f2i.dest, BIR_INDEX_ZERO },
1543                 .src_types = { nir_type_int16, nir_type_int16 },
1544         };
1545 
1546         bi_emit(ctx, fsat);
1547         bi_emit(ctx, fmul);
1548         bi_emit(ctx, f2i);
1549         bi_emit(ctx, mkvec);
1550 
1551         return mkvec.dest;
1552 }
1553 
1554 /* FETCH takes a 32-bit staging register containing the LOD as an integer in
1555  * the bottom 16-bits and (if present) the cube face index in the top 16-bits.
1556  * TODO: Cube face.
1557  */
1558 
1559 static unsigned
bi_emit_lod_cube(bi_context * ctx,unsigned lod)1560 bi_emit_lod_cube(bi_context *ctx, unsigned lod)
1561 {
1562         /* MKVEC.v2i16 out, lod.h0, #0 */
1563         bi_instruction mkvec = {
1564                 .type = BI_SELECT,
1565                 .dest = bi_make_temp(ctx),
1566                 .dest_type = nir_type_int16,
1567                 .src = { lod, BIR_INDEX_ZERO },
1568                 .src_types = { nir_type_int16, nir_type_int16 },
1569         };
1570 
1571         bi_emit(ctx, mkvec);
1572 
1573         return mkvec.dest;
1574 }
1575 
1576 /* The hardware specifies texel offsets and multisample indices together as a
1577  * u8vec4 <offset, ms index>. By default all are zero, so if have either a
1578  * nonzero texel offset or a nonzero multisample index, we build a u8vec4 with
1579  * the bits we need and return that to be passed as a staging register. Else we
1580  * return 0 to avoid allocating a data register when everything is zero. */
1581 
1582 static unsigned
bi_emit_tex_offset_ms_index(bi_context * ctx,nir_tex_instr * instr)1583 bi_emit_tex_offset_ms_index(bi_context *ctx, nir_tex_instr *instr)
1584 {
1585         unsigned dest = 0;
1586 
1587         /* TODO: offsets */
1588         assert(nir_tex_instr_src_index(instr, nir_tex_src_offset) < 0);
1589 
1590         int ms_idx = nir_tex_instr_src_index(instr, nir_tex_src_ms_index);
1591         if (ms_idx >= 0 &&
1592             (!nir_src_is_const(instr->src[ms_idx].src) ||
1593              nir_src_as_uint(instr->src[ms_idx].src) != 0)) {
1594                 bi_instruction shl = {
1595                         .type = BI_BITWISE,
1596                         .op.bitwise = BI_BITWISE_OR,
1597                         .dest = bi_make_temp(ctx),
1598                         .dest_type = nir_type_uint32,
1599                         .src = {
1600                                 pan_src_index(&instr->src[ms_idx].src),
1601                                 BIR_INDEX_ZERO,
1602                                 BIR_INDEX_CONSTANT | 0,
1603                         },
1604                         .src_types = {
1605                                 nir_type_uint32,
1606                                 nir_type_uint32,
1607                                 nir_type_uint8,
1608                         },
1609                         .constant.u8[0] = 24,
1610                 };
1611 
1612                 bi_emit(ctx, shl);
1613                 dest = shl.dest;
1614         }
1615 
1616         return dest;
1617 }
1618 
1619 static void
bi_lower_cube_coord(bi_context * ctx,unsigned coord,unsigned * face,unsigned * s,unsigned * t)1620 bi_lower_cube_coord(bi_context *ctx, unsigned coord,
1621                     unsigned *face, unsigned *s, unsigned *t)
1622 {
1623         /* Compute max { |x|, |y|, |z| } */
1624         bi_instruction cubeface1 = {
1625                 .type = BI_SPECIAL_FMA,
1626                 .op.special = BI_SPECIAL_CUBEFACE1,
1627                 .dest = bi_make_temp(ctx),
1628                 .dest_type = nir_type_float32,
1629                 .src = { coord, coord, coord },
1630                 .src_types = { nir_type_float32, nir_type_float32, nir_type_float32 },
1631                 .swizzle = { {0}, {1}, {2} }
1632         };
1633 
1634         /* Calculate packed exponent / face / infinity. In reality this reads
1635          * the destination from cubeface1 but that's handled by lowering */
1636         bi_instruction cubeface2 = {
1637                 .type = BI_SPECIAL_ADD,
1638                 .op.special = BI_SPECIAL_CUBEFACE2,
1639                 .dest = bi_make_temp(ctx),
1640                 .dest_type = nir_type_uint32,
1641                 .src = { coord, coord, coord },
1642                 .src_types = { nir_type_float32, nir_type_float32, nir_type_float32 },
1643                 .swizzle = { {0}, {1}, {2} }
1644         };
1645 
1646         /* Select S coordinate */
1647         bi_instruction cube_ssel = {
1648                 .type = BI_SPECIAL_ADD,
1649                 .op.special = BI_SPECIAL_CUBE_SSEL,
1650                 .dest = bi_make_temp(ctx),
1651                 .dest_type = nir_type_float32,
1652                 .src = { coord, coord, cubeface2.dest },
1653                 .src_types = { nir_type_float32, nir_type_float32, nir_type_uint32 },
1654                 .swizzle = { {2}, {0} }
1655         };
1656 
1657         /* Select T coordinate */
1658         bi_instruction cube_tsel = {
1659                 .type = BI_SPECIAL_ADD,
1660                 .op.special = BI_SPECIAL_CUBE_TSEL,
1661                 .dest = bi_make_temp(ctx),
1662                 .dest_type = nir_type_float32,
1663                 .src = { coord, coord, cubeface2.dest },
1664                 .src_types = { nir_type_float32, nir_type_float32, nir_type_uint32 },
1665                 .swizzle = { {1}, {2} }
1666         };
1667 
1668         /* The OpenGL ES specification requires us to transform an input vector
1669          * (x, y, z) to the coordinate, given the selected S/T:
1670          *
1671          * (1/2 ((s / max{x,y,z}) + 1), 1/2 ((t / max{x, y, z}) + 1))
1672          *
1673          * We implement (s shown, t similar) in a form friendlier to FMA
1674          * instructions, and clamp coordinates at the end for correct
1675          * NaN/infinity handling:
1676          *
1677          * fsat(s * (0.5 * (1 / max{x, y, z})) + 0.5)
1678          *
1679          * Take the reciprocal of max{x, y, z}
1680          */
1681 
1682         bi_instruction frcp = {
1683                 .type = BI_SPECIAL_ADD,
1684                 .op.special = BI_SPECIAL_FRCP,
1685                 .dest = bi_make_temp(ctx),
1686                 .dest_type = nir_type_float32,
1687                 .src = { cubeface1.dest },
1688                 .src_types = { nir_type_float32 },
1689         };
1690 
1691         /* Calculate 0.5 * (1.0 / max{x, y, z}) */
1692         bi_instruction fma1 = {
1693                 .type = BI_FMA,
1694                 .dest = bi_make_temp(ctx),
1695                 .dest_type = nir_type_float32,
1696                 .src = { frcp.dest, BIR_INDEX_CONSTANT | 0, BIR_INDEX_ZERO },
1697                 .src_types = { nir_type_float32, nir_type_float32, nir_type_float32 },
1698                 .constant.u64 = 0x3f000000, /* 0.5f */
1699         };
1700 
1701         /* Transform the s coordinate */
1702         bi_instruction fma2 = {
1703                 .type = BI_FMA,
1704                 .outmod = BIFROST_SAT,
1705                 .dest = bi_make_temp(ctx),
1706                 .dest_type = nir_type_float32,
1707                 .src = { fma1.dest, cube_ssel.dest, BIR_INDEX_CONSTANT | 0 },
1708                 .src_types = { nir_type_float32, nir_type_float32, nir_type_float32 },
1709                 .constant.u64 = 0x3f000000, /* 0.5f */
1710         };
1711 
1712         /* Transform the t coordinate */
1713         bi_instruction fma3 = {
1714                 .type = BI_FMA,
1715                 .outmod = BIFROST_SAT,
1716                 .dest = bi_make_temp(ctx),
1717                 .dest_type = nir_type_float32,
1718                 .src = { fma1.dest, cube_tsel.dest, BIR_INDEX_CONSTANT | 0 },
1719                 .src_types = { nir_type_float32, nir_type_float32, nir_type_float32 },
1720                 .constant.u64 = 0x3f000000, /* 0.5f */
1721         };
1722 
1723         bi_emit(ctx, cubeface1);
1724         bi_emit(ctx, cubeface2);
1725         bi_emit(ctx, cube_ssel);
1726         bi_emit(ctx, cube_tsel);
1727         bi_emit(ctx, frcp);
1728         bi_emit(ctx, fma1);
1729         bi_emit(ctx, fma2);
1730         bi_emit(ctx, fma3);
1731 
1732         /* Cube face is stored in bit[29:31], we don't apply the shift here
1733          * because the TEXS_CUBE and TEXC instructions expect the face index to
1734          * be at this position.
1735          */
1736         *face = cubeface2.dest;
1737         *s = fma2.dest;
1738         *t = fma3.dest;
1739 }
1740 
1741 static void
texc_pack_cube_coord(bi_context * ctx,unsigned coord,unsigned * face_s,unsigned * t)1742 texc_pack_cube_coord(bi_context *ctx, unsigned coord,
1743                      unsigned *face_s, unsigned *t)
1744 {
1745         unsigned face, s;
1746 
1747         bi_lower_cube_coord(ctx, coord, &face, &s, t);
1748 
1749         bi_instruction and1 = {
1750                 .type = BI_BITWISE,
1751                 .op.bitwise = BI_BITWISE_AND,
1752                 .dest = bi_make_temp(ctx),
1753                 .dest_type = nir_type_uint32,
1754                 .src = { face, BIR_INDEX_CONSTANT | 0, BIR_INDEX_ZERO },
1755                 .src_types = { nir_type_uint32, nir_type_uint32, nir_type_uint8 },
1756                 .constant.u64 = 0xe0000000,
1757         };
1758 
1759         bi_instruction and2 = {
1760                 .type = BI_BITWISE,
1761                 .op.bitwise = BI_BITWISE_AND,
1762                 .dest = bi_make_temp(ctx),
1763                 .dest_type = nir_type_uint32,
1764                 .src = { s, BIR_INDEX_CONSTANT | 0, BIR_INDEX_ZERO },
1765                 .src_types = { nir_type_uint32, nir_type_uint32, nir_type_uint8 },
1766                 .constant.u64 = 0x1fffffff,
1767         };
1768 
1769         bi_instruction or = {
1770                 .type = BI_BITWISE,
1771                 .op.bitwise = BI_BITWISE_OR,
1772                 .dest = bi_make_temp(ctx),
1773                 .dest_type = nir_type_uint32,
1774                 .src = { and1.dest, and2.dest, BIR_INDEX_ZERO },
1775                 .src_types = { nir_type_uint32, nir_type_uint32, nir_type_uint8 },
1776         };
1777 
1778         bi_emit(ctx, and1);
1779         bi_emit(ctx, and2);
1780         bi_emit(ctx, or);
1781 
1782         /* packed cube-face + s */
1783         *face_s = or.dest;
1784 }
1785 
1786 /* Map to the main texture op used. Some of these (txd in particular) will
1787  * lower to multiple texture ops with different opcodes (GRDESC_DER + TEX in
1788  * sequence). We assume that lowering is handled elsewhere.
1789  */
1790 
1791 static enum bifrost_tex_op
bi_tex_op(nir_texop op)1792 bi_tex_op(nir_texop op)
1793 {
1794         switch (op) {
1795         case nir_texop_tex:
1796         case nir_texop_txb:
1797         case nir_texop_txl:
1798         case nir_texop_txd:
1799         case nir_texop_tex_prefetch:
1800                 return BIFROST_TEX_OP_TEX;
1801         case nir_texop_txf:
1802         case nir_texop_txf_ms:
1803         case nir_texop_txf_ms_fb:
1804         case nir_texop_txf_ms_mcs:
1805         case nir_texop_tg4:
1806                 return BIFROST_TEX_OP_FETCH;
1807         case nir_texop_txs:
1808         case nir_texop_lod:
1809         case nir_texop_query_levels:
1810         case nir_texop_texture_samples:
1811         case nir_texop_samples_identical:
1812                 unreachable("should've been lowered");
1813         default:
1814                 unreachable("unsupported tex op");
1815         }
1816 }
1817 
1818 /* Data registers required by texturing in the order they appear. All are
1819  * optional, the texture operation descriptor determines which are present.
1820  * Note since 3D arrays are not permitted at an API level, Z_COORD and
1821  * ARRAY/SHADOW are exlusive, so TEXC in practice reads at most 8 registers */
1822 
1823 enum bifrost_tex_dreg {
1824         BIFROST_TEX_DREG_Z_COORD = 0,
1825         BIFROST_TEX_DREG_Y_DELTAS = 1,
1826         BIFROST_TEX_DREG_LOD = 2,
1827         BIFROST_TEX_DREG_GRDESC_HI = 3,
1828         BIFROST_TEX_DREG_SHADOW = 4,
1829         BIFROST_TEX_DREG_ARRAY = 5,
1830         BIFROST_TEX_DREG_OFFSETMS = 6,
1831         BIFROST_TEX_DREG_SAMPLER = 7,
1832         BIFROST_TEX_DREG_TEXTURE = 8,
1833         BIFROST_TEX_DREG_COUNT,
1834 };
1835 
1836 static void
emit_texc(bi_context * ctx,nir_tex_instr * instr)1837 emit_texc(bi_context *ctx, nir_tex_instr *instr)
1838 {
1839         /* TODO: support more with other encodings */
1840         assert(instr->sampler_index < 16);
1841 
1842         /* TODO: support more ops */
1843         switch (instr->op) {
1844         case nir_texop_tex:
1845         case nir_texop_txl:
1846         case nir_texop_txb:
1847         case nir_texop_txf:
1848         case nir_texop_txf_ms:
1849                 break;
1850         default:
1851                 unreachable("Unsupported texture op");
1852         }
1853 
1854         bi_instruction tex = {
1855                 .type = BI_TEXC,
1856                 .dest = pan_dest_index(&instr->dest),
1857                 .dest_type = instr->dest_type,
1858                 .src_types = {
1859                         /* Staging registers */
1860                         nir_type_uint32,
1861                         nir_type_float32, nir_type_float32,
1862                         nir_type_uint32
1863                 },
1864                 .vector_channels = 4
1865         };
1866 
1867         struct bifrost_texture_operation desc = {
1868                 .sampler_index_or_mode = instr->sampler_index,
1869                 .index = instr->texture_index,
1870                 .immediate_indices = 1, /* TODO */
1871                 .op = bi_tex_op(instr->op),
1872                 .offset_or_bias_disable = false, /* TODO */
1873                 .shadow_or_clamp_disable = instr->is_shadow,
1874                 .array = instr->is_array,
1875                 .dimension = bifrost_tex_format(instr->sampler_dim),
1876                 .format = bi_texture_format(instr->dest_type, BIFROST_NONE), /* TODO */
1877                 .mask = (1 << tex.vector_channels) - 1
1878         };
1879 
1880         switch (desc.op) {
1881         case BIFROST_TEX_OP_TEX:
1882                 desc.lod_or_fetch = BIFROST_LOD_MODE_COMPUTE;
1883                 break;
1884         case BIFROST_TEX_OP_FETCH:
1885                 /* TODO: gathers */
1886                 desc.lod_or_fetch = BIFROST_TEXTURE_FETCH_TEXEL;
1887                 break;
1888         default:
1889                 unreachable("texture op unsupported");
1890         }
1891 
1892         /* 32-bit indices to be allocated as consecutive data registers. */
1893         unsigned dregs[BIFROST_TEX_DREG_COUNT] = { 0 };
1894         unsigned dregs_swiz[BIFROST_TEX_DREG_COUNT] = { 0 };
1895 
1896         for (unsigned i = 0; i < instr->num_srcs; ++i) {
1897                 unsigned index = pan_src_index(&instr->src[i].src);
1898                 unsigned sz = nir_src_bit_size(instr->src[i].src);
1899                 ASSERTED nir_alu_type base = nir_tex_instr_src_type(instr, i);
1900                 nir_alu_type T = base | sz;
1901 
1902                 switch (instr->src[i].src_type) {
1903                 case nir_tex_src_coord:
1904                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1905                                 texc_pack_cube_coord(ctx, index,
1906                                                      &tex.src[1], &tex.src[2]);
1907 			} else {
1908                                 tex.src[1] = index;
1909                                 tex.src[2] = index;
1910                                 tex.swizzle[1][0] = 0;
1911                                 tex.swizzle[2][0] = 1;
1912 
1913                                 unsigned components = nir_src_num_components(instr->src[i].src);
1914                                 assert(components == 2 || components == 3);
1915 
1916                                 if (components == 2) {
1917                                         /* nothing to do */
1918                                 } else if (desc.array) {
1919                                         /* 2D array */
1920                                         dregs[BIFROST_TEX_DREG_ARRAY] =
1921                                                 bi_emit_array_index(ctx, index, T,
1922                                                         &dregs_swiz[BIFROST_TEX_DREG_ARRAY]);
1923                                 } else {
1924                                         /* 3D */
1925                                         dregs[BIFROST_TEX_DREG_Z_COORD] = index;
1926                                         dregs_swiz[BIFROST_TEX_DREG_Z_COORD] = 2;
1927                                 }
1928                         }
1929                         break;
1930 
1931                 case nir_tex_src_lod:
1932                         if (nir_src_is_const(instr->src[i].src) && nir_src_as_uint(instr->src[i].src) == 0) {
1933                                 desc.lod_or_fetch = BIFROST_LOD_MODE_ZERO;
1934                         } else if (desc.op == BIFROST_TEX_OP_TEX) {
1935                                 assert(base == nir_type_float);
1936 
1937                                 assert(sz == 16 || sz == 32);
1938                                 dregs[BIFROST_TEX_DREG_LOD] =
1939                                         bi_emit_lod_88(ctx, index, sz == 16);
1940                                 desc.lod_or_fetch = BIFROST_LOD_MODE_EXPLICIT;
1941                         } else {
1942                                 assert(desc.op == BIFROST_TEX_OP_FETCH);
1943                                 assert(base == nir_type_uint || base == nir_type_int);
1944                                 assert(sz == 16 || sz == 32);
1945 
1946                                 dregs[BIFROST_TEX_DREG_LOD] =
1947                                         bi_emit_lod_cube(ctx, index);
1948                         }
1949 
1950                         break;
1951 
1952                 case nir_tex_src_bias:
1953                         /* Upper 16-bits interpreted as a clamp, leave zero */
1954                         assert(desc.op == BIFROST_TEX_OP_TEX);
1955                         assert(base == nir_type_float);
1956                         assert(sz == 16 || sz == 32);
1957                         dregs[BIFROST_TEX_DREG_LOD] =
1958                                 bi_emit_lod_88(ctx, index, sz == 16);
1959                         desc.lod_or_fetch = BIFROST_LOD_MODE_BIAS;
1960                         break;
1961 
1962                 case nir_tex_src_ms_index:
1963                 case nir_tex_src_offset:
1964                         if (desc.offset_or_bias_disable)
1965                                 break;
1966 
1967                         dregs[BIFROST_TEX_DREG_OFFSETMS] =
1968 	                        bi_emit_tex_offset_ms_index(ctx, instr);
1969                         if (dregs[BIFROST_TEX_DREG_OFFSETMS])
1970                                 desc.offset_or_bias_disable = true;
1971                         break;
1972 
1973                 default:
1974                         unreachable("Unhandled src type in texc emit");
1975                 }
1976         }
1977 
1978         /* Allocate data registers contiguously */
1979         bi_instruction combine = {
1980                 .type = BI_COMBINE,
1981                 .dest_type = nir_type_uint32,
1982                 .dest = bi_make_temp(ctx),
1983                 .src_types = {
1984                         nir_type_uint32, nir_type_uint32,
1985                         nir_type_uint32, nir_type_uint32,
1986                 },
1987         };
1988 
1989         unsigned dreg_index = 0;
1990 
1991         for (unsigned i = 0; i < ARRAY_SIZE(dregs); ++i) {
1992                 assert(dreg_index < 4);
1993 
1994                 if (dregs[i]) {
1995                         combine.swizzle[dreg_index][0] = dregs_swiz[i];
1996                         combine.src[dreg_index++] = dregs[i];
1997                 }
1998         }
1999 
2000         if (dreg_index > 1) {
2001                 /* Pass combined data registers together */
2002                 tex.src[0] = combine.dest;
2003                 bi_emit(ctx, combine);
2004 
2005                 for (unsigned i = 0; i < dreg_index; ++i)
2006                         tex.swizzle[0][i] = i;
2007         } else if (dreg_index == 1) {
2008                 tex.src[0] = combine.src[0];
2009                 tex.swizzle[0][0] = combine.swizzle[0][0];
2010         } else {
2011                 tex.src[0] = tex.dest;
2012         }
2013 
2014         /* Pass the texture operation descriptor in src2 */
2015         tex.src[3] = BIR_INDEX_CONSTANT;
2016         memcpy(&tex.constant.u64, &desc, sizeof(desc));
2017 
2018         bi_emit(ctx, tex);
2019 }
2020 
2021 /* Simple textures ops correspond to NIR tex or txl with LOD = 0 on 2D (or cube
2022  * map, TODO) textures. Anything else needs a complete texture op. */
2023 
2024 static bool
bi_is_normal_tex(gl_shader_stage stage,nir_tex_instr * instr)2025 bi_is_normal_tex(gl_shader_stage stage, nir_tex_instr *instr)
2026 {
2027         if (instr->op == nir_texop_tex)
2028                 return true;
2029 
2030         if (instr->op != nir_texop_txl)
2031                 return false;
2032 
2033         int lod_idx = nir_tex_instr_src_index(instr, nir_tex_src_lod);
2034         if (lod_idx < 0)
2035                 return true;
2036 
2037         nir_src lod = instr->src[lod_idx].src;
2038         return nir_src_is_const(lod) && nir_src_as_uint(lod) == 0;
2039 }
2040 
2041 static void
emit_tex(bi_context * ctx,nir_tex_instr * instr)2042 emit_tex(bi_context *ctx, nir_tex_instr *instr)
2043 {
2044         nir_alu_type base = nir_alu_type_get_base_type(instr->dest_type);
2045         unsigned sz =  nir_dest_bit_size(instr->dest);
2046         instr->dest_type = base | sz;
2047 
2048         bool is_normal = bi_is_normal_tex(ctx->stage, instr);
2049         bool is_2d = instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
2050                 instr->sampler_dim == GLSL_SAMPLER_DIM_EXTERNAL;
2051         bool is_f = base == nir_type_float && (sz == 16 || sz == 32);
2052 
2053         if (is_normal && is_2d && is_f && !instr->is_shadow && !instr->is_array)
2054                 emit_texs(ctx, instr);
2055         else
2056                 emit_texc(ctx, instr);
2057 }
2058 
2059 static void
emit_instr(bi_context * ctx,struct nir_instr * instr)2060 emit_instr(bi_context *ctx, struct nir_instr *instr)
2061 {
2062         switch (instr->type) {
2063         case nir_instr_type_load_const:
2064                 emit_load_const(ctx, nir_instr_as_load_const(instr));
2065                 break;
2066 
2067         case nir_instr_type_intrinsic:
2068                 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2069                 break;
2070 
2071         case nir_instr_type_alu:
2072                 emit_alu(ctx, nir_instr_as_alu(instr));
2073                 break;
2074 
2075         case nir_instr_type_tex:
2076                 emit_tex(ctx, nir_instr_as_tex(instr));
2077                 break;
2078 
2079         case nir_instr_type_jump:
2080                 emit_jump(ctx, nir_instr_as_jump(instr));
2081                 break;
2082 
2083         case nir_instr_type_ssa_undef:
2084                 unreachable("should've been lowered");
2085 
2086         default:
2087                 unreachable("Unhandled instruction type");
2088                 break;
2089         }
2090 }
2091 
2092 
2093 
2094 static bi_block *
create_empty_block(bi_context * ctx)2095 create_empty_block(bi_context *ctx)
2096 {
2097         bi_block *blk = rzalloc(ctx, bi_block);
2098 
2099         blk->base.predecessors = _mesa_set_create(blk,
2100                         _mesa_hash_pointer,
2101                         _mesa_key_pointer_equal);
2102 
2103         return blk;
2104 }
2105 
2106 static bi_block *
emit_block(bi_context * ctx,nir_block * block)2107 emit_block(bi_context *ctx, nir_block *block)
2108 {
2109         if (ctx->after_block) {
2110                 ctx->current_block = ctx->after_block;
2111                 ctx->after_block = NULL;
2112         } else {
2113                 ctx->current_block = create_empty_block(ctx);
2114         }
2115 
2116         list_addtail(&ctx->current_block->base.link, &ctx->blocks);
2117         list_inithead(&ctx->current_block->base.instructions);
2118 
2119         nir_foreach_instr(instr, block) {
2120                 emit_instr(ctx, instr);
2121                 ++ctx->instruction_count;
2122         }
2123 
2124         return ctx->current_block;
2125 }
2126 
2127 /* Emits an unconditional branch to the end of the current block, returning a
2128  * pointer so the user can fill in details */
2129 
2130 static bi_instruction *
bi_emit_branch(bi_context * ctx)2131 bi_emit_branch(bi_context *ctx)
2132 {
2133         bi_instruction branch = {
2134                 .type = BI_BRANCH,
2135                 .cond = BI_COND_ALWAYS
2136         };
2137 
2138         return bi_emit(ctx, branch);
2139 }
2140 
2141 /* Sets a condition for a branch by examing the NIR condition. If we're
2142  * familiar with the condition, we unwrap it to fold it into the branch
2143  * instruction. Otherwise, we consume the condition directly. We
2144  * generally use 1-bit booleans which allows us to use small types for
2145  * the conditions.
2146  */
2147 
2148 static void
bi_set_branch_cond(bi_instruction * branch,nir_src * cond,bool invert)2149 bi_set_branch_cond(bi_instruction *branch, nir_src *cond, bool invert)
2150 {
2151         /* TODO: Try to unwrap instead of always bailing */
2152         branch->src[0] = pan_src_index(cond);
2153         branch->src[1] = BIR_INDEX_ZERO;
2154         branch->src_types[0] = branch->src_types[1] = nir_type_uint |
2155                 nir_src_bit_size(*cond);
2156         branch->cond = invert ? BI_COND_EQ : BI_COND_NE;
2157 }
2158 
2159 static void
emit_if(bi_context * ctx,nir_if * nif)2160 emit_if(bi_context *ctx, nir_if *nif)
2161 {
2162         bi_block *before_block = ctx->current_block;
2163 
2164         /* Speculatively emit the branch, but we can't fill it in until later */
2165         bi_instruction *then_branch = bi_emit_branch(ctx);
2166         bi_set_branch_cond(then_branch, &nif->condition, true);
2167 
2168         /* Emit the two subblocks. */
2169         bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
2170         bi_block *end_then_block = ctx->current_block;
2171 
2172         /* Emit a jump from the end of the then block to the end of the else */
2173         bi_instruction *then_exit = bi_emit_branch(ctx);
2174 
2175         /* Emit second block, and check if it's empty */
2176 
2177         int count_in = ctx->instruction_count;
2178         bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
2179         bi_block *end_else_block = ctx->current_block;
2180         ctx->after_block = create_empty_block(ctx);
2181 
2182         /* Now that we have the subblocks emitted, fix up the branches */
2183 
2184         assert(then_block);
2185         assert(else_block);
2186 
2187         if (ctx->instruction_count == count_in) {
2188                 /* The else block is empty, so don't emit an exit jump */
2189                 bi_remove_instruction(then_exit);
2190                 then_branch->branch_target = ctx->after_block;
2191                 pan_block_add_successor(&end_then_block->base, &ctx->after_block->base); /* fallthrough */
2192         } else {
2193                 then_branch->branch_target = else_block;
2194                 then_exit->branch_target = ctx->after_block;
2195                 pan_block_add_successor(&end_then_block->base, &then_exit->branch_target->base);
2196                 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base); /* fallthrough */
2197         }
2198 
2199         pan_block_add_successor(&before_block->base, &then_branch->branch_target->base); /* then_branch */
2200         pan_block_add_successor(&before_block->base, &then_block->base); /* fallthrough */
2201 }
2202 
2203 static void
emit_loop(bi_context * ctx,nir_loop * nloop)2204 emit_loop(bi_context *ctx, nir_loop *nloop)
2205 {
2206         /* Remember where we are */
2207         bi_block *start_block = ctx->current_block;
2208 
2209         bi_block *saved_break = ctx->break_block;
2210         bi_block *saved_continue = ctx->continue_block;
2211 
2212         ctx->continue_block = create_empty_block(ctx);
2213         ctx->break_block = create_empty_block(ctx);
2214         ctx->after_block = ctx->continue_block;
2215 
2216         /* Emit the body itself */
2217         emit_cf_list(ctx, &nloop->body);
2218 
2219         /* Branch back to loop back */
2220         bi_instruction *br_back = bi_emit_branch(ctx);
2221         br_back->branch_target = ctx->continue_block;
2222         pan_block_add_successor(&start_block->base, &ctx->continue_block->base);
2223         pan_block_add_successor(&ctx->current_block->base, &ctx->continue_block->base);
2224 
2225         ctx->after_block = ctx->break_block;
2226 
2227         /* Pop off */
2228         ctx->break_block = saved_break;
2229         ctx->continue_block = saved_continue;
2230         ++ctx->loop_count;
2231 }
2232 
2233 static bi_block *
emit_cf_list(bi_context * ctx,struct exec_list * list)2234 emit_cf_list(bi_context *ctx, struct exec_list *list)
2235 {
2236         bi_block *start_block = NULL;
2237 
2238         foreach_list_typed(nir_cf_node, node, node, list) {
2239                 switch (node->type) {
2240                 case nir_cf_node_block: {
2241                         bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2242 
2243                         if (!start_block)
2244                                 start_block = block;
2245 
2246                         break;
2247                 }
2248 
2249                 case nir_cf_node_if:
2250                         emit_if(ctx, nir_cf_node_as_if(node));
2251                         break;
2252 
2253                 case nir_cf_node_loop:
2254                         emit_loop(ctx, nir_cf_node_as_loop(node));
2255                         break;
2256 
2257                 default:
2258                         unreachable("Unknown control flow");
2259                 }
2260         }
2261 
2262         return start_block;
2263 }
2264 
2265 static int
glsl_type_size(const struct glsl_type * type,bool bindless)2266 glsl_type_size(const struct glsl_type *type, bool bindless)
2267 {
2268         return glsl_count_attribute_slots(type, false);
2269 }
2270 
2271 static void
bi_optimize_nir(nir_shader * nir)2272 bi_optimize_nir(nir_shader *nir)
2273 {
2274         bool progress;
2275         unsigned lower_flrp = 16 | 32 | 64;
2276 
2277         NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
2278         NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
2279 
2280         nir_lower_tex_options lower_tex_options = {
2281                 .lower_txs_lod = true,
2282                 .lower_txp = ~0,
2283                 .lower_tex_without_implicit_lod = true,
2284                 .lower_txd = true,
2285         };
2286 
2287         NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
2288         NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
2289         NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
2290 
2291         do {
2292                 progress = false;
2293 
2294                 NIR_PASS(progress, nir, nir_lower_var_copies);
2295                 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
2296 
2297                 NIR_PASS(progress, nir, nir_copy_prop);
2298                 NIR_PASS(progress, nir, nir_opt_remove_phis);
2299                 NIR_PASS(progress, nir, nir_opt_dce);
2300                 NIR_PASS(progress, nir, nir_opt_dead_cf);
2301                 NIR_PASS(progress, nir, nir_opt_cse);
2302                 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
2303                 NIR_PASS(progress, nir, nir_opt_algebraic);
2304                 NIR_PASS(progress, nir, nir_opt_constant_folding);
2305 
2306                 if (lower_flrp != 0) {
2307                         bool lower_flrp_progress = false;
2308                         NIR_PASS(lower_flrp_progress,
2309                                  nir,
2310                                  nir_lower_flrp,
2311                                  lower_flrp,
2312                                  false /* always_precise */);
2313                         if (lower_flrp_progress) {
2314                                 NIR_PASS(progress, nir,
2315                                          nir_opt_constant_folding);
2316                                 progress = true;
2317                         }
2318 
2319                         /* Nothing should rematerialize any flrps, so we only
2320                          * need to do this lowering once.
2321                          */
2322                         lower_flrp = 0;
2323                 }
2324 
2325                 NIR_PASS(progress, nir, nir_opt_undef);
2326                 NIR_PASS(progress, nir, nir_undef_to_zero);
2327 
2328                 NIR_PASS(progress, nir, nir_opt_loop_unroll,
2329                          nir_var_shader_in |
2330                          nir_var_shader_out |
2331                          nir_var_function_temp);
2332         } while (progress);
2333 
2334         NIR_PASS(progress, nir, nir_opt_algebraic_late);
2335         NIR_PASS(progress, nir, nir_lower_bool_to_int32);
2336         NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
2337         NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
2338         NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
2339 
2340         /* Take us out of SSA */
2341         NIR_PASS(progress, nir, nir_lower_locals_to_regs);
2342         NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
2343         NIR_PASS(progress, nir, nir_convert_from_ssa, true);
2344 }
2345 
2346 panfrost_program *
bifrost_compile_shader_nir(void * mem_ctx,nir_shader * nir,const struct panfrost_compile_inputs * inputs)2347 bifrost_compile_shader_nir(void *mem_ctx, nir_shader *nir,
2348                            const struct panfrost_compile_inputs *inputs)
2349 {
2350         panfrost_program *program = rzalloc(mem_ctx, panfrost_program);
2351 
2352         bifrost_debug = debug_get_option_bifrost_debug();
2353 
2354         bi_context *ctx = rzalloc(NULL, bi_context);
2355         ctx->nir = nir;
2356         ctx->stage = nir->info.stage;
2357         ctx->quirks = bifrost_get_quirks(inputs->gpu_id);
2358         ctx->is_blend = inputs->is_blend;
2359         ctx->blend_desc = inputs->blend.bifrost_blend_desc;
2360         memcpy(ctx->blend_constants, inputs->blend.constants, sizeof(ctx->blend_constants));
2361         list_inithead(&ctx->blocks);
2362 
2363         /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2364          * (so we don't accidentally duplicate the epilogue since mesa/st has
2365          * messed with our I/O quite a bit already) */
2366 
2367         NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2368 
2369         if (ctx->stage == MESA_SHADER_VERTEX) {
2370                 NIR_PASS_V(nir, nir_lower_viewport_transform);
2371                 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2372         }
2373 
2374         NIR_PASS_V(nir, nir_split_var_copies);
2375         NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2376         NIR_PASS_V(nir, nir_lower_var_copies);
2377         NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2378         NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
2379                         glsl_type_size, 0);
2380         NIR_PASS_V(nir, nir_lower_ssbo);
2381         NIR_PASS_V(nir, pan_nir_lower_zs_store);
2382         // TODO: re-enable when fp16 is flipped on
2383         // NIR_PASS_V(nir, nir_lower_mediump_outputs);
2384 
2385         bi_optimize_nir(nir);
2386 
2387         NIR_PASS_V(nir, pan_nir_reorder_writeout);
2388 
2389         if (bifrost_debug & BIFROST_DBG_SHADERS && !nir->info.internal) {
2390                 nir_print_shader(nir, stdout);
2391         }
2392 
2393         panfrost_nir_assign_sysvals(&ctx->sysvals, ctx, nir);
2394         program->sysval_count = ctx->sysvals.sysval_count;
2395         memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
2396         ctx->blend_types = program->blend_types;
2397 
2398         nir_foreach_function(func, nir) {
2399                 if (!func->impl)
2400                         continue;
2401 
2402                 ctx->impl = func->impl;
2403                 emit_cf_list(ctx, &func->impl->body);
2404                 break; /* TODO: Multi-function shaders */
2405         }
2406 
2407         unsigned block_source_count = 0;
2408 
2409         bi_foreach_block(ctx, _block) {
2410                 bi_block *block = (bi_block *) _block;
2411 
2412                 /* Name blocks now that we're done emitting so the order is
2413                  * consistent */
2414                 block->base.name = block_source_count++;
2415 
2416                 bi_lower_combine(ctx, block);
2417         }
2418 
2419         bool progress = false;
2420 
2421         do {
2422                 progress = false;
2423 
2424                 bi_foreach_block(ctx, _block) {
2425                         bi_block *block = (bi_block *) _block;
2426                         progress |= bi_opt_dead_code_eliminate(ctx, block);
2427                 }
2428         } while(progress);
2429 
2430         if (bifrost_debug & BIFROST_DBG_SHADERS && !nir->info.internal)
2431                 bi_print_shader(ctx, stdout);
2432         bi_schedule(ctx);
2433         bi_register_allocate(ctx);
2434         if (bifrost_debug & BIFROST_DBG_SHADERS && !nir->info.internal)
2435                 bi_print_shader(ctx, stdout);
2436 
2437         util_dynarray_init(&program->compiled, NULL);
2438         bi_pack(ctx, &program->compiled);
2439 
2440         memcpy(program->blend_ret_offsets, ctx->blend_ret_offsets, sizeof(program->blend_ret_offsets));
2441 
2442         if (bifrost_debug & BIFROST_DBG_SHADERS && !nir->info.internal)
2443                 disassemble_bifrost(stdout, program->compiled.data, program->compiled.size, true);
2444 
2445         program->tls_size = ctx->tls_size;
2446 
2447         ralloc_free(ctx);
2448 
2449         return program;
2450 }
2451