1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program Tester Core
3 * ----------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Rasterization verifier utils.
22 *//*--------------------------------------------------------------------*/
23
24 #include "tcuRasterizationVerifier.hpp"
25 #include "tcuVector.hpp"
26 #include "tcuSurface.hpp"
27 #include "tcuTestLog.hpp"
28 #include "tcuTextureUtil.hpp"
29 #include "tcuVectorUtil.hpp"
30 #include "tcuFloat.hpp"
31
32 #include "deMath.h"
33 #include "deStringUtil.hpp"
34
35 #include "rrRasterizer.hpp"
36
37 #include <limits>
38
39 namespace tcu
40 {
41 namespace
42 {
43
44 bool verifyLineGroupInterpolationWithProjectedWeights (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log);
45
lineLineIntersect(const tcu::Vector<deInt64,2> & line0Beg,const tcu::Vector<deInt64,2> & line0End,const tcu::Vector<deInt64,2> & line1Beg,const tcu::Vector<deInt64,2> & line1End)46 bool lineLineIntersect (const tcu::Vector<deInt64, 2>& line0Beg, const tcu::Vector<deInt64, 2>& line0End, const tcu::Vector<deInt64, 2>& line1Beg, const tcu::Vector<deInt64, 2>& line1End)
47 {
48 typedef tcu::Vector<deInt64, 2> I64Vec2;
49
50 // Lines do not intersect if the other line's endpoints are on the same side
51 // otherwise, the do intersect
52
53 // Test line 0
54 {
55 const I64Vec2 line = line0End - line0Beg;
56 const I64Vec2 v0 = line1Beg - line0Beg;
57 const I64Vec2 v1 = line1End - line0Beg;
58 const deInt64 crossProduct0 = (line.x() * v0.y() - line.y() * v0.x());
59 const deInt64 crossProduct1 = (line.x() * v1.y() - line.y() * v1.x());
60
61 // check signs
62 if ((crossProduct0 < 0 && crossProduct1 < 0) ||
63 (crossProduct0 > 0 && crossProduct1 > 0))
64 return false;
65 }
66
67 // Test line 1
68 {
69 const I64Vec2 line = line1End - line1Beg;
70 const I64Vec2 v0 = line0Beg - line1Beg;
71 const I64Vec2 v1 = line0End - line1Beg;
72 const deInt64 crossProduct0 = (line.x() * v0.y() - line.y() * v0.x());
73 const deInt64 crossProduct1 = (line.x() * v1.y() - line.y() * v1.x());
74
75 // check signs
76 if ((crossProduct0 < 0 && crossProduct1 < 0) ||
77 (crossProduct0 > 0 && crossProduct1 > 0))
78 return false;
79 }
80
81 return true;
82 }
83
isTriangleClockwise(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const tcu::Vec4 & p2)84 bool isTriangleClockwise (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2)
85 {
86 const tcu::Vec2 u (p1.x() / p1.w() - p0.x() / p0.w(), p1.y() / p1.w() - p0.y() / p0.w());
87 const tcu::Vec2 v (p2.x() / p2.w() - p0.x() / p0.w(), p2.y() / p2.w() - p0.y() / p0.w());
88 const float crossProduct = (u.x() * v.y() - u.y() * v.x());
89
90 return crossProduct > 0.0f;
91 }
92
compareColors(const tcu::RGBA & colorA,const tcu::RGBA & colorB,int redBits,int greenBits,int blueBits)93 bool compareColors (const tcu::RGBA& colorA, const tcu::RGBA& colorB, int redBits, int greenBits, int blueBits)
94 {
95 const int thresholdRed = 1 << (8 - redBits);
96 const int thresholdGreen = 1 << (8 - greenBits);
97 const int thresholdBlue = 1 << (8 - blueBits);
98
99 return deAbs32(colorA.getRed() - colorB.getRed()) <= thresholdRed &&
100 deAbs32(colorA.getGreen() - colorB.getGreen()) <= thresholdGreen &&
101 deAbs32(colorA.getBlue() - colorB.getBlue()) <= thresholdBlue;
102 }
103
pixelNearLineSegment(const tcu::IVec2 & pixel,const tcu::Vec2 & p0,const tcu::Vec2 & p1)104 bool pixelNearLineSegment (const tcu::IVec2& pixel, const tcu::Vec2& p0, const tcu::Vec2& p1)
105 {
106 const tcu::Vec2 pixelCenterPosition = tcu::Vec2((float)pixel.x() + 0.5f, (float)pixel.y() + 0.5f);
107
108 // "Near" = Distance from the line to the pixel is less than 2 * pixel_max_radius. (pixel_max_radius = sqrt(2) / 2)
109 const float maxPixelDistance = 1.414f;
110 const float maxPixelDistanceSquared = 2.0f;
111
112 // Near the line
113 {
114 const tcu::Vec2 line = p1 - p0;
115 const tcu::Vec2 v = pixelCenterPosition - p0;
116 const float crossProduct = (line.x() * v.y() - line.y() * v.x());
117
118 // distance to line: (line x v) / |line|
119 // |(line x v) / |line|| > maxPixelDistance
120 // ==> (line x v)^2 / |line|^2 > maxPixelDistance^2
121 // ==> (line x v)^2 > maxPixelDistance^2 * |line|^2
122
123 if (crossProduct * crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(line))
124 return false;
125 }
126
127 // Between the endpoints
128 {
129 // distance from line endpoint 1 to pixel is less than line length + maxPixelDistance
130 const float maxDistance = tcu::length(p1 - p0) + maxPixelDistance;
131
132 if (tcu::length(pixelCenterPosition - p0) > maxDistance)
133 return false;
134 if (tcu::length(pixelCenterPosition - p1) > maxDistance)
135 return false;
136 }
137
138 return true;
139 }
140
pixelOnlyOnASharedEdge(const tcu::IVec2 & pixel,const TriangleSceneSpec::SceneTriangle & triangle,const tcu::IVec2 & viewportSize)141 bool pixelOnlyOnASharedEdge (const tcu::IVec2& pixel, const TriangleSceneSpec::SceneTriangle& triangle, const tcu::IVec2& viewportSize)
142 {
143 if (triangle.sharedEdge[0] || triangle.sharedEdge[1] || triangle.sharedEdge[2])
144 {
145 const tcu::Vec2 triangleNormalizedDeviceSpace[3] =
146 {
147 tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(), triangle.positions[0].y() / triangle.positions[0].w()),
148 tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(), triangle.positions[1].y() / triangle.positions[1].w()),
149 tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(), triangle.positions[2].y() / triangle.positions[2].w()),
150 };
151 const tcu::Vec2 triangleScreenSpace[3] =
152 {
153 (triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
154 (triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
155 (triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
156 };
157
158 const bool pixelOnEdge0 = pixelNearLineSegment(pixel, triangleScreenSpace[0], triangleScreenSpace[1]);
159 const bool pixelOnEdge1 = pixelNearLineSegment(pixel, triangleScreenSpace[1], triangleScreenSpace[2]);
160 const bool pixelOnEdge2 = pixelNearLineSegment(pixel, triangleScreenSpace[2], triangleScreenSpace[0]);
161
162 // If the pixel is on a multiple edges return false
163
164 if (pixelOnEdge0 && !pixelOnEdge1 && !pixelOnEdge2)
165 return triangle.sharedEdge[0];
166 if (!pixelOnEdge0 && pixelOnEdge1 && !pixelOnEdge2)
167 return triangle.sharedEdge[1];
168 if (!pixelOnEdge0 && !pixelOnEdge1 && pixelOnEdge2)
169 return triangle.sharedEdge[2];
170 }
171
172 return false;
173 }
174
triangleArea(const tcu::Vec2 & s0,const tcu::Vec2 & s1,const tcu::Vec2 & s2)175 float triangleArea (const tcu::Vec2& s0, const tcu::Vec2& s1, const tcu::Vec2& s2)
176 {
177 const tcu::Vec2 u (s1.x() - s0.x(), s1.y() - s0.y());
178 const tcu::Vec2 v (s2.x() - s0.x(), s2.y() - s0.y());
179 const float crossProduct = (u.x() * v.y() - u.y() * v.x());
180
181 return crossProduct / 2.0f;
182 }
183
getTriangleAABB(const TriangleSceneSpec::SceneTriangle & triangle,const tcu::IVec2 & viewportSize)184 tcu::IVec4 getTriangleAABB (const TriangleSceneSpec::SceneTriangle& triangle, const tcu::IVec2& viewportSize)
185 {
186 const tcu::Vec2 normalizedDeviceSpace[3] =
187 {
188 tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(), triangle.positions[0].y() / triangle.positions[0].w()),
189 tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(), triangle.positions[1].y() / triangle.positions[1].w()),
190 tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(), triangle.positions[2].y() / triangle.positions[2].w()),
191 };
192 const tcu::Vec2 screenSpace[3] =
193 {
194 (normalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
195 (normalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
196 (normalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
197 };
198
199 tcu::IVec4 aabb;
200
201 aabb.x() = (int)deFloatFloor(de::min(de::min(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
202 aabb.y() = (int)deFloatFloor(de::min(de::min(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
203 aabb.z() = (int)deFloatCeil (de::max(de::max(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
204 aabb.w() = (int)deFloatCeil (de::max(de::max(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
205
206 return aabb;
207 }
208
getExponentEpsilonFromULP(int valueExponent,deUint32 ulp)209 float getExponentEpsilonFromULP (int valueExponent, deUint32 ulp)
210 {
211 DE_ASSERT(ulp < (1u<<10));
212
213 // assume mediump precision, using ulp as ulps in a 10 bit mantissa
214 return tcu::Float32::construct(+1, valueExponent, (1u<<23) + (ulp << (23 - 10))).asFloat() - tcu::Float32::construct(+1, valueExponent, (1u<<23)).asFloat();
215 }
216
getValueEpsilonFromULP(float value,deUint32 ulp)217 float getValueEpsilonFromULP (float value, deUint32 ulp)
218 {
219 DE_ASSERT(value != std::numeric_limits<float>::infinity() && value != -std::numeric_limits<float>::infinity());
220
221 const int exponent = tcu::Float32(value).exponent();
222 return getExponentEpsilonFromULP(exponent, ulp);
223 }
224
getMaxValueWithinError(float value,deUint32 ulp)225 float getMaxValueWithinError (float value, deUint32 ulp)
226 {
227 if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
228 return value;
229
230 return value + getValueEpsilonFromULP(value, ulp);
231 }
232
getMinValueWithinError(float value,deUint32 ulp)233 float getMinValueWithinError (float value, deUint32 ulp)
234 {
235 if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
236 return value;
237
238 return value - getValueEpsilonFromULP(value, ulp);
239 }
240
getMinFlushToZero(float value)241 float getMinFlushToZero (float value)
242 {
243 // flush to zero if that decreases the value
244 // assume mediump precision
245 if (value > 0.0f && value < tcu::Float32::construct(+1, -14, 1u<<23).asFloat())
246 return 0.0f;
247 return value;
248 }
249
getMaxFlushToZero(float value)250 float getMaxFlushToZero (float value)
251 {
252 // flush to zero if that increases the value
253 // assume mediump precision
254 if (value < 0.0f && value > tcu::Float32::construct(-1, -14, 1u<<23).asFloat())
255 return 0.0f;
256 return value;
257 }
258
convertRGB8ToNativeFormat(const tcu::RGBA & color,const RasterizationArguments & args)259 tcu::IVec3 convertRGB8ToNativeFormat (const tcu::RGBA& color, const RasterizationArguments& args)
260 {
261 tcu::IVec3 pixelNativeColor;
262
263 for (int channelNdx = 0; channelNdx < 3; ++channelNdx)
264 {
265 const int channelBitCount = (channelNdx == 0) ? (args.redBits) : (channelNdx == 1) ? (args.greenBits) : (args.blueBits);
266 const int channelPixelValue = (channelNdx == 0) ? (color.getRed()) : (channelNdx == 1) ? (color.getGreen()) : (color.getBlue());
267
268 if (channelBitCount <= 8)
269 pixelNativeColor[channelNdx] = channelPixelValue >> (8 - channelBitCount);
270 else if (channelBitCount == 8)
271 pixelNativeColor[channelNdx] = channelPixelValue;
272 else
273 {
274 // just in case someone comes up with 8+ bits framebuffers pixel formats. But as
275 // we can only read in rgba8, we have to guess the trailing bits. Guessing 0.
276 pixelNativeColor[channelNdx] = channelPixelValue << (channelBitCount - 8);
277 }
278 }
279
280 return pixelNativeColor;
281 }
282
283 /*--------------------------------------------------------------------*//*!
284 * Returns the maximum value of x / y, where x c [minDividend, maxDividend]
285 * and y c [minDivisor, maxDivisor]
286 *//*--------------------------------------------------------------------*/
maximalRangeDivision(float minDividend,float maxDividend,float minDivisor,float maxDivisor)287 float maximalRangeDivision (float minDividend, float maxDividend, float minDivisor, float maxDivisor)
288 {
289 DE_ASSERT(minDividend <= maxDividend);
290 DE_ASSERT(minDivisor <= maxDivisor);
291
292 // special cases
293 if (minDividend == 0.0f && maxDividend == 0.0f)
294 return 0.0f;
295 if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
296 return std::numeric_limits<float>::infinity();
297
298 return de::max(de::max(minDividend / minDivisor, minDividend / maxDivisor), de::max(maxDividend / minDivisor, maxDividend / maxDivisor));
299 }
300
301 /*--------------------------------------------------------------------*//*!
302 * Returns the minimum value of x / y, where x c [minDividend, maxDividend]
303 * and y c [minDivisor, maxDivisor]
304 *//*--------------------------------------------------------------------*/
minimalRangeDivision(float minDividend,float maxDividend,float minDivisor,float maxDivisor)305 float minimalRangeDivision (float minDividend, float maxDividend, float minDivisor, float maxDivisor)
306 {
307 DE_ASSERT(minDividend <= maxDividend);
308 DE_ASSERT(minDivisor <= maxDivisor);
309
310 // special cases
311 if (minDividend == 0.0f && maxDividend == 0.0f)
312 return 0.0f;
313 if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
314 return -std::numeric_limits<float>::infinity();
315
316 return de::min(de::min(minDividend / minDivisor, minDividend / maxDivisor), de::min(maxDividend / minDivisor, maxDividend / maxDivisor));
317 }
318
isLineXMajor(const tcu::Vec2 & lineScreenSpaceP0,const tcu::Vec2 & lineScreenSpaceP1)319 static bool isLineXMajor (const tcu::Vec2& lineScreenSpaceP0, const tcu::Vec2& lineScreenSpaceP1)
320 {
321 return de::abs(lineScreenSpaceP1.x() - lineScreenSpaceP0.x()) >= de::abs(lineScreenSpaceP1.y() - lineScreenSpaceP0.y());
322 }
323
isPackedSSLineXMajor(const tcu::Vec4 & packedLine)324 static bool isPackedSSLineXMajor (const tcu::Vec4& packedLine)
325 {
326 const tcu::Vec2 lineScreenSpaceP0 = packedLine.swizzle(0, 1);
327 const tcu::Vec2 lineScreenSpaceP1 = packedLine.swizzle(2, 3);
328
329 return isLineXMajor(lineScreenSpaceP0, lineScreenSpaceP1);
330 }
331
332 struct InterpolationRange
333 {
334 tcu::Vec3 max;
335 tcu::Vec3 min;
336 };
337
338 struct LineInterpolationRange
339 {
340 tcu::Vec2 max;
341 tcu::Vec2 min;
342 };
343
calcTriangleInterpolationWeights(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const tcu::Vec4 & p2,const tcu::Vec2 & ndpixel)344 InterpolationRange calcTriangleInterpolationWeights (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2, const tcu::Vec2& ndpixel)
345 {
346 const int roundError = 1;
347 const int barycentricError = 3;
348 const int divError = 8;
349
350 const tcu::Vec2 nd0 = p0.swizzle(0, 1) / p0.w();
351 const tcu::Vec2 nd1 = p1.swizzle(0, 1) / p1.w();
352 const tcu::Vec2 nd2 = p2.swizzle(0, 1) / p2.w();
353
354 const float ka = triangleArea(ndpixel, nd1, nd2);
355 const float kb = triangleArea(ndpixel, nd2, nd0);
356 const float kc = triangleArea(ndpixel, nd0, nd1);
357
358 const float kaMax = getMaxFlushToZero(getMaxValueWithinError(ka, barycentricError));
359 const float kbMax = getMaxFlushToZero(getMaxValueWithinError(kb, barycentricError));
360 const float kcMax = getMaxFlushToZero(getMaxValueWithinError(kc, barycentricError));
361 const float kaMin = getMinFlushToZero(getMinValueWithinError(ka, barycentricError));
362 const float kbMin = getMinFlushToZero(getMinValueWithinError(kb, barycentricError));
363 const float kcMin = getMinFlushToZero(getMinValueWithinError(kc, barycentricError));
364 DE_ASSERT(kaMin <= kaMax);
365 DE_ASSERT(kbMin <= kbMax);
366 DE_ASSERT(kcMin <= kcMax);
367
368 // calculate weights: vec3(ka / p0.w, kb / p1.w, kc / p2.w) / (ka / p0.w + kb / p1.w + kc / p2.w)
369 const float maxPreDivisionValues[3] =
370 {
371 getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kaMax / p0.w()), divError)),
372 getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kbMax / p1.w()), divError)),
373 getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kcMax / p2.w()), divError)),
374 };
375 const float minPreDivisionValues[3] =
376 {
377 getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kaMin / p0.w()), divError)),
378 getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kbMin / p1.w()), divError)),
379 getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kcMin / p2.w()), divError)),
380 };
381 DE_ASSERT(minPreDivisionValues[0] <= maxPreDivisionValues[0]);
382 DE_ASSERT(minPreDivisionValues[1] <= maxPreDivisionValues[1]);
383 DE_ASSERT(minPreDivisionValues[2] <= maxPreDivisionValues[2]);
384
385 const float maxDivisor = getMaxFlushToZero(getMaxValueWithinError(maxPreDivisionValues[0] + maxPreDivisionValues[1] + maxPreDivisionValues[2], 2*roundError));
386 const float minDivisor = getMinFlushToZero(getMinValueWithinError(minPreDivisionValues[0] + minPreDivisionValues[1] + minPreDivisionValues[2], 2*roundError));
387 DE_ASSERT(minDivisor <= maxDivisor);
388
389 InterpolationRange returnValue;
390
391 returnValue.max.x() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0], minDivisor, maxDivisor)), divError));
392 returnValue.max.y() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1], minDivisor, maxDivisor)), divError));
393 returnValue.max.z() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2], minDivisor, maxDivisor)), divError));
394 returnValue.min.x() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0], minDivisor, maxDivisor)), divError));
395 returnValue.min.y() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1], minDivisor, maxDivisor)), divError));
396 returnValue.min.z() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2], minDivisor, maxDivisor)), divError));
397
398 DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
399 DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
400 DE_ASSERT(returnValue.min.z() <= returnValue.max.z());
401
402 return returnValue;
403 }
404
calcLineInterpolationWeights(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::Vec2 & pr)405 LineInterpolationRange calcLineInterpolationWeights (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::Vec2& pr)
406 {
407 const int roundError = 1;
408 const int divError = 3;
409
410 // calc weights:
411 // (1-t) / wa t / wb
412 // ------------------- , -------------------
413 // (1-t) / wa + t / wb (1-t) / wa + t / wb
414
415 // Allow 1 ULP
416 const float dividend = tcu::dot(pr - pa, pb - pa);
417 const float dividendMax = getMaxValueWithinError(dividend, 1);
418 const float dividendMin = getMinValueWithinError(dividend, 1);
419 DE_ASSERT(dividendMin <= dividendMax);
420
421 // Assuming lengthSquared will not be implemented as sqrt(x)^2, allow 1 ULP
422 const float divisor = tcu::lengthSquared(pb - pa);
423 const float divisorMax = getMaxValueWithinError(divisor, 1);
424 const float divisorMin = getMinValueWithinError(divisor, 1);
425 DE_ASSERT(divisorMin <= divisorMax);
426
427 // Allow 3 ULP precision for division
428 const float tMax = getMaxValueWithinError(maximalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
429 const float tMin = getMinValueWithinError(minimalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
430 DE_ASSERT(tMin <= tMax);
431
432 const float perspectiveTMax = getMaxValueWithinError(maximalRangeDivision(tMin, tMax, wb, wb), divError);
433 const float perspectiveTMin = getMinValueWithinError(minimalRangeDivision(tMin, tMax, wb, wb), divError);
434 DE_ASSERT(perspectiveTMin <= perspectiveTMax);
435
436 const float perspectiveInvTMax = getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
437 const float perspectiveInvTMin = getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
438 DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
439
440 const float perspectiveDivisorMax = getMaxValueWithinError(perspectiveTMax + perspectiveInvTMax, roundError);
441 const float perspectiveDivisorMin = getMinValueWithinError(perspectiveTMin + perspectiveInvTMin, roundError);
442 DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
443
444 LineInterpolationRange returnValue;
445 returnValue.max.x() = getMaxValueWithinError(maximalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
446 returnValue.max.y() = getMaxValueWithinError(maximalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
447 returnValue.min.x() = getMinValueWithinError(minimalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
448 returnValue.min.y() = getMinValueWithinError(minimalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
449
450 DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
451 DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
452
453 return returnValue;
454 }
455
calcLineInterpolationWeightsAxisProjected(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::Vec2 & pr)456 LineInterpolationRange calcLineInterpolationWeightsAxisProjected (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::Vec2& pr)
457 {
458 const int roundError = 1;
459 const int divError = 3;
460 const bool isXMajor = isLineXMajor(pa, pb);
461 const int majorAxisNdx = (isXMajor) ? (0) : (1);
462
463 // calc weights:
464 // (1-t) / wa t / wb
465 // ------------------- , -------------------
466 // (1-t) / wa + t / wb (1-t) / wa + t / wb
467
468 // Use axis projected (inaccurate) method, i.e. for X-major lines:
469 // (xd - xa) * (xb - xa) xd - xa
470 // t = --------------------- == -------
471 // ( xb - xa ) ^ 2 xb - xa
472
473 // Allow 1 ULP
474 const float dividend = (pr[majorAxisNdx] - pa[majorAxisNdx]);
475 const float dividendMax = getMaxValueWithinError(dividend, 1);
476 const float dividendMin = getMinValueWithinError(dividend, 1);
477 DE_ASSERT(dividendMin <= dividendMax);
478
479 // Allow 1 ULP
480 const float divisor = (pb[majorAxisNdx] - pa[majorAxisNdx]);
481 const float divisorMax = getMaxValueWithinError(divisor, 1);
482 const float divisorMin = getMinValueWithinError(divisor, 1);
483 DE_ASSERT(divisorMin <= divisorMax);
484
485 // Allow 3 ULP precision for division
486 const float tMax = getMaxValueWithinError(maximalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
487 const float tMin = getMinValueWithinError(minimalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
488 DE_ASSERT(tMin <= tMax);
489
490 const float perspectiveTMax = getMaxValueWithinError(maximalRangeDivision(tMin, tMax, wb, wb), divError);
491 const float perspectiveTMin = getMinValueWithinError(minimalRangeDivision(tMin, tMax, wb, wb), divError);
492 DE_ASSERT(perspectiveTMin <= perspectiveTMax);
493
494 const float perspectiveInvTMax = getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
495 const float perspectiveInvTMin = getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
496 DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
497
498 const float perspectiveDivisorMax = getMaxValueWithinError(perspectiveTMax + perspectiveInvTMax, roundError);
499 const float perspectiveDivisorMin = getMinValueWithinError(perspectiveTMin + perspectiveInvTMin, roundError);
500 DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
501
502 LineInterpolationRange returnValue;
503 returnValue.max.x() = getMaxValueWithinError(maximalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
504 returnValue.max.y() = getMaxValueWithinError(maximalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
505 returnValue.min.x() = getMinValueWithinError(minimalRangeDivision(perspectiveInvTMin, perspectiveInvTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
506 returnValue.min.y() = getMinValueWithinError(minimalRangeDivision(perspectiveTMin, perspectiveTMax, perspectiveDivisorMin, perspectiveDivisorMax), divError);
507
508 DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
509 DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
510
511 return returnValue;
512 }
513
514 template <typename WeightEquation>
calcSingleSampleLineInterpolationRangeWithWeightEquation(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::IVec2 & pixel,int subpixelBits,WeightEquation weightEquation)515 LineInterpolationRange calcSingleSampleLineInterpolationRangeWithWeightEquation (const tcu::Vec2& pa,
516 float wa,
517 const tcu::Vec2& pb,
518 float wb,
519 const tcu::IVec2& pixel,
520 int subpixelBits,
521 WeightEquation weightEquation)
522 {
523 // allow interpolation weights anywhere in the central subpixels
524 const float testSquareSize = (2.0f / (float)(1UL << subpixelBits));
525 const float testSquarePos = (0.5f - testSquareSize / 2);
526
527 const tcu::Vec2 corners[4] =
528 {
529 tcu::Vec2((float)pixel.x() + testSquarePos + 0.0f, (float)pixel.y() + testSquarePos + 0.0f),
530 tcu::Vec2((float)pixel.x() + testSquarePos + 0.0f, (float)pixel.y() + testSquarePos + testSquareSize),
531 tcu::Vec2((float)pixel.x() + testSquarePos + testSquareSize, (float)pixel.y() + testSquarePos + testSquareSize),
532 tcu::Vec2((float)pixel.x() + testSquarePos + testSquareSize, (float)pixel.y() + testSquarePos + 0.0f),
533 };
534
535 // calculate interpolation as a line
536 const LineInterpolationRange weights[4] =
537 {
538 weightEquation(pa, wa, pb, wb, corners[0]),
539 weightEquation(pa, wa, pb, wb, corners[1]),
540 weightEquation(pa, wa, pb, wb, corners[2]),
541 weightEquation(pa, wa, pb, wb, corners[3]),
542 };
543
544 const tcu::Vec2 minWeights = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
545 const tcu::Vec2 maxWeights = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
546
547 LineInterpolationRange result;
548 result.min = minWeights;
549 result.max = maxWeights;
550 return result;
551 }
552
calcSingleSampleLineInterpolationRange(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::IVec2 & pixel,int subpixelBits)553 LineInterpolationRange calcSingleSampleLineInterpolationRange (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::IVec2& pixel, int subpixelBits)
554 {
555 return calcSingleSampleLineInterpolationRangeWithWeightEquation(pa, wa, pb, wb, pixel, subpixelBits, calcLineInterpolationWeights);
556 }
557
calcSingleSampleLineInterpolationRangeAxisProjected(const tcu::Vec2 & pa,float wa,const tcu::Vec2 & pb,float wb,const tcu::IVec2 & pixel,int subpixelBits)558 LineInterpolationRange calcSingleSampleLineInterpolationRangeAxisProjected (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::IVec2& pixel, int subpixelBits)
559 {
560 return calcSingleSampleLineInterpolationRangeWithWeightEquation(pa, wa, pb, wb, pixel, subpixelBits, calcLineInterpolationWeightsAxisProjected);
561 }
562
563 struct TriangleInterpolator
564 {
565 const TriangleSceneSpec& scene;
566
TriangleInterpolatortcu::__anon958de0670111::TriangleInterpolator567 TriangleInterpolator (const TriangleSceneSpec& scene_)
568 : scene(scene_)
569 {
570 }
571
interpolatetcu::__anon958de0670111::TriangleInterpolator572 InterpolationRange interpolate (int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize, bool multisample, int subpixelBits) const
573 {
574 // allow anywhere in the pixel area in multisample
575 // allow only in the center subpixels (4 subpixels) in singlesample
576 const float testSquareSize = (multisample) ? (1.0f) : (2.0f / (float)(1UL << subpixelBits));
577 const float testSquarePos = (multisample) ? (0.0f) : (0.5f - testSquareSize / 2);
578 const tcu::Vec2 corners[4] =
579 {
580 tcu::Vec2(((float)pixel.x() + testSquarePos + 0.0f) / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + 0.0f ) / (float)viewportSize.y() * 2.0f - 1.0f),
581 tcu::Vec2(((float)pixel.x() + testSquarePos + 0.0f) / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + testSquareSize) / (float)viewportSize.y() * 2.0f - 1.0f),
582 tcu::Vec2(((float)pixel.x() + testSquarePos + testSquareSize) / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + testSquareSize) / (float)viewportSize.y() * 2.0f - 1.0f),
583 tcu::Vec2(((float)pixel.x() + testSquarePos + testSquareSize) / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + 0.0f ) / (float)viewportSize.y() * 2.0f - 1.0f),
584 };
585 const InterpolationRange weights[4] =
586 {
587 calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[0]),
588 calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[1]),
589 calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[2]),
590 calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[3]),
591 };
592
593 InterpolationRange result;
594 result.min = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
595 result.max = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
596 return result;
597 }
598 };
599
600 /*--------------------------------------------------------------------*//*!
601 * Used only by verifyMultisampleLineGroupInterpolation to calculate
602 * correct line interpolations for the triangulated lines.
603 *//*--------------------------------------------------------------------*/
604 struct MultisampleLineInterpolator
605 {
606 const LineSceneSpec& scene;
607
MultisampleLineInterpolatortcu::__anon958de0670111::MultisampleLineInterpolator608 MultisampleLineInterpolator (const LineSceneSpec& scene_)
609 : scene(scene_)
610 {
611 }
612
interpolatetcu::__anon958de0670111::MultisampleLineInterpolator613 InterpolationRange interpolate (int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize, bool multisample, int subpixelBits) const
614 {
615 DE_UNREF(multisample);
616 DE_UNREF(subpixelBits);
617
618 // in triangulation, one line emits two triangles
619 const int lineNdx = primitiveNdx / 2;
620
621 // allow interpolation weights anywhere in the pixel
622 const tcu::Vec2 corners[4] =
623 {
624 tcu::Vec2((float)pixel.x() + 0.0f, (float)pixel.y() + 0.0f),
625 tcu::Vec2((float)pixel.x() + 0.0f, (float)pixel.y() + 1.0f),
626 tcu::Vec2((float)pixel.x() + 1.0f, (float)pixel.y() + 1.0f),
627 tcu::Vec2((float)pixel.x() + 1.0f, (float)pixel.y() + 0.0f),
628 };
629
630 const float wa = scene.lines[lineNdx].positions[0].w();
631 const float wb = scene.lines[lineNdx].positions[1].w();
632 const tcu::Vec2 pa = tcu::Vec2((scene.lines[lineNdx].positions[0].x() / wa + 1.0f) * 0.5f * (float)viewportSize.x(),
633 (scene.lines[lineNdx].positions[0].y() / wa + 1.0f) * 0.5f * (float)viewportSize.y());
634 const tcu::Vec2 pb = tcu::Vec2((scene.lines[lineNdx].positions[1].x() / wb + 1.0f) * 0.5f * (float)viewportSize.x(),
635 (scene.lines[lineNdx].positions[1].y() / wb + 1.0f) * 0.5f * (float)viewportSize.y());
636
637 // calculate interpolation as a line
638 const LineInterpolationRange weights[4] =
639 {
640 calcLineInterpolationWeights(pa, wa, pb, wb, corners[0]),
641 calcLineInterpolationWeights(pa, wa, pb, wb, corners[1]),
642 calcLineInterpolationWeights(pa, wa, pb, wb, corners[2]),
643 calcLineInterpolationWeights(pa, wa, pb, wb, corners[3]),
644 };
645
646 const tcu::Vec2 minWeights = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
647 const tcu::Vec2 maxWeights = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
648
649 // convert to three-component form. For all triangles, the vertex 0 is always emitted by the line starting point, and vertex 2 by the ending point
650 InterpolationRange result;
651 result.min = tcu::Vec3(minWeights.x(), 0.0f, minWeights.y());
652 result.max = tcu::Vec3(maxWeights.x(), 0.0f, maxWeights.y());
653 return result;
654 }
655 };
656
657 template <typename Interpolator>
verifyTriangleGroupInterpolationWithInterpolator(const tcu::Surface & surface,const TriangleSceneSpec & scene,const RasterizationArguments & args,VerifyTriangleGroupInterpolationLogStash & logStash,const Interpolator & interpolator)658 bool verifyTriangleGroupInterpolationWithInterpolator (const tcu::Surface& surface,
659 const TriangleSceneSpec& scene,
660 const RasterizationArguments& args,
661 VerifyTriangleGroupInterpolationLogStash& logStash,
662 const Interpolator& interpolator)
663 {
664 const tcu::RGBA invalidPixelColor = tcu::RGBA(255, 0, 0, 255);
665 const bool multisampled = (args.numSamples != 0);
666 const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
667 const int errorFloodThreshold = 4;
668 int errorCount = 0;
669 int invalidPixels = 0;
670 int subPixelBits = args.subpixelBits;
671 tcu::Surface errorMask (surface.getWidth(), surface.getHeight());
672
673 tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
674
675 // log format
676
677 logStash.messages.push_back(std::string("Verifying rasterization result. Native format is RGB" + de::toString(args.redBits) + de::toString(args.greenBits) + de::toString(args.blueBits)));
678 if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
679 logStash.messages.push_back(std::string("Warning! More than 8 bits in a color channel, this may produce false negatives."));
680
681 // subpixel bits in a valid range?
682
683 if (subPixelBits < 0)
684 {
685 logStash.messages.push_back(std::string("Invalid subpixel count (" + de::toString(subPixelBits) + "), assuming 0"));
686 subPixelBits = 0;
687 }
688 else if (subPixelBits > 16)
689 {
690 // At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
691 logStash.messages.push_back(std::string("Subpixel count is greater than 16 (" + de::toString(subPixelBits) + ")."
692 " Checking results using less strict 16 bit requirements. This may produce false positives."));
693 subPixelBits = 16;
694 }
695
696 // check pixels
697
698 for (int y = 0; y < surface.getHeight(); ++y)
699 for (int x = 0; x < surface.getWidth(); ++x)
700 {
701 const tcu::RGBA color = surface.getPixel(x, y);
702 bool stackBottomFound = false;
703 int stackSize = 0;
704 tcu::Vec4 colorStackMin;
705 tcu::Vec4 colorStackMax;
706
707 // Iterate triangle coverage front to back, find the stack of pontentially contributing fragments
708 for (int triNdx = (int)scene.triangles.size() - 1; triNdx >= 0; --triNdx)
709 {
710 const CoverageType coverage = calculateTriangleCoverage(scene.triangles[triNdx].positions[0],
711 scene.triangles[triNdx].positions[1],
712 scene.triangles[triNdx].positions[2],
713 tcu::IVec2(x, y),
714 viewportSize,
715 subPixelBits,
716 multisampled);
717
718 if (coverage == COVERAGE_FULL || coverage == COVERAGE_PARTIAL)
719 {
720 // potentially contributes to the result fragment's value
721 const InterpolationRange weights = interpolator.interpolate(triNdx, tcu::IVec2(x, y), viewportSize, multisampled, subPixelBits);
722
723 const tcu::Vec4 fragmentColorMax = de::clamp(weights.max.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
724 de::clamp(weights.max.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
725 de::clamp(weights.max.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
726 const tcu::Vec4 fragmentColorMin = de::clamp(weights.min.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
727 de::clamp(weights.min.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
728 de::clamp(weights.min.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
729
730 if (stackSize++ == 0)
731 {
732 // first triangle, set the values properly
733 colorStackMin = fragmentColorMin;
734 colorStackMax = fragmentColorMax;
735 }
736 else
737 {
738 // contributing triangle
739 colorStackMin = tcu::min(colorStackMin, fragmentColorMin);
740 colorStackMax = tcu::max(colorStackMax, fragmentColorMax);
741 }
742
743 if (coverage == COVERAGE_FULL)
744 {
745 // loop terminates, this is the bottommost fragment
746 stackBottomFound = true;
747 break;
748 }
749 }
750 }
751
752 // Partial coverage == background may be visible
753 if (stackSize != 0 && !stackBottomFound)
754 {
755 stackSize++;
756 colorStackMin = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
757 }
758
759 // Is the result image color in the valid range.
760 if (stackSize == 0)
761 {
762 // No coverage, allow only background (black, value=0)
763 const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args);
764 const int threshold = 1;
765
766 if (pixelNativeColor.x() > threshold ||
767 pixelNativeColor.y() > threshold ||
768 pixelNativeColor.z() > threshold)
769 {
770 ++errorCount;
771
772 // don't fill the logs with too much data
773 if (errorCount < errorFloodThreshold)
774 {
775 std::ostringstream str;
776
777 str << "Found an invalid pixel at (" << x << "," << y << ")\n"
778 << "\tPixel color:\t\t" << color << "\n"
779 << "\tExpected background color.\n";
780
781 logStash.messages.push_back(str.str());
782 }
783
784 ++invalidPixels;
785 errorMask.setPixel(x, y, invalidPixelColor);
786 }
787 }
788 else
789 {
790 DE_ASSERT(stackSize);
791
792 // Each additional step in the stack may cause conversion error of 1 bit due to undefined rounding direction
793 const int thresholdRed = stackSize - 1;
794 const int thresholdGreen = stackSize - 1;
795 const int thresholdBlue = stackSize - 1;
796
797 const tcu::Vec3 valueRangeMin = tcu::Vec3(colorStackMin.xyz());
798 const tcu::Vec3 valueRangeMax = tcu::Vec3(colorStackMax.xyz());
799
800 const tcu::IVec3 formatLimit ((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
801 const tcu::Vec3 colorMinF (de::clamp(valueRangeMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
802 de::clamp(valueRangeMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
803 de::clamp(valueRangeMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
804 const tcu::Vec3 colorMaxF (de::clamp(valueRangeMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
805 de::clamp(valueRangeMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
806 de::clamp(valueRangeMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
807 const tcu::IVec3 colorMin ((int)deFloatFloor(colorMinF.x()),
808 (int)deFloatFloor(colorMinF.y()),
809 (int)deFloatFloor(colorMinF.z()));
810 const tcu::IVec3 colorMax ((int)deFloatCeil (colorMaxF.x()),
811 (int)deFloatCeil (colorMaxF.y()),
812 (int)deFloatCeil (colorMaxF.z()));
813
814 // Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
815 const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args);
816
817 // Validity check
818 if (pixelNativeColor.x() < colorMin.x() - thresholdRed ||
819 pixelNativeColor.y() < colorMin.y() - thresholdGreen ||
820 pixelNativeColor.z() < colorMin.z() - thresholdBlue ||
821 pixelNativeColor.x() > colorMax.x() + thresholdRed ||
822 pixelNativeColor.y() > colorMax.y() + thresholdGreen ||
823 pixelNativeColor.z() > colorMax.z() + thresholdBlue)
824 {
825 ++errorCount;
826
827 // don't fill the logs with too much data
828 if (errorCount <= errorFloodThreshold)
829 {
830 std::ostringstream str;
831
832 str << "Found an invalid pixel at (" << x << "," << y << ")\n"
833 << "\tPixel color:\t\t" << color << "\n"
834 << "\tNative color:\t\t" << pixelNativeColor << "\n"
835 << "\tAllowed error:\t\t" << tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue) << "\n"
836 << "\tReference native color min: " << tcu::clamp(colorMin - tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue), tcu::IVec3(0,0,0), formatLimit) << "\n"
837 << "\tReference native color max: " << tcu::clamp(colorMax + tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue), tcu::IVec3(0,0,0), formatLimit) << "\n"
838 << "\tReference native float min: " << tcu::clamp(colorMinF - tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(), tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
839 << "\tReference native float max: " << tcu::clamp(colorMaxF + tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(), tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
840 << "\tFmin:\t" << tcu::clamp(valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
841 << "\tFmax:\t" << tcu::clamp(valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n";
842 logStash.messages.push_back(str.str());
843 }
844
845 ++invalidPixels;
846 errorMask.setPixel(x, y, invalidPixelColor);
847 }
848 }
849 }
850
851 // don't just hide failures
852 if (errorCount > errorFloodThreshold)
853 logStash.messages.push_back(std::string("Omitted " + de::toString(errorCount - errorFloodThreshold) + " pixel error description(s)."));
854
855 logStash.success = (invalidPixels == 0);
856 logStash.invalidPixels = invalidPixels;
857
858 // report result
859 if (!logStash.success)
860 logStash.errorMask = errorMask;
861
862 return logStash.success;
863 }
864
865
calculateIntersectionParameter(const tcu::Vec2 line[2],float w,int componentNdx)866 float calculateIntersectionParameter (const tcu::Vec2 line[2], float w, int componentNdx)
867 {
868 DE_ASSERT(componentNdx < 2);
869 if (line[1][componentNdx] == line[0][componentNdx])
870 return -1.0f;
871
872 return (w - line[0][componentNdx]) / (line[1][componentNdx] - line[0][componentNdx]);
873 }
874
875 // Clips the given line with a ((-w, -w), (-w, w), (w, w), (w, -w)) rectangle
applyClippingBox(tcu::Vec2 line[2],float w)876 void applyClippingBox (tcu::Vec2 line[2], float w)
877 {
878 for (int side = 0; side < 4; ++side)
879 {
880 const int sign = ((side / 2) * -2) + 1;
881 const int component = side % 2;
882 const float t = calculateIntersectionParameter(line, w * (float)sign, component);
883
884 if ((t > 0) && (t < 1))
885 {
886 const float newCoord = t * line[1][1 - component] + (1 - t) * line[0][1 - component];
887
888 if (line[1][component] > (w * (float)sign))
889 {
890 line[1 - side / 2][component] = w * (float)sign;
891 line[1 - side / 2][1 - component] = newCoord;
892 }
893 else
894 {
895 line[side / 2][component] = w * (float)sign;
896 line[side / 2][1 - component] = newCoord;
897 }
898 }
899 }
900 }
901
902 enum ClipMode
903 {
904 CLIPMODE_NO_CLIPPING = 0,
905 CLIPMODE_USE_CLIPPING_BOX,
906
907 CLIPMODE_LAST
908 };
909
verifyMultisampleLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,ClipMode clipMode,VerifyTriangleGroupRasterizationLogStash * logStash,const bool vulkanLinesTest,const bool strictMode)910 bool verifyMultisampleLineGroupRasterization (const tcu::Surface& surface,
911 const LineSceneSpec& scene,
912 const RasterizationArguments& args,
913 tcu::TestLog& log,
914 ClipMode clipMode,
915 VerifyTriangleGroupRasterizationLogStash* logStash,
916 const bool vulkanLinesTest,
917 const bool strictMode)
918 {
919 // Multisampled line == 2 triangles
920
921 const tcu::Vec2 viewportSize = tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
922 const float halfLineWidth = scene.lineWidth * 0.5f;
923 TriangleSceneSpec triangleScene;
924
925 deUint32 stippleCounter = 0;
926 float leftoverPhase = 0.0f;
927
928 triangleScene.triangles.resize(2 * scene.lines.size());
929 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
930 {
931
932 if (!scene.isStrip)
933 {
934 // reset stipple at the start of each line segment
935 stippleCounter = 0;
936 leftoverPhase = 0;
937 }
938
939 // Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
940 tcu::Vec2 lineNormalizedDeviceSpace[2] =
941 {
942 tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(), scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
943 tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(), scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
944 };
945
946 if (clipMode == CLIPMODE_USE_CLIPPING_BOX)
947 {
948 applyClippingBox(lineNormalizedDeviceSpace, 1.0f);
949 }
950
951 const tcu::Vec2 lineScreenSpace[2] =
952 {
953 (lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
954 (lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
955 };
956
957 const tcu::Vec2 lineDir = tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
958 const tcu::Vec2 lineNormalDir = strictMode ? tcu::Vec2(lineDir.y(), -lineDir.x())
959 : isLineXMajor(lineScreenSpace[0], lineScreenSpace[1]) ? tcu::Vec2(0.0f, 1.0f)
960 : tcu::Vec2(1.0f, 0.0f);
961
962 if (scene.stippleEnable)
963 {
964 float lineLength = tcu::distance(lineScreenSpace[0], lineScreenSpace[1]);
965 float lineOffset = 0.0f;
966
967 while (lineOffset < lineLength)
968 {
969 float d0 = (float)lineOffset;
970 float d1 = d0 + 1.0f;
971
972 // "leftoverPhase" carries over a fractional stipple phase that was "unused"
973 // by the last line segment in the strip, if it wasn't an integer length.
974 if (leftoverPhase > lineLength)
975 {
976 DE_ASSERT(d0 == 0.0f);
977 d1 = lineLength;
978 leftoverPhase -= lineLength;
979 }
980 else if (leftoverPhase != 0.0f)
981 {
982 DE_ASSERT(d0 == 0.0f);
983 d1 = leftoverPhase;
984 leftoverPhase = 0.0f;
985 }
986 else
987 {
988 if (d0 + 1.0f > lineLength)
989 {
990 d1 = lineLength;
991 leftoverPhase = d0 + 1.0f - lineLength;
992 }
993 else
994 d1 = d0 + 1.0f;
995 }
996
997 // set offset for next iteration
998 lineOffset = d1;
999
1000 int stippleBit = (stippleCounter / scene.stippleFactor) % 16;
1001 bool stipplePass = (scene.stipplePattern & (1 << stippleBit)) != 0;
1002
1003 if (leftoverPhase == 0)
1004 stippleCounter++;
1005
1006 if (!stipplePass)
1007 continue;
1008
1009 d0 /= lineLength;
1010 d1 /= lineLength;
1011
1012 tcu::Vec2 l0 = mix(lineScreenSpace[0], lineScreenSpace[1], d0);
1013 tcu::Vec2 l1 = mix(lineScreenSpace[0], lineScreenSpace[1], d1);
1014
1015 const tcu::Vec2 lineQuadScreenSpace[4] =
1016 {
1017 l0 + lineNormalDir * halfLineWidth,
1018 l0 - lineNormalDir * halfLineWidth,
1019 l1 - lineNormalDir * halfLineWidth,
1020 l1 + lineNormalDir * halfLineWidth,
1021 };
1022 const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
1023 {
1024 lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1025 lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1026 lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1027 lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1028 };
1029
1030 TriangleSceneSpec::SceneTriangle tri;
1031
1032 tri.positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f); tri.sharedEdge[0] = (d0 != 0.0f);
1033 tri.positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f); tri.sharedEdge[1] = false;
1034 tri.positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f); tri.sharedEdge[2] = true;
1035
1036 triangleScene.triangles.push_back(tri);
1037
1038 tri.positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f); tri.sharedEdge[0] = true;
1039 tri.positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f); tri.sharedEdge[1] = (d1 != 1.0f);
1040 tri.positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f); tri.sharedEdge[2] = false;
1041
1042 triangleScene.triangles.push_back(tri);
1043 }
1044 }
1045 else
1046 {
1047 const tcu::Vec2 lineQuadScreenSpace[4] =
1048 {
1049 lineScreenSpace[0] + lineNormalDir * halfLineWidth,
1050 lineScreenSpace[0] - lineNormalDir * halfLineWidth,
1051 lineScreenSpace[1] - lineNormalDir * halfLineWidth,
1052 lineScreenSpace[1] + lineNormalDir * halfLineWidth,
1053 };
1054 const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
1055 {
1056 lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1057 lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1058 lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1059 lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1060 };
1061
1062 triangleScene.triangles[lineNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 0].sharedEdge[0] = false;
1063 triangleScene.triangles[lineNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 0].sharedEdge[1] = false;
1064 triangleScene.triangles[lineNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 0].sharedEdge[2] = true;
1065
1066 triangleScene.triangles[lineNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 1].sharedEdge[0] = true;
1067 triangleScene.triangles[lineNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 1].sharedEdge[1] = false;
1068 triangleScene.triangles[lineNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f); triangleScene.triangles[lineNdx*2 + 1].sharedEdge[2] = false;
1069 }
1070 }
1071
1072 if (logStash != DE_NULL)
1073 {
1074 logStash->messages.push_back("Rasterization clipping mode: " + std::string(clipMode == CLIPMODE_USE_CLIPPING_BOX ? "CLIPMODE_USE_CLIPPING_BOX" : "CLIPMODE_NO_CLIPPING") + ".");
1075 logStash->messages.push_back("Rasterization line draw strictness mode: " + std::string(strictMode ? "strict" : "non-strict") + ".");
1076 }
1077
1078 return verifyTriangleGroupRasterization(surface, triangleScene, args, log, scene.verificationMode, logStash, vulkanLinesTest);
1079 }
1080
verifyMultisampleLineGroupInterpolationInternal(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,VerifyTriangleGroupInterpolationLogStash & logStash,const bool strictMode)1081 static bool verifyMultisampleLineGroupInterpolationInternal (const tcu::Surface& surface,
1082 const LineSceneSpec& scene,
1083 const RasterizationArguments& args,
1084 VerifyTriangleGroupInterpolationLogStash& logStash,
1085 const bool strictMode)
1086 {
1087 // Multisampled line == 2 triangles
1088
1089 const tcu::Vec2 viewportSize = tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
1090 const float halfLineWidth = scene.lineWidth * 0.5f;
1091 TriangleSceneSpec triangleScene;
1092
1093 triangleScene.triangles.resize(2 * scene.lines.size());
1094 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
1095 {
1096 // Need the w-coordinates a couple of times
1097 const float wa = scene.lines[lineNdx].positions[0].w();
1098 const float wb = scene.lines[lineNdx].positions[1].w();
1099
1100 // Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
1101 const tcu::Vec2 lineNormalizedDeviceSpace[2] =
1102 {
1103 tcu::Vec2(scene.lines[lineNdx].positions[0].x() / wa, scene.lines[lineNdx].positions[0].y() / wa),
1104 tcu::Vec2(scene.lines[lineNdx].positions[1].x() / wb, scene.lines[lineNdx].positions[1].y() / wb),
1105 };
1106 const tcu::Vec2 lineScreenSpace[2] =
1107 {
1108 (lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
1109 (lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
1110 };
1111
1112 const tcu::Vec2 lineDir = tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
1113 const tcu::Vec2 lineNormalDir = strictMode ? tcu::Vec2(lineDir.y(), -lineDir.x())
1114 : isLineXMajor(lineScreenSpace[0], lineScreenSpace[1]) ? tcu::Vec2(0.0f, 1.0f)
1115 : tcu::Vec2(1.0f, 0.0f);
1116
1117 const tcu::Vec2 lineQuadScreenSpace[4] =
1118 {
1119 lineScreenSpace[0] + lineNormalDir * halfLineWidth,
1120 lineScreenSpace[0] - lineNormalDir * halfLineWidth,
1121 lineScreenSpace[1] - lineNormalDir * halfLineWidth,
1122 lineScreenSpace[1] + lineNormalDir * halfLineWidth,
1123 };
1124 const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
1125 {
1126 lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1127 lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1128 lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1129 lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1130 };
1131
1132 // Re-construct un-projected geometry using the quantised positions
1133 const tcu::Vec4 lineQuadUnprojected[4] =
1134 {
1135 tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x() * wa, lineQuadNormalizedDeviceSpace[0].y() * wa, 0.0f, wa),
1136 tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x() * wa, lineQuadNormalizedDeviceSpace[1].y() * wa, 0.0f, wa),
1137 tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x() * wb, lineQuadNormalizedDeviceSpace[2].y() * wb, 0.0f, wb),
1138 tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x() * wb, lineQuadNormalizedDeviceSpace[3].y() * wb, 0.0f, wb),
1139 };
1140
1141 triangleScene.triangles[lineNdx*2 + 0].positions[0] = lineQuadUnprojected[0];
1142 triangleScene.triangles[lineNdx*2 + 0].positions[1] = lineQuadUnprojected[1];
1143 triangleScene.triangles[lineNdx*2 + 0].positions[2] = lineQuadUnprojected[2];
1144
1145 triangleScene.triangles[lineNdx*2 + 0].sharedEdge[0] = false;
1146 triangleScene.triangles[lineNdx*2 + 0].sharedEdge[1] = false;
1147 triangleScene.triangles[lineNdx*2 + 0].sharedEdge[2] = true;
1148
1149 triangleScene.triangles[lineNdx*2 + 0].colors[0] = scene.lines[lineNdx].colors[0];
1150 triangleScene.triangles[lineNdx*2 + 0].colors[1] = scene.lines[lineNdx].colors[0];
1151 triangleScene.triangles[lineNdx*2 + 0].colors[2] = scene.lines[lineNdx].colors[1];
1152
1153 triangleScene.triangles[lineNdx*2 + 1].positions[0] = lineQuadUnprojected[0];
1154 triangleScene.triangles[lineNdx*2 + 1].positions[1] = lineQuadUnprojected[2];
1155 triangleScene.triangles[lineNdx*2 + 1].positions[2] = lineQuadUnprojected[3];
1156
1157 triangleScene.triangles[lineNdx*2 + 1].sharedEdge[0] = true;
1158 triangleScene.triangles[lineNdx*2 + 1].sharedEdge[1] = false;
1159 triangleScene.triangles[lineNdx*2 + 1].sharedEdge[2] = false;
1160
1161 triangleScene.triangles[lineNdx*2 + 1].colors[0] = scene.lines[lineNdx].colors[0];
1162 triangleScene.triangles[lineNdx*2 + 1].colors[1] = scene.lines[lineNdx].colors[1];
1163 triangleScene.triangles[lineNdx*2 + 1].colors[2] = scene.lines[lineNdx].colors[1];
1164 }
1165
1166 if (strictMode)
1167 {
1168 // Strict mode interpolation should be purely in the direction of the line-segment
1169 logStash.messages.push_back("Verify using line interpolator");
1170 return verifyTriangleGroupInterpolationWithInterpolator(surface, triangleScene, args, logStash, MultisampleLineInterpolator(scene));
1171 }
1172 else
1173 {
1174 // For non-strict lines some allowance needs to be inplace for a few different styles of implementation.
1175 //
1176 // Some implementations duplicate the attributes at the endpoints to the corners of the triangle
1177 // deconstruted parallelogram. Gradients along the line will be seen to travel in the major axis,
1178 // with values effectively duplicated in the minor axis direction. In other cases, implementations
1179 // will use the original parameters of the line to calculate attribute interpolation so it will
1180 // follow the direction of the line-segment.
1181 logStash.messages.push_back("Verify using triangle interpolator");
1182 if (!verifyTriangleGroupInterpolationWithInterpolator(surface, triangleScene, args, logStash, TriangleInterpolator(triangleScene)))
1183 {
1184 logStash.messages.push_back("Verify using line interpolator");
1185 return verifyTriangleGroupInterpolationWithInterpolator(surface, triangleScene, args, logStash, MultisampleLineInterpolator(scene));
1186 }
1187 return true;
1188 }
1189 }
1190
logTriangleGroupnterpolationStash(const tcu::Surface & surface,tcu::TestLog & log,VerifyTriangleGroupInterpolationLogStash & logStash)1191 static void logTriangleGroupnterpolationStash (const tcu::Surface& surface, tcu::TestLog& log, VerifyTriangleGroupInterpolationLogStash& logStash)
1192 {
1193 // Output results
1194 log << tcu::TestLog::Message << "Verifying rasterization result." << tcu::TestLog::EndMessage;
1195
1196 for (size_t msgNdx = 0; msgNdx < logStash.messages.size(); ++msgNdx)
1197 log << tcu::TestLog::Message << logStash.messages[msgNdx] << tcu::TestLog::EndMessage;
1198
1199 // report result
1200 if (!logStash.success)
1201 {
1202 log << tcu::TestLog::Message << logStash.invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
1203 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1204 << tcu::TestLog::Image("Result", "Result", surface)
1205 << tcu::TestLog::Image("ErrorMask", "ErrorMask", logStash.errorMask)
1206 << tcu::TestLog::EndImageSet;
1207 }
1208 else
1209 {
1210 log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
1211 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1212 << tcu::TestLog::Image("Result", "Result", surface)
1213 << tcu::TestLog::EndImageSet;
1214 }
1215 }
1216
verifyMultisampleLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,const bool strictMode=true,const bool allowBresenhamForNonStrictLines=false)1217 static bool verifyMultisampleLineGroupInterpolation (const tcu::Surface& surface,
1218 const LineSceneSpec& scene,
1219 const RasterizationArguments& args,
1220 tcu::TestLog& log,
1221 const bool strictMode = true,
1222 const bool allowBresenhamForNonStrictLines = false)
1223 {
1224 bool result = false;
1225 VerifyTriangleGroupInterpolationLogStash nonStrictModeLogStash;
1226 VerifyTriangleGroupInterpolationLogStash strictModeLogStash;
1227
1228 nonStrictModeLogStash.messages.push_back("Non-strict line draw mode.");
1229 strictModeLogStash.messages.push_back("Strict mode line draw mode.");
1230
1231 if (strictMode)
1232 {
1233 result = verifyMultisampleLineGroupInterpolationInternal(surface,scene, args, strictModeLogStash, strictMode);
1234
1235 logTriangleGroupnterpolationStash(surface, log, strictModeLogStash);
1236 }
1237 else
1238 {
1239 if (verifyMultisampleLineGroupInterpolationInternal(surface,scene, args, nonStrictModeLogStash, false))
1240 {
1241 logTriangleGroupnterpolationStash(surface, log, nonStrictModeLogStash);
1242
1243 result = true;
1244 }
1245 else if (verifyMultisampleLineGroupInterpolationInternal(surface,scene, args, strictModeLogStash, true))
1246 {
1247 logTriangleGroupnterpolationStash(surface, log, strictModeLogStash);
1248
1249 result = true;
1250 }
1251 else
1252 {
1253 logTriangleGroupnterpolationStash(surface, log, nonStrictModeLogStash);
1254 logTriangleGroupnterpolationStash(surface, log, strictModeLogStash);
1255 }
1256
1257 // In the non-strict line case, bresenham is also permissable, though not specified. This is due
1258 // to a change in how lines are specified in Vulkan versus GLES; in GLES bresenham lines using the
1259 // diamond-exit rule were the preferred way to draw single pixel non-antialiased lines, and not all
1260 // GLES implementations are able to disable this behaviour.
1261 if (result == false)
1262 {
1263 log << tcu::TestLog::Message << "Checking line rasterisation using verifySinglesampleNarrowLineGroupInterpolation for nonStrict lines" << tcu::TestLog::EndMessage;
1264 if (args.numSamples <= 1 &&
1265 allowBresenhamForNonStrictLines &&
1266 verifyLineGroupInterpolationWithProjectedWeights(surface, scene, args, log))
1267 {
1268 log << tcu::TestLog::Message << "verifySinglesampleNarrowLineGroupInterpolation for nonStrict lines Passed" << tcu::TestLog::EndMessage;
1269
1270 result = true;
1271 }
1272 }
1273
1274 }
1275
1276 return result;
1277 }
1278
verifyMultisamplePointGroupRasterization(const tcu::Surface & surface,const PointSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)1279 bool verifyMultisamplePointGroupRasterization (const tcu::Surface& surface, const PointSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
1280 {
1281 // Multisampled point == 2 triangles
1282
1283 const tcu::Vec2 viewportSize = tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
1284 TriangleSceneSpec triangleScene;
1285
1286 triangleScene.triangles.resize(2 * scene.points.size());
1287 for (int pointNdx = 0; pointNdx < (int)scene.points.size(); ++pointNdx)
1288 {
1289 // Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
1290 const tcu::Vec2 pointNormalizedDeviceSpace = tcu::Vec2(scene.points[pointNdx].position.x() / scene.points[pointNdx].position.w(), scene.points[pointNdx].position.y() / scene.points[pointNdx].position.w());
1291 const tcu::Vec2 pointScreenSpace = (pointNormalizedDeviceSpace + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize;
1292 const float offset = scene.points[pointNdx].pointSize * 0.5f;
1293 const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
1294 {
1295 (pointScreenSpace + tcu::Vec2(-offset, -offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1296 (pointScreenSpace + tcu::Vec2(-offset, offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1297 (pointScreenSpace + tcu::Vec2( offset, offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1298 (pointScreenSpace + tcu::Vec2( offset, -offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
1299 };
1300
1301 triangleScene.triangles[pointNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 0].sharedEdge[0] = false;
1302 triangleScene.triangles[pointNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 0].sharedEdge[1] = false;
1303 triangleScene.triangles[pointNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 0].sharedEdge[2] = true;
1304
1305 triangleScene.triangles[pointNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 1].sharedEdge[0] = true;
1306 triangleScene.triangles[pointNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 1].sharedEdge[1] = false;
1307 triangleScene.triangles[pointNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f); triangleScene.triangles[pointNdx*2 + 1].sharedEdge[2] = false;
1308 }
1309
1310 return verifyTriangleGroupRasterization(surface, triangleScene, args, log);
1311 }
1312
genScreenSpaceLines(std::vector<tcu::Vec4> & screenspaceLines,const std::vector<LineSceneSpec::SceneLine> & lines,const tcu::IVec2 & viewportSize)1313 void genScreenSpaceLines (std::vector<tcu::Vec4>& screenspaceLines, const std::vector<LineSceneSpec::SceneLine>& lines, const tcu::IVec2& viewportSize)
1314 {
1315 DE_ASSERT(screenspaceLines.size() == lines.size());
1316
1317 for (int lineNdx = 0; lineNdx < (int)lines.size(); ++lineNdx)
1318 {
1319 const tcu::Vec2 lineNormalizedDeviceSpace[2] =
1320 {
1321 tcu::Vec2(lines[lineNdx].positions[0].x() / lines[lineNdx].positions[0].w(), lines[lineNdx].positions[0].y() / lines[lineNdx].positions[0].w()),
1322 tcu::Vec2(lines[lineNdx].positions[1].x() / lines[lineNdx].positions[1].w(), lines[lineNdx].positions[1].y() / lines[lineNdx].positions[1].w()),
1323 };
1324 const tcu::Vec4 lineScreenSpace[2] =
1325 {
1326 tcu::Vec4((lineNormalizedDeviceSpace[0].x() + 1.0f) * 0.5f * (float)viewportSize.x(), (lineNormalizedDeviceSpace[0].y() + 1.0f) * 0.5f * (float)viewportSize.y(), 0.0f, 1.0f),
1327 tcu::Vec4((lineNormalizedDeviceSpace[1].x() + 1.0f) * 0.5f * (float)viewportSize.x(), (lineNormalizedDeviceSpace[1].y() + 1.0f) * 0.5f * (float)viewportSize.y(), 0.0f, 1.0f),
1328 };
1329
1330 screenspaceLines[lineNdx] = tcu::Vec4(lineScreenSpace[0].x(), lineScreenSpace[0].y(), lineScreenSpace[1].x(), lineScreenSpace[1].y());
1331 }
1332 }
1333
verifySinglesampleLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)1334 bool verifySinglesampleLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
1335 {
1336 DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
1337 DE_ASSERT(scene.lines.size() < 255); // indices are stored as unsigned 8-bit ints
1338
1339 bool allOK = true;
1340 bool overdrawInReference = false;
1341 int referenceFragments = 0;
1342 int resultFragments = 0;
1343 int lineWidth = deFloorFloatToInt32(scene.lineWidth + 0.5f);
1344 std::vector<bool> lineIsXMajor (scene.lines.size());
1345 std::vector<tcu::Vec4> screenspaceLines(scene.lines.size());
1346
1347 // Reference renderer produces correct fragments using the diamond-rule. Make 2D int array, each cell contains the highest index (first index = 1) of the overlapping lines or 0 if no line intersects the pixel
1348 tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
1349 tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
1350
1351 genScreenSpaceLines(screenspaceLines, scene.lines, tcu::IVec2(surface.getWidth(), surface.getHeight()));
1352
1353 rr::SingleSampleLineRasterizer rasterizer(tcu::IVec4(0, 0, surface.getWidth(), surface.getHeight()), args.subpixelBits);
1354 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
1355 {
1356 rasterizer.init(tcu::Vec4(screenspaceLines[lineNdx][0],
1357 screenspaceLines[lineNdx][1],
1358 0.0f,
1359 1.0f),
1360 tcu::Vec4(screenspaceLines[lineNdx][2],
1361 screenspaceLines[lineNdx][3],
1362 0.0f,
1363 1.0f),
1364 scene.lineWidth,
1365 scene.stippleFactor,
1366 scene.stipplePattern);
1367
1368 if (!scene.isStrip)
1369 rasterizer.resetStipple();
1370
1371 // calculate majority of later use
1372 lineIsXMajor[lineNdx] = isPackedSSLineXMajor(screenspaceLines[lineNdx]);
1373
1374 for (;;)
1375 {
1376 const int maxPackets = 32;
1377 int numRasterized = 0;
1378 rr::FragmentPacket packets[maxPackets];
1379
1380 rasterizer.rasterize(packets, DE_NULL, maxPackets, numRasterized);
1381
1382 for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
1383 {
1384 for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
1385 {
1386 if ((deUint32)packets[packetNdx].coverage & (1 << fragNdx))
1387 {
1388 const tcu::IVec2 fragPos = packets[packetNdx].position + tcu::IVec2(fragNdx%2, fragNdx/2);
1389
1390 // Check for overdraw
1391 if (!overdrawInReference)
1392 overdrawInReference = referenceLineMap.getAccess().getPixelInt(fragPos.x(), fragPos.y()).x() != 0;
1393
1394 // Output pixel
1395 referenceLineMap.getAccess().setPixel(tcu::IVec4(lineNdx + 1, 0, 0, 0), fragPos.x(), fragPos.y());
1396 }
1397 }
1398 }
1399
1400 if (numRasterized != maxPackets)
1401 break;
1402 }
1403 }
1404
1405 // Requirement 1: The coordinates of a fragment produced by the algorithm may not deviate by more than one unit
1406 {
1407 tcu::Surface errorMask (surface.getWidth(), surface.getHeight());
1408 bool missingFragments = false;
1409
1410 tcu::clear(errorMask.getAccess(), tcu::IVec4(0, 255, 0, 255));
1411
1412 log << tcu::TestLog::Message << "Searching for deviating fragments." << tcu::TestLog::EndMessage;
1413
1414 for (int y = 0; y < referenceLineMap.getHeight(); ++y)
1415 for (int x = 0; x < referenceLineMap.getWidth(); ++x)
1416 {
1417 const bool reference = referenceLineMap.getAccess().getPixelInt(x, y).x() != 0;
1418 const bool result = compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits);
1419
1420 if (reference)
1421 ++referenceFragments;
1422 if (result)
1423 ++resultFragments;
1424
1425 if (reference == result)
1426 continue;
1427
1428 // Reference fragment here, matching result fragment must be nearby
1429 if (reference && !result)
1430 {
1431 bool foundFragment = false;
1432
1433 if (x == 0 || y == 0 || x == referenceLineMap.getWidth() - 1 || y == referenceLineMap.getHeight() -1)
1434 {
1435 // image boundary, missing fragment could be over the image edge
1436 foundFragment = true;
1437 }
1438
1439 // find nearby fragment
1440 for (int dy = -1; dy < 2 && !foundFragment; ++dy)
1441 for (int dx = -1; dx < 2 && !foundFragment; ++dx)
1442 {
1443 if (compareColors(surface.getPixel(x+dx, y+dy), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits))
1444 foundFragment = true;
1445 }
1446
1447 if (!foundFragment)
1448 {
1449 missingFragments = true;
1450 errorMask.setPixel(x, y, tcu::RGBA::red());
1451 }
1452 }
1453 }
1454
1455 if (missingFragments)
1456 {
1457
1458 allOK = false;
1459 }
1460 else
1461 {
1462 log << tcu::TestLog::Message << "No invalid deviations found." << tcu::TestLog::EndMessage;
1463 }
1464 }
1465
1466 // Requirement 2: The total number of fragments produced by the algorithm may differ from
1467 // that produced by the diamond-exit rule by no more than one.
1468 {
1469 // Check is not valid if the primitives intersect or otherwise share same fragments
1470 if (!overdrawInReference)
1471 {
1472 int allowedDeviation = (int)scene.lines.size() * lineWidth; // one pixel per primitive in the major direction
1473
1474 log << tcu::TestLog::Message << "Verifying fragment counts:\n"
1475 << "\tDiamond-exit rule: " << referenceFragments << " fragments.\n"
1476 << "\tResult image: " << resultFragments << " fragments.\n"
1477 << "\tAllowing deviation of " << allowedDeviation << " fragments.\n"
1478 << tcu::TestLog::EndMessage;
1479
1480 if (deAbs32(referenceFragments - resultFragments) > allowedDeviation)
1481 {
1482 tcu::Surface reference(surface.getWidth(), surface.getHeight());
1483
1484 // show a helpful reference image
1485 tcu::clear(reference.getAccess(), tcu::IVec4(0, 0, 0, 255));
1486 for (int y = 0; y < surface.getHeight(); ++y)
1487 for (int x = 0; x < surface.getWidth(); ++x)
1488 if (referenceLineMap.getAccess().getPixelInt(x, y).x())
1489 reference.setPixel(x, y, tcu::RGBA::white());
1490
1491 log << tcu::TestLog::Message << "Invalid fragment count in result image." << tcu::TestLog::EndMessage;
1492 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1493 << tcu::TestLog::Image("Reference", "Reference", reference)
1494 << tcu::TestLog::Image("Result", "Result", surface)
1495 << tcu::TestLog::EndImageSet;
1496
1497 allOK = false;
1498 }
1499 else
1500 {
1501 log << tcu::TestLog::Message << "Fragment count is valid." << tcu::TestLog::EndMessage;
1502 }
1503 }
1504 else
1505 {
1506 log << tcu::TestLog::Message << "Overdraw in scene. Fragment count cannot be verified. Skipping fragment count checks." << tcu::TestLog::EndMessage;
1507 }
1508 }
1509
1510 // Requirement 3: Line width must be constant
1511 {
1512 bool invalidWidthFound = false;
1513
1514 log << tcu::TestLog::Message << "Verifying line widths of the x-major lines." << tcu::TestLog::EndMessage;
1515 for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
1516 {
1517 bool fullyVisibleLine = false;
1518 bool previousPixelUndefined = false;
1519 int currentLine = 0;
1520 int currentWidth = 1;
1521
1522 for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
1523 {
1524 const bool result = compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits);
1525 int lineID = 0;
1526
1527 // Which line does this fragment belong to?
1528
1529 if (result)
1530 {
1531 bool multipleNearbyLines = false;
1532 bool renderAtSurfaceEdge = false;
1533
1534 renderAtSurfaceEdge = (x == 1) || (x == referenceLineMap.getWidth() - 2);
1535
1536 for (int dy = -1; dy < 2; ++dy)
1537 for (int dx = -1; dx < 2; ++dx)
1538 {
1539 const int nearbyID = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
1540 if (nearbyID)
1541 {
1542 if (lineID && lineID != nearbyID)
1543 multipleNearbyLines = true;
1544 }
1545 }
1546
1547 if (multipleNearbyLines || renderAtSurfaceEdge)
1548 {
1549 // Another line is too close, don't try to calculate width here
1550 // Or the render result is outside of surface range
1551 previousPixelUndefined = true;
1552 continue;
1553 }
1554 }
1555
1556 // Only line with id of lineID is nearby
1557
1558 if (previousPixelUndefined)
1559 {
1560 // The line might have been overdrawn or not
1561 currentLine = lineID;
1562 currentWidth = 1;
1563 fullyVisibleLine = false;
1564 previousPixelUndefined = false;
1565 }
1566 else if (lineID == currentLine)
1567 {
1568 // Current line continues
1569 ++currentWidth;
1570 }
1571 else if (lineID > currentLine)
1572 {
1573 // Another line was drawn over or the line ends
1574 currentLine = lineID;
1575 currentWidth = 1;
1576 fullyVisibleLine = true;
1577 }
1578 else
1579 {
1580 // The line ends
1581 if (fullyVisibleLine && !lineIsXMajor[currentLine-1])
1582 {
1583 // check width
1584 if (currentWidth != lineWidth)
1585 {
1586 log << tcu::TestLog::Message << "\tInvalid line width at (" << x - currentWidth << ", " << y << ") - (" << x - 1 << ", " << y << "). Detected width of " << currentWidth << ", expected " << lineWidth << tcu::TestLog::EndMessage;
1587 invalidWidthFound = true;
1588 }
1589 }
1590
1591 currentLine = lineID;
1592 currentWidth = 1;
1593 fullyVisibleLine = false;
1594 }
1595 }
1596 }
1597
1598 log << tcu::TestLog::Message << "Verifying line widths of the y-major lines." << tcu::TestLog::EndMessage;
1599 for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
1600 {
1601 bool fullyVisibleLine = false;
1602 bool previousPixelUndefined = false;
1603 int currentLine = 0;
1604 int currentWidth = 1;
1605
1606 for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
1607 {
1608 const bool result = compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits);
1609 int lineID = 0;
1610
1611 // Which line does this fragment belong to?
1612
1613 if (result)
1614 {
1615 bool multipleNearbyLines = false;
1616 bool renderAtSurfaceEdge = false;
1617
1618 renderAtSurfaceEdge = (y == 1) || (y == referenceLineMap.getWidth() - 2);
1619
1620 for (int dy = -1; dy < 2; ++dy)
1621 for (int dx = -1; dx < 2; ++dx)
1622 {
1623 const int nearbyID = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
1624 if (nearbyID)
1625 {
1626 if (lineID && lineID != nearbyID)
1627 multipleNearbyLines = true;
1628 lineID = nearbyID;
1629 }
1630 }
1631
1632 if (multipleNearbyLines || renderAtSurfaceEdge)
1633 {
1634 // Another line is too close, don't try to calculate width here
1635 // Or the render result is outside of surface range
1636 previousPixelUndefined = true;
1637 continue;
1638 }
1639 }
1640
1641 // Only line with id of lineID is nearby
1642
1643 if (previousPixelUndefined)
1644 {
1645 // The line might have been overdrawn or not
1646 currentLine = lineID;
1647 currentWidth = 1;
1648 fullyVisibleLine = false;
1649 previousPixelUndefined = false;
1650 }
1651 else if (lineID == currentLine)
1652 {
1653 // Current line continues
1654 ++currentWidth;
1655 }
1656 else if (lineID > currentLine)
1657 {
1658 // Another line was drawn over or the line ends
1659 currentLine = lineID;
1660 currentWidth = 1;
1661 fullyVisibleLine = true;
1662 }
1663 else
1664 {
1665 // The line ends
1666 if (fullyVisibleLine && lineIsXMajor[currentLine-1])
1667 {
1668 // check width
1669 if (currentWidth != lineWidth)
1670 {
1671 log << tcu::TestLog::Message << "\tInvalid line width at (" << x << ", " << y - currentWidth << ") - (" << x << ", " << y - 1 << "). Detected width of " << currentWidth << ", expected " << lineWidth << tcu::TestLog::EndMessage;
1672 invalidWidthFound = true;
1673 }
1674 }
1675
1676 currentLine = lineID;
1677 currentWidth = 1;
1678 fullyVisibleLine = false;
1679 }
1680 }
1681 }
1682
1683 if (invalidWidthFound)
1684 {
1685 log << tcu::TestLog::Message << "Invalid line width found, image is not valid." << tcu::TestLog::EndMessage;
1686 allOK = false;
1687 }
1688 else
1689 {
1690 log << tcu::TestLog::Message << "Line widths are valid." << tcu::TestLog::EndMessage;
1691 }
1692 }
1693
1694 //\todo [2013-10-24 jarkko].
1695 //Requirement 4. If two line segments share a common endpoint, and both segments are either
1696 //x-major (both left-to-right or both right-to-left) or y-major (both bottom-totop
1697 //or both top-to-bottom), then rasterizing both segments may not produce
1698 //duplicate fragments, nor may any fragments be omitted so as to interrupt
1699 //continuity of the connected segments.
1700
1701 {
1702 tcu::Surface reference(surface.getWidth(), surface.getHeight());
1703 tcu::clear(reference.getAccess(), tcu::IVec4(0, 0, 0, 255));
1704 for (int y = 0; y < surface.getHeight(); ++y)
1705 for (int x = 0; x < surface.getWidth(); ++x)
1706 if (referenceLineMap.getAccess().getPixelInt(x, y).x())
1707 reference.setPixel(x, y, tcu::RGBA::white());
1708 log << tcu::TestLog::Message << "Invalid fragment count in result image." << tcu::TestLog::EndMessage;
1709 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1710 << tcu::TestLog::Image("Reference", "Reference", reference)
1711 << tcu::TestLog::Image("Result", "Result", surface)
1712 << tcu::TestLog::EndImageSet;
1713 }
1714
1715 return allOK;
1716 }
1717
1718 struct SingleSampleNarrowLineCandidate
1719 {
1720 int lineNdx;
1721 tcu::IVec3 colorMin;
1722 tcu::IVec3 colorMax;
1723 tcu::Vec3 colorMinF;
1724 tcu::Vec3 colorMaxF;
1725 tcu::Vec3 valueRangeMin;
1726 tcu::Vec3 valueRangeMax;
1727 };
1728
setMaskMapCoverageBitForLine(int bitNdx,const tcu::Vec2 & screenSpaceP0,const tcu::Vec2 & screenSpaceP1,float lineWidth,tcu::PixelBufferAccess maskMap,const int subpixelBits)1729 void setMaskMapCoverageBitForLine (int bitNdx, const tcu::Vec2& screenSpaceP0, const tcu::Vec2& screenSpaceP1, float lineWidth, tcu::PixelBufferAccess maskMap, const int subpixelBits)
1730 {
1731 enum
1732 {
1733 MAX_PACKETS = 32,
1734 };
1735
1736 rr::SingleSampleLineRasterizer rasterizer (tcu::IVec4(0, 0, maskMap.getWidth(), maskMap.getHeight()), subpixelBits);
1737 int numRasterized = MAX_PACKETS;
1738 rr::FragmentPacket packets[MAX_PACKETS];
1739
1740 rasterizer.init(tcu::Vec4(screenSpaceP0.x(), screenSpaceP0.y(), 0.0f, 1.0f),
1741 tcu::Vec4(screenSpaceP1.x(), screenSpaceP1.y(), 0.0f, 1.0f),
1742 lineWidth,
1743 1, 0xFFFF);
1744
1745 while (numRasterized == MAX_PACKETS)
1746 {
1747 rasterizer.rasterize(packets, DE_NULL, MAX_PACKETS, numRasterized);
1748
1749 for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
1750 {
1751 for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
1752 {
1753 if ((deUint32)packets[packetNdx].coverage & (1 << fragNdx))
1754 {
1755 const tcu::IVec2 fragPos = packets[packetNdx].position + tcu::IVec2(fragNdx%2, fragNdx/2);
1756
1757 DE_ASSERT(deInBounds32(fragPos.x(), 0, maskMap.getWidth()));
1758 DE_ASSERT(deInBounds32(fragPos.y(), 0, maskMap.getHeight()));
1759
1760 const deUint32 previousMask = maskMap.getPixelUint(fragPos.x(), fragPos.y()).x();
1761 const deUint32 newMask = (previousMask) | ((deUint32)1u << bitNdx);
1762
1763 maskMap.setPixel(tcu::UVec4(newMask, 0, 0, 0), fragPos.x(), fragPos.y());
1764 }
1765 }
1766 }
1767 }
1768 }
1769
setMaskMapCoverageBitForLines(const std::vector<tcu::Vec4> & screenspaceLines,float lineWidth,tcu::PixelBufferAccess maskMap,const int subpixelBits)1770 void setMaskMapCoverageBitForLines (const std::vector<tcu::Vec4>& screenspaceLines, float lineWidth, tcu::PixelBufferAccess maskMap, const int subpixelBits)
1771 {
1772 for (int lineNdx = 0; lineNdx < (int)screenspaceLines.size(); ++lineNdx)
1773 {
1774 const tcu::Vec2 pa = screenspaceLines[lineNdx].swizzle(0, 1);
1775 const tcu::Vec2 pb = screenspaceLines[lineNdx].swizzle(2, 3);
1776
1777 setMaskMapCoverageBitForLine(lineNdx, pa, pb, lineWidth, maskMap, subpixelBits);
1778 }
1779 }
1780
1781 // verify line interpolation assuming line pixels are interpolated independently depending only on screen space location
verifyLineGroupPixelIndependentInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,LineInterpolationMethod interpolationMethod)1782 bool verifyLineGroupPixelIndependentInterpolation (const tcu::Surface& surface,
1783 const LineSceneSpec& scene,
1784 const RasterizationArguments& args,
1785 tcu::TestLog& log,
1786 LineInterpolationMethod interpolationMethod)
1787 {
1788 DE_ASSERT(scene.lines.size() < 8); // coverage indices are stored as bitmask in a unsigned 8-bit ints
1789 DE_ASSERT(interpolationMethod == LINEINTERPOLATION_STRICTLY_CORRECT || interpolationMethod == LINEINTERPOLATION_PROJECTED);
1790
1791 const tcu::RGBA invalidPixelColor = tcu::RGBA(255, 0, 0, 255);
1792 const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
1793 const int errorFloodThreshold = 4;
1794 int errorCount = 0;
1795 tcu::Surface errorMask (surface.getWidth(), surface.getHeight());
1796 int invalidPixels = 0;
1797 std::vector<tcu::Vec4> screenspaceLines (scene.lines.size()); //!< packed (x0, y0, x1, y1)
1798
1799 // Reference renderer produces correct fragments using the diamond-exit-rule. Make 2D int array, store line coverage as a 8-bit bitfield
1800 // The map is used to find lines with potential coverage to a given pixel
1801 tcu::TextureLevel referenceLineMap (tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
1802
1803 tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
1804 tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
1805
1806 // log format
1807
1808 log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
1809 if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
1810 log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
1811
1812 // prepare lookup map
1813
1814 genScreenSpaceLines(screenspaceLines, scene.lines, viewportSize);
1815 setMaskMapCoverageBitForLines(screenspaceLines, scene.lineWidth, referenceLineMap.getAccess(), args.subpixelBits);
1816
1817 // Find all possible lines with coverage, check pixel color matches one of them
1818
1819 for (int y = 1; y < surface.getHeight() - 1; ++y)
1820 for (int x = 1; x < surface.getWidth() - 1; ++x)
1821 {
1822 const tcu::RGBA color = surface.getPixel(x, y);
1823 const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args); // Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
1824 int lineCoverageSet = 0; // !< lines that may cover this fragment
1825 int lineSurroundingCoverage = 0xFFFF; // !< lines that will cover this fragment
1826 bool matchFound = false;
1827 const tcu::IVec3 formatLimit ((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
1828
1829 std::vector<SingleSampleNarrowLineCandidate> candidates;
1830
1831 // Find lines with possible coverage
1832
1833 for (int dy = -1; dy < 2; ++dy)
1834 for (int dx = -1; dx < 2; ++dx)
1835 {
1836 const int coverage = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
1837
1838 lineCoverageSet |= coverage;
1839 lineSurroundingCoverage &= coverage;
1840 }
1841
1842 // background color is possible?
1843 if (lineSurroundingCoverage == 0 && compareColors(color, tcu::RGBA::black(), args.redBits, args.greenBits, args.blueBits))
1844 continue;
1845
1846 // Check those lines
1847
1848 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
1849 {
1850 if (((lineCoverageSet >> lineNdx) & 0x01) != 0)
1851 {
1852 const float wa = scene.lines[lineNdx].positions[0].w();
1853 const float wb = scene.lines[lineNdx].positions[1].w();
1854 const tcu::Vec2 pa = screenspaceLines[lineNdx].swizzle(0, 1);
1855 const tcu::Vec2 pb = screenspaceLines[lineNdx].swizzle(2, 3);
1856
1857 const LineInterpolationRange range = (interpolationMethod == LINEINTERPOLATION_STRICTLY_CORRECT)
1858 ? (calcSingleSampleLineInterpolationRange(pa, wa, pb, wb, tcu::IVec2(x, y), args.subpixelBits))
1859 : (calcSingleSampleLineInterpolationRangeAxisProjected(pa, wa, pb, wb, tcu::IVec2(x, y), args.subpixelBits));
1860
1861 const tcu::Vec4 valueMin = de::clamp(range.min.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.min.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
1862 const tcu::Vec4 valueMax = de::clamp(range.max.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.max.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
1863
1864 const tcu::Vec3 colorMinF (de::clamp(valueMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
1865 de::clamp(valueMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
1866 de::clamp(valueMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
1867 const tcu::Vec3 colorMaxF (de::clamp(valueMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
1868 de::clamp(valueMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
1869 de::clamp(valueMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
1870 const tcu::IVec3 colorMin ((int)deFloatFloor(colorMinF.x()),
1871 (int)deFloatFloor(colorMinF.y()),
1872 (int)deFloatFloor(colorMinF.z()));
1873 const tcu::IVec3 colorMax ((int)deFloatCeil (colorMaxF.x()),
1874 (int)deFloatCeil (colorMaxF.y()),
1875 (int)deFloatCeil (colorMaxF.z()));
1876
1877 // Verify validity
1878 if (pixelNativeColor.x() < colorMin.x() ||
1879 pixelNativeColor.y() < colorMin.y() ||
1880 pixelNativeColor.z() < colorMin.z() ||
1881 pixelNativeColor.x() > colorMax.x() ||
1882 pixelNativeColor.y() > colorMax.y() ||
1883 pixelNativeColor.z() > colorMax.z())
1884 {
1885 if (errorCount < errorFloodThreshold)
1886 {
1887 // Store candidate information for logging
1888 SingleSampleNarrowLineCandidate candidate;
1889
1890 candidate.lineNdx = lineNdx;
1891 candidate.colorMin = colorMin;
1892 candidate.colorMax = colorMax;
1893 candidate.colorMinF = colorMinF;
1894 candidate.colorMaxF = colorMaxF;
1895 candidate.valueRangeMin = valueMin.swizzle(0, 1, 2);
1896 candidate.valueRangeMax = valueMax.swizzle(0, 1, 2);
1897
1898 candidates.push_back(candidate);
1899 }
1900 }
1901 else
1902 {
1903 matchFound = true;
1904 break;
1905 }
1906 }
1907 }
1908
1909 if (matchFound)
1910 continue;
1911
1912 // invalid fragment
1913 ++invalidPixels;
1914 errorMask.setPixel(x, y, invalidPixelColor);
1915
1916 ++errorCount;
1917
1918 // don't fill the logs with too much data
1919 if (errorCount < errorFloodThreshold)
1920 {
1921 log << tcu::TestLog::Message
1922 << "Found an invalid pixel at (" << x << "," << y << "), " << (int)candidates.size() << " candidate reference value(s) found:\n"
1923 << "\tPixel color:\t\t" << color << "\n"
1924 << "\tNative color:\t\t" << pixelNativeColor << "\n"
1925 << tcu::TestLog::EndMessage;
1926
1927 for (int candidateNdx = 0; candidateNdx < (int)candidates.size(); ++candidateNdx)
1928 {
1929 const SingleSampleNarrowLineCandidate& candidate = candidates[candidateNdx];
1930
1931 log << tcu::TestLog::Message << "\tCandidate (line " << candidate.lineNdx << "):\n"
1932 << "\t\tReference native color min: " << tcu::clamp(candidate.colorMin, tcu::IVec3(0,0,0), formatLimit) << "\n"
1933 << "\t\tReference native color max: " << tcu::clamp(candidate.colorMax, tcu::IVec3(0,0,0), formatLimit) << "\n"
1934 << "\t\tReference native float min: " << tcu::clamp(candidate.colorMinF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
1935 << "\t\tReference native float max: " << tcu::clamp(candidate.colorMaxF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
1936 << "\t\tFmin:\t" << tcu::clamp(candidate.valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
1937 << "\t\tFmax:\t" << tcu::clamp(candidate.valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
1938 << tcu::TestLog::EndMessage;
1939 }
1940 }
1941 }
1942
1943 // don't just hide failures
1944 if (errorCount > errorFloodThreshold)
1945 log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
1946
1947 // report result
1948 if (invalidPixels)
1949 {
1950 log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
1951 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1952 << tcu::TestLog::Image("Result", "Result", surface)
1953 << tcu::TestLog::Image("ErrorMask", "ErrorMask", errorMask)
1954 << tcu::TestLog::EndImageSet;
1955
1956 return false;
1957 }
1958 else
1959 {
1960 log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
1961 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
1962 << tcu::TestLog::Image("Result", "Result", surface)
1963 << tcu::TestLog::EndImageSet;
1964
1965 return true;
1966 }
1967 }
1968
verifySinglesampleNarrowLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)1969 bool verifySinglesampleNarrowLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
1970 {
1971 DE_ASSERT(scene.lineWidth == 1.0f);
1972 return verifyLineGroupPixelIndependentInterpolation(surface, scene, args, log, LINEINTERPOLATION_STRICTLY_CORRECT);
1973 }
1974
verifyLineGroupInterpolationWithProjectedWeights(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)1975 bool verifyLineGroupInterpolationWithProjectedWeights (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
1976 {
1977 return verifyLineGroupPixelIndependentInterpolation(surface, scene, args, log, LINEINTERPOLATION_PROJECTED);
1978 }
1979
1980 struct SingleSampleWideLineCandidate
1981 {
1982 struct InterpolationPointCandidate
1983 {
1984 tcu::IVec2 interpolationPoint;
1985 tcu::IVec3 colorMin;
1986 tcu::IVec3 colorMax;
1987 tcu::Vec3 colorMinF;
1988 tcu::Vec3 colorMaxF;
1989 tcu::Vec3 valueRangeMin;
1990 tcu::Vec3 valueRangeMax;
1991 };
1992
1993 int lineNdx;
1994 int numCandidates;
1995 InterpolationPointCandidate interpolationCandidates[3];
1996 };
1997
1998 // return point on line at a given position on a given axis
getLineCoordAtAxisCoord(const tcu::Vec2 & pa,const tcu::Vec2 & pb,bool isXAxis,float axisCoord)1999 tcu::Vec2 getLineCoordAtAxisCoord (const tcu::Vec2& pa, const tcu::Vec2& pb, bool isXAxis, float axisCoord)
2000 {
2001 const int fixedCoordNdx = (isXAxis) ? (0) : (1);
2002 const int varyingCoordNdx = (isXAxis) ? (1) : (0);
2003
2004 const float fixedDifference = pb[fixedCoordNdx] - pa[fixedCoordNdx];
2005 const float varyingDifference = pb[varyingCoordNdx] - pa[varyingCoordNdx];
2006
2007 DE_ASSERT(fixedDifference != 0.0f);
2008
2009 const float resultFixedCoord = axisCoord;
2010 const float resultVaryingCoord = pa[varyingCoordNdx] + (axisCoord - pa[fixedCoordNdx]) * (varyingDifference / fixedDifference);
2011
2012 return (isXAxis) ? (tcu::Vec2(resultFixedCoord, resultVaryingCoord))
2013 : (tcu::Vec2(resultVaryingCoord, resultFixedCoord));
2014 }
2015
isBlack(const tcu::RGBA & c)2016 bool isBlack (const tcu::RGBA& c)
2017 {
2018 return c.getRed() == 0 && c.getGreen() == 0 && c.getBlue() == 0;
2019 }
2020
verifySinglesampleWideLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2021 bool verifySinglesampleWideLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
2022 {
2023 DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
2024 DE_ASSERT(scene.lines.size() < 8); // coverage indices are stored as bitmask in a unsigned 8-bit ints
2025
2026 enum
2027 {
2028 FLAG_ROOT_NOT_SET = (1u << 16)
2029 };
2030
2031 const tcu::RGBA invalidPixelColor = tcu::RGBA(255, 0, 0, 255);
2032 const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
2033 const int errorFloodThreshold = 4;
2034 int errorCount = 0;
2035 tcu::Surface errorMask (surface.getWidth(), surface.getHeight());
2036 int invalidPixels = 0;
2037 std::vector<tcu::Vec4> effectiveLines (scene.lines.size()); //!< packed (x0, y0, x1, y1)
2038 std::vector<bool> lineIsXMajor (scene.lines.size());
2039
2040 // for each line, for every distinct major direction fragment, store root pixel location (along
2041 // minor direction);
2042 std::vector<std::vector<deUint32> > rootPixelLocation (scene.lines.size()); //!< packed [16b - flags] [16b - coordinate]
2043
2044 // log format
2045
2046 log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
2047 if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
2048 log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
2049
2050 // Reference renderer produces correct fragments using the diamond-exit-rule. Make 2D int array, store line coverage as a 8-bit bitfield
2051 // The map is used to find lines with potential coverage to a given pixel
2052 tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
2053 tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
2054
2055 tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
2056
2057 // calculate mask and effective line coordinates
2058 {
2059 std::vector<tcu::Vec4> screenspaceLines(scene.lines.size());
2060
2061 genScreenSpaceLines(screenspaceLines, scene.lines, viewportSize);
2062 setMaskMapCoverageBitForLines(screenspaceLines, scene.lineWidth, referenceLineMap.getAccess(), args.subpixelBits);
2063
2064 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
2065 {
2066 const tcu::Vec2 lineScreenSpaceP0 = screenspaceLines[lineNdx].swizzle(0, 1);
2067 const tcu::Vec2 lineScreenSpaceP1 = screenspaceLines[lineNdx].swizzle(2, 3);
2068 const bool isXMajor = isPackedSSLineXMajor(screenspaceLines[lineNdx]);
2069
2070 lineIsXMajor[lineNdx] = isXMajor;
2071
2072 // wide line interpolations are calculated for a line moved in minor direction
2073 {
2074 const float offsetLength = (scene.lineWidth - 1.0f) / 2.0f;
2075 const tcu::Vec2 offsetDirection = (isXMajor) ? (tcu::Vec2(0.0f, -1.0f)) : (tcu::Vec2(-1.0f, 0.0f));
2076 const tcu::Vec2 offset = offsetDirection * offsetLength;
2077
2078 effectiveLines[lineNdx] = tcu::Vec4(lineScreenSpaceP0.x() + offset.x(),
2079 lineScreenSpaceP0.y() + offset.y(),
2080 lineScreenSpaceP1.x() + offset.x(),
2081 lineScreenSpaceP1.y() + offset.y());
2082 }
2083 }
2084 }
2085
2086 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
2087 {
2088 // Calculate root pixel lookup table for this line. Since the implementation's fragment
2089 // major coordinate range might not be a subset of the correct line range (they are allowed
2090 // to vary by one pixel), we must extend the domain to cover whole viewport along major
2091 // dimension.
2092 //
2093 // Expanding line strip to (effectively) infinite line might result in exit-diamnod set
2094 // that is not a superset of the exit-diamond set of the line strip. In practice, this
2095 // won't be an issue, since the allow-one-pixel-variation rule should tolerate this even
2096 // if the original and extended line would resolve differently a diamond the line just
2097 // touches (precision lost in expansion changes enter/exit status).
2098
2099 {
2100 const bool isXMajor = lineIsXMajor[lineNdx];
2101 const int majorSize = (isXMajor) ? (surface.getWidth()) : (surface.getHeight());
2102 rr::LineExitDiamondGenerator diamondGenerator (args.subpixelBits);
2103 rr::LineExitDiamond diamonds[32];
2104 int numRasterized = DE_LENGTH_OF_ARRAY(diamonds);
2105
2106 // Expand to effectively infinite line (endpoints are just one pixel over viewport boundaries)
2107 const tcu::Vec2 expandedP0 = getLineCoordAtAxisCoord(effectiveLines[lineNdx].swizzle(0, 1), effectiveLines[lineNdx].swizzle(2, 3), isXMajor, -1.0f);
2108 const tcu::Vec2 expandedP1 = getLineCoordAtAxisCoord(effectiveLines[lineNdx].swizzle(0, 1), effectiveLines[lineNdx].swizzle(2, 3), isXMajor, (float)majorSize + 1.0f);
2109
2110 diamondGenerator.init(tcu::Vec4(expandedP0.x(), expandedP0.y(), 0.0f, 1.0f),
2111 tcu::Vec4(expandedP1.x(), expandedP1.y(), 0.0f, 1.0f));
2112
2113 rootPixelLocation[lineNdx].resize(majorSize, FLAG_ROOT_NOT_SET);
2114
2115 while (numRasterized == DE_LENGTH_OF_ARRAY(diamonds))
2116 {
2117 diamondGenerator.rasterize(diamonds, DE_LENGTH_OF_ARRAY(diamonds), numRasterized);
2118
2119 for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
2120 {
2121 const tcu::IVec2 fragPos = diamonds[packetNdx].position;
2122 const int majorPos = (isXMajor) ? (fragPos.x()) : (fragPos.y());
2123 const int rootPos = (isXMajor) ? (fragPos.y()) : (fragPos.x());
2124 const deUint32 packed = (deUint32)((deUint16)((deInt16)rootPos));
2125
2126 // infinite line will generate some diamonds outside the viewport
2127 if (deInBounds32(majorPos, 0, majorSize))
2128 {
2129 DE_ASSERT((rootPixelLocation[lineNdx][majorPos] & FLAG_ROOT_NOT_SET) != 0u);
2130 rootPixelLocation[lineNdx][majorPos] = packed;
2131 }
2132 }
2133 }
2134
2135 // Filled whole lookup table
2136 for (int majorPos = 0; majorPos < majorSize; ++majorPos)
2137 DE_ASSERT((rootPixelLocation[lineNdx][majorPos] & FLAG_ROOT_NOT_SET) == 0u);
2138 }
2139 }
2140
2141 // Find all possible lines with coverage, check pixel color matches one of them
2142
2143 for (int y = 1; y < surface.getHeight() - 1; ++y)
2144 for (int x = 1; x < surface.getWidth() - 1; ++x)
2145 {
2146 const tcu::RGBA color = surface.getPixel(x, y);
2147 const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args); // Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
2148 int lineCoverageSet = 0; // !< lines that may cover this fragment
2149 int lineSurroundingCoverage = 0xFFFF; // !< lines that will cover this fragment
2150 bool matchFound = false;
2151 const tcu::IVec3 formatLimit ((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
2152
2153 std::vector<SingleSampleWideLineCandidate> candidates;
2154
2155 // Find lines with possible coverage
2156
2157 for (int dy = -1; dy < 2; ++dy)
2158 for (int dx = -1; dx < 2; ++dx)
2159 {
2160 const int coverage = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
2161
2162 lineCoverageSet |= coverage;
2163 lineSurroundingCoverage &= coverage;
2164 }
2165
2166 // background color is possible?
2167 if (lineSurroundingCoverage == 0 && compareColors(color, tcu::RGBA::black(), args.redBits, args.greenBits, args.blueBits))
2168 continue;
2169
2170 // Check those lines
2171
2172 for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
2173 {
2174 if (((lineCoverageSet >> lineNdx) & 0x01) != 0)
2175 {
2176 const float wa = scene.lines[lineNdx].positions[0].w();
2177 const float wb = scene.lines[lineNdx].positions[1].w();
2178 const tcu::Vec2 pa = effectiveLines[lineNdx].swizzle(0, 1);
2179 const tcu::Vec2 pb = effectiveLines[lineNdx].swizzle(2, 3);
2180
2181 // \note Wide line fragments are generated by replicating the root fragment for each
2182 // fragment column (row for y-major). Calculate interpolation at the root
2183 // fragment.
2184 const bool isXMajor = lineIsXMajor[lineNdx];
2185 const int majorPosition = (isXMajor) ? (x) : (y);
2186 const deUint32 minorInfoPacked = rootPixelLocation[lineNdx][majorPosition];
2187 const int minorPosition = (int)((deInt16)((deUint16)(minorInfoPacked & 0xFFFFu)));
2188 const tcu::IVec2 idealRootPos = (isXMajor) ? (tcu::IVec2(majorPosition, minorPosition)) : (tcu::IVec2(minorPosition, majorPosition));
2189 const tcu::IVec2 minorDirection = (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0));
2190
2191 SingleSampleWideLineCandidate candidate;
2192
2193 candidate.lineNdx = lineNdx;
2194 candidate.numCandidates = 0;
2195 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(candidate.interpolationCandidates) == 3);
2196
2197 // Interpolation happens at the root fragment, which is then replicated in minor
2198 // direction. Search for implementation's root position near accurate root.
2199 for (int minorOffset = -1; minorOffset < 2; ++minorOffset)
2200 {
2201 const tcu::IVec2 rootPosition = idealRootPos + minorOffset * minorDirection;
2202
2203 // A fragment can be root fragment only if it exists
2204 // \note root fragment can "exist" outside viewport
2205 // \note no pixel format theshold since in this case allowing only black is more conservative
2206 if (deInBounds32(rootPosition.x(), 0, surface.getWidth()) &&
2207 deInBounds32(rootPosition.y(), 0, surface.getHeight()) &&
2208 isBlack(surface.getPixel(rootPosition.x(), rootPosition.y())))
2209 {
2210 continue;
2211 }
2212
2213 const LineInterpolationRange range = calcSingleSampleLineInterpolationRange(pa, wa, pb, wb, rootPosition, args.subpixelBits);
2214
2215 const tcu::Vec4 valueMin = de::clamp(range.min.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.min.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
2216 const tcu::Vec4 valueMax = de::clamp(range.max.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.max.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
2217
2218 const tcu::Vec3 colorMinF (de::clamp(valueMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
2219 de::clamp(valueMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
2220 de::clamp(valueMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
2221 const tcu::Vec3 colorMaxF (de::clamp(valueMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
2222 de::clamp(valueMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
2223 de::clamp(valueMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
2224 const tcu::IVec3 colorMin ((int)deFloatFloor(colorMinF.x()),
2225 (int)deFloatFloor(colorMinF.y()),
2226 (int)deFloatFloor(colorMinF.z()));
2227 const tcu::IVec3 colorMax ((int)deFloatCeil (colorMaxF.x()),
2228 (int)deFloatCeil (colorMaxF.y()),
2229 (int)deFloatCeil (colorMaxF.z()));
2230
2231 // Verify validity
2232 if (pixelNativeColor.x() < colorMin.x() ||
2233 pixelNativeColor.y() < colorMin.y() ||
2234 pixelNativeColor.z() < colorMin.z() ||
2235 pixelNativeColor.x() > colorMax.x() ||
2236 pixelNativeColor.y() > colorMax.y() ||
2237 pixelNativeColor.z() > colorMax.z())
2238 {
2239 if (errorCount < errorFloodThreshold)
2240 {
2241 // Store candidate information for logging
2242 SingleSampleWideLineCandidate::InterpolationPointCandidate& interpolationCandidate = candidate.interpolationCandidates[candidate.numCandidates++];
2243 DE_ASSERT(candidate.numCandidates <= DE_LENGTH_OF_ARRAY(candidate.interpolationCandidates));
2244
2245 interpolationCandidate.interpolationPoint = rootPosition;
2246 interpolationCandidate.colorMin = colorMin;
2247 interpolationCandidate.colorMax = colorMax;
2248 interpolationCandidate.colorMinF = colorMinF;
2249 interpolationCandidate.colorMaxF = colorMaxF;
2250 interpolationCandidate.valueRangeMin = valueMin.swizzle(0, 1, 2);
2251 interpolationCandidate.valueRangeMax = valueMax.swizzle(0, 1, 2);
2252 }
2253 }
2254 else
2255 {
2256 matchFound = true;
2257 break;
2258 }
2259 }
2260
2261 if (!matchFound)
2262 {
2263 // store info for logging
2264 if (errorCount < errorFloodThreshold && candidate.numCandidates > 0)
2265 candidates.push_back(candidate);
2266 }
2267 else
2268 {
2269 // no need to check other lines
2270 break;
2271 }
2272 }
2273 }
2274
2275 if (matchFound)
2276 continue;
2277
2278 // invalid fragment
2279 ++invalidPixels;
2280 errorMask.setPixel(x, y, invalidPixelColor);
2281
2282 ++errorCount;
2283
2284 // don't fill the logs with too much data
2285 if (errorCount < errorFloodThreshold)
2286 {
2287 tcu::MessageBuilder msg(&log);
2288
2289 msg << "Found an invalid pixel at (" << x << "," << y << "), " << (int)candidates.size() << " candidate reference value(s) found:\n"
2290 << "\tPixel color:\t\t" << color << "\n"
2291 << "\tNative color:\t\t" << pixelNativeColor << "\n";
2292
2293 for (int lineCandidateNdx = 0; lineCandidateNdx < (int)candidates.size(); ++lineCandidateNdx)
2294 {
2295 const SingleSampleWideLineCandidate& candidate = candidates[lineCandidateNdx];
2296
2297 msg << "\tCandidate line (line " << candidate.lineNdx << "):\n";
2298
2299 for (int interpolationCandidateNdx = 0; interpolationCandidateNdx < candidate.numCandidates; ++interpolationCandidateNdx)
2300 {
2301 const SingleSampleWideLineCandidate::InterpolationPointCandidate& interpolationCandidate = candidate.interpolationCandidates[interpolationCandidateNdx];
2302
2303 msg << "\t\tCandidate interpolation point (index " << interpolationCandidateNdx << "):\n"
2304 << "\t\t\tRoot fragment position (non-replicated fragment): " << interpolationCandidate.interpolationPoint << ":\n"
2305 << "\t\t\tReference native color min: " << tcu::clamp(interpolationCandidate.colorMin, tcu::IVec3(0,0,0), formatLimit) << "\n"
2306 << "\t\t\tReference native color max: " << tcu::clamp(interpolationCandidate.colorMax, tcu::IVec3(0,0,0), formatLimit) << "\n"
2307 << "\t\t\tReference native float min: " << tcu::clamp(interpolationCandidate.colorMinF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
2308 << "\t\t\tReference native float max: " << tcu::clamp(interpolationCandidate.colorMaxF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
2309 << "\t\t\tFmin:\t" << tcu::clamp(interpolationCandidate.valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
2310 << "\t\t\tFmax:\t" << tcu::clamp(interpolationCandidate.valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n";
2311 }
2312 }
2313
2314 msg << tcu::TestLog::EndMessage;
2315 }
2316 }
2317
2318 // don't just hide failures
2319 if (errorCount > errorFloodThreshold)
2320 log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
2321
2322 // report result
2323 if (invalidPixels)
2324 {
2325 log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
2326 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2327 << tcu::TestLog::Image("Result", "Result", surface)
2328 << tcu::TestLog::Image("ErrorMask", "ErrorMask", errorMask)
2329 << tcu::TestLog::EndImageSet;
2330
2331 return false;
2332 }
2333 else
2334 {
2335 log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
2336 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2337 << tcu::TestLog::Image("Result", "Result", surface)
2338 << tcu::TestLog::EndImageSet;
2339
2340 return true;
2341 }
2342 }
2343
2344 } // anonymous
2345
calculateTriangleCoverage(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const tcu::Vec4 & p2,const tcu::IVec2 & pixel,const tcu::IVec2 & viewportSize,int subpixelBits,bool multisample)2346 CoverageType calculateTriangleCoverage (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2, const tcu::IVec2& pixel, const tcu::IVec2& viewportSize, int subpixelBits, bool multisample)
2347 {
2348 typedef tcu::Vector<deInt64, 2> I64Vec2;
2349
2350 const deUint64 numSubPixels = ((deUint64)1) << subpixelBits;
2351 const deUint64 pixelHitBoxSize = (multisample) ? (numSubPixels) : 5; //!< 5 = ceil(6 * sqrt(2) / 2) to account for a 3 subpixel fuzz around pixel center
2352 const bool order = isTriangleClockwise(p0, p1, p2); //!< clockwise / counter-clockwise
2353 const tcu::Vec4& orderedP0 = p0; //!< vertices of a clockwise triangle
2354 const tcu::Vec4& orderedP1 = (order) ? (p1) : (p2);
2355 const tcu::Vec4& orderedP2 = (order) ? (p2) : (p1);
2356 const tcu::Vec2 triangleNormalizedDeviceSpace[3] =
2357 {
2358 tcu::Vec2(orderedP0.x() / orderedP0.w(), orderedP0.y() / orderedP0.w()),
2359 tcu::Vec2(orderedP1.x() / orderedP1.w(), orderedP1.y() / orderedP1.w()),
2360 tcu::Vec2(orderedP2.x() / orderedP2.w(), orderedP2.y() / orderedP2.w()),
2361 };
2362 const tcu::Vec2 triangleScreenSpace[3] =
2363 {
2364 (triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2365 (triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2366 (triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2367 };
2368
2369 // Broad bounding box - pixel check
2370 {
2371 const float minX = de::min(de::min(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
2372 const float minY = de::min(de::min(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
2373 const float maxX = de::max(de::max(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
2374 const float maxY = de::max(de::max(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
2375
2376 if ((float)pixel.x() > maxX + 1 ||
2377 (float)pixel.y() > maxY + 1 ||
2378 (float)pixel.x() < minX - 1 ||
2379 (float)pixel.y() < minY - 1)
2380 return COVERAGE_NONE;
2381 }
2382
2383 // Broad triangle - pixel area intersection
2384 {
2385 const DVec2 pixelCenterPosition = DVec2((double)pixel.x(), (double)pixel.y()) * DVec2((double)numSubPixels, (double)numSubPixels) +
2386 DVec2((double)numSubPixels / 2, (double)numSubPixels / 2);
2387 const DVec2 triangleSubPixelSpace[3] =
2388 {
2389 DVec2(triangleScreenSpace[0].x() * (double)numSubPixels, triangleScreenSpace[0].y() * (double)numSubPixels),
2390 DVec2(triangleScreenSpace[1].x() * (double)numSubPixels, triangleScreenSpace[1].y() * (double)numSubPixels),
2391 DVec2(triangleScreenSpace[2].x() * (double)numSubPixels, triangleScreenSpace[2].y() * (double)numSubPixels),
2392 };
2393
2394 // Check (using cross product) if pixel center is
2395 // a) too far from any edge
2396 // b) fully inside all edges
2397 bool insideAllEdges = true;
2398 for (int vtxNdx = 0; vtxNdx < 3; ++vtxNdx)
2399 {
2400 const int otherVtxNdx = (vtxNdx + 1) % 3;
2401 const double maxPixelDistanceSquared = (double)(pixelHitBoxSize * pixelHitBoxSize); // Max distance from the pixel center from within the pixel is (sqrt(2) * boxWidth/2). Use 2x value for rounding tolerance
2402 const DVec2 edge = triangleSubPixelSpace[otherVtxNdx] - triangleSubPixelSpace[vtxNdx];
2403 const DVec2 v = pixelCenterPosition - triangleSubPixelSpace[vtxNdx];
2404 const double crossProduct = (edge.x() * v.y() - edge.y() * v.x());
2405
2406 // distance from edge: (edge x v) / |edge|
2407 // (edge x v) / |edge| > maxPixelDistance
2408 // ==> (edge x v)^2 / edge^2 > maxPixelDistance^2 | edge x v > 0
2409 // ==> (edge x v)^2 > maxPixelDistance^2 * edge^2
2410 if (crossProduct < 0 && crossProduct*crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(edge))
2411 return COVERAGE_NONE;
2412 if (crossProduct < 0 || crossProduct*crossProduct < maxPixelDistanceSquared * tcu::lengthSquared(edge))
2413 insideAllEdges = false;
2414 }
2415
2416 if (insideAllEdges)
2417 return COVERAGE_FULL;
2418 }
2419
2420 // Accurate intersection for edge pixels
2421 {
2422 // In multisampling, the sample points can be anywhere in the pixel, and in single sampling only in the center.
2423 const I64Vec2 pixelCorners[4] =
2424 {
2425 I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+0) * numSubPixels),
2426 I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+0) * numSubPixels),
2427 I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+1) * numSubPixels),
2428 I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+1) * numSubPixels),
2429 };
2430
2431 // 3 subpixel tolerance around pixel center to account for accumulated errors during various line rasterization methods
2432 const I64Vec2 pixelCenterCorners[4] =
2433 {
2434 I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 - 3, pixel.y() * numSubPixels + numSubPixels/2 - 3),
2435 I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 3, pixel.y() * numSubPixels + numSubPixels/2 - 3),
2436 I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 3, pixel.y() * numSubPixels + numSubPixels/2 + 3),
2437 I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 - 3, pixel.y() * numSubPixels + numSubPixels/2 + 3),
2438 };
2439
2440 // both rounding directions
2441 const I64Vec2 triangleSubPixelSpaceFloor[3] =
2442 {
2443 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
2444 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
2445 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
2446 };
2447 const I64Vec2 triangleSubPixelSpaceCeil[3] =
2448 {
2449 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
2450 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
2451 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
2452 };
2453 const I64Vec2* const corners = (multisample) ? (pixelCorners) : (pixelCenterCorners);
2454
2455 // Test if any edge (with any rounding) intersects the pixel (boundary). If it does => Partial. If not => fully inside or outside
2456
2457 for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
2458 for (int startRounding = 0; startRounding < 4; ++startRounding)
2459 for (int endRounding = 0; endRounding < 4; ++endRounding)
2460 {
2461 const int nextEdgeNdx = (edgeNdx+1) % 3;
2462 const I64Vec2 startPos ((startRounding&0x01) ? (triangleSubPixelSpaceFloor[edgeNdx].x()) : (triangleSubPixelSpaceCeil[edgeNdx].x()), (startRounding&0x02) ? (triangleSubPixelSpaceFloor[edgeNdx].y()) : (triangleSubPixelSpaceCeil[edgeNdx].y()));
2463 const I64Vec2 endPos ((endRounding&0x01) ? (triangleSubPixelSpaceFloor[nextEdgeNdx].x()) : (triangleSubPixelSpaceCeil[nextEdgeNdx].x()), (endRounding&0x02) ? (triangleSubPixelSpaceFloor[nextEdgeNdx].y()) : (triangleSubPixelSpaceCeil[nextEdgeNdx].y()));
2464
2465 for (int pixelEdgeNdx = 0; pixelEdgeNdx < 4; ++pixelEdgeNdx)
2466 {
2467 const int pixelEdgeEnd = (pixelEdgeNdx + 1) % 4;
2468
2469 if (lineLineIntersect(startPos, endPos, corners[pixelEdgeNdx], corners[pixelEdgeEnd]))
2470 return COVERAGE_PARTIAL;
2471 }
2472 }
2473
2474 // fully inside or outside
2475 for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
2476 {
2477 const int nextEdgeNdx = (edgeNdx+1) % 3;
2478 const I64Vec2& startPos = triangleSubPixelSpaceFloor[edgeNdx];
2479 const I64Vec2& endPos = triangleSubPixelSpaceFloor[nextEdgeNdx];
2480 const I64Vec2 edge = endPos - startPos;
2481 const I64Vec2 v = corners[0] - endPos;
2482 const deInt64 crossProduct = (edge.x() * v.y() - edge.y() * v.x());
2483
2484 // a corner of the pixel is outside => "fully inside" option is impossible
2485 if (crossProduct < 0)
2486 return COVERAGE_NONE;
2487 }
2488
2489 return COVERAGE_FULL;
2490 }
2491 }
2492
calculateUnderestimateLineCoverage(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const float lineWidth,const tcu::IVec2 & pixel,const tcu::IVec2 & viewportSize)2493 CoverageType calculateUnderestimateLineCoverage (const tcu::Vec4& p0, const tcu::Vec4& p1, const float lineWidth, const tcu::IVec2& pixel, const tcu::IVec2& viewportSize)
2494 {
2495 DE_ASSERT(viewportSize.x() == viewportSize.y() && viewportSize.x() > 0);
2496 DE_ASSERT(p0.w() == 1.0f && p1.w() == 1.0f);
2497
2498 const Vec2 p = Vec2(p0.x(), p0.y());
2499 const Vec2 q = Vec2(p1.x(), p1.y());
2500 const Vec2 pq = Vec2(p1.x() - p0.x(), p1.y() - p0.y());
2501 const Vec2 pqn = normalize(pq);
2502 const Vec2 lw = 0.5f * lineWidth * pqn;
2503 const Vec2 n = Vec2(lw.y(), -lw.x());
2504 const Vec2 vp = Vec2(float(viewportSize.x()), float(viewportSize.y()));
2505 const Vec2 a = 0.5f * (p + Vec2(1.0f, 1.0f)) * vp + n;
2506 const Vec2 b = 0.5f * (p + Vec2(1.0f, 1.0f)) * vp - n;
2507 const Vec2 c = 0.5f * (q + Vec2(1.0f, 1.0f)) * vp - n;
2508 const Vec2 ba = b - a;
2509 const Vec2 bc = b - c;
2510 const float det = ba.x() * bc.y() - ba.y() * bc.x();
2511 int within = 0;
2512
2513 if (det != 0.0f)
2514 {
2515 for (int cornerNdx = 0; cornerNdx < 4; ++cornerNdx)
2516 {
2517 const int pixelCornerOffsetX = ((cornerNdx & 1) ? 1 : 0);
2518 const int pixelCornerOffsetY = ((cornerNdx & 2) ? 1 : 0);
2519 const Vec2 f = Vec2(float(pixel.x() + pixelCornerOffsetX), float(pixel.y() + pixelCornerOffsetY));
2520 const Vec2 bf = b - f;
2521 const float alpha = (bf.x() * bc.y() - bc.x() * bf.y()) / det;
2522 const float beta = (ba.x() * bf.y() - bf.x() * ba.y()) / det;
2523 bool cornerWithin = de::inRange(alpha, 0.0f, 1.0f) && de::inRange(beta, 0.0f, 1.0f);
2524
2525 if (cornerWithin)
2526 within++;
2527 }
2528 }
2529
2530 if (within == 0)
2531 return COVERAGE_NONE;
2532 else if (within == 4)
2533 return COVERAGE_FULL;
2534 else
2535 return COVERAGE_PARTIAL;
2536 }
2537
calculateUnderestimateTriangleCoverage(const tcu::Vec4 & p0,const tcu::Vec4 & p1,const tcu::Vec4 & p2,const tcu::IVec2 & pixel,int subpixelBits,const tcu::IVec2 & viewportSize)2538 CoverageType calculateUnderestimateTriangleCoverage (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2, const tcu::IVec2& pixel, int subpixelBits, const tcu::IVec2& viewportSize)
2539 {
2540 typedef tcu::Vector<deInt64, 2> I64Vec2;
2541
2542 const deUint64 numSubPixels = ((deUint64)1) << subpixelBits;
2543 const bool order = isTriangleClockwise(p0, p1, p2); //!< clockwise / counter-clockwise
2544 const tcu::Vec4& orderedP0 = p0; //!< vertices of a clockwise triangle
2545 const tcu::Vec4& orderedP1 = (order) ? (p1) : (p2);
2546 const tcu::Vec4& orderedP2 = (order) ? (p2) : (p1);
2547 const tcu::Vec2 triangleNormalizedDeviceSpace[3] =
2548 {
2549 tcu::Vec2(orderedP0.x() / orderedP0.w(), orderedP0.y() / orderedP0.w()),
2550 tcu::Vec2(orderedP1.x() / orderedP1.w(), orderedP1.y() / orderedP1.w()),
2551 tcu::Vec2(orderedP2.x() / orderedP2.w(), orderedP2.y() / orderedP2.w()),
2552 };
2553 const tcu::Vec2 triangleScreenSpace[3] =
2554 {
2555 (triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2556 (triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2557 (triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
2558 };
2559
2560 // Broad bounding box - pixel check
2561 {
2562 const float minX = de::min(de::min(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
2563 const float minY = de::min(de::min(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
2564 const float maxX = de::max(de::max(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
2565 const float maxY = de::max(de::max(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
2566
2567 if ((float)pixel.x() > maxX + 1 ||
2568 (float)pixel.y() > maxY + 1 ||
2569 (float)pixel.x() < minX - 1 ||
2570 (float)pixel.y() < minY - 1)
2571 return COVERAGE_NONE;
2572 }
2573
2574 // Accurate intersection for edge pixels
2575 {
2576 // In multisampling, the sample points can be anywhere in the pixel, and in single sampling only in the center.
2577 const I64Vec2 pixelCorners[4] =
2578 {
2579 I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+0) * numSubPixels),
2580 I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+0) * numSubPixels),
2581 I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+1) * numSubPixels),
2582 I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+1) * numSubPixels),
2583 };
2584 // both rounding directions
2585 const I64Vec2 triangleSubPixelSpaceFloor[3] =
2586 {
2587 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
2588 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
2589 I64Vec2(deFloorFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
2590 };
2591 const I64Vec2 triangleSubPixelSpaceCeil[3] =
2592 {
2593 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
2594 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
2595 I64Vec2(deCeilFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
2596 };
2597
2598 // Test if any edge (with any rounding) intersects the pixel (boundary). If it does => Partial. If not => fully inside or outside
2599
2600 for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
2601 for (int startRounding = 0; startRounding < 4; ++startRounding)
2602 for (int endRounding = 0; endRounding < 4; ++endRounding)
2603 {
2604 const int nextEdgeNdx = (edgeNdx+1) % 3;
2605 const I64Vec2 startPos ((startRounding&0x01) ? (triangleSubPixelSpaceFloor[edgeNdx].x()) : (triangleSubPixelSpaceCeil[edgeNdx].x()), (startRounding&0x02) ? (triangleSubPixelSpaceFloor[edgeNdx].y()) : (triangleSubPixelSpaceCeil[edgeNdx].y()));
2606 const I64Vec2 endPos ((endRounding&0x01) ? (triangleSubPixelSpaceFloor[nextEdgeNdx].x()) : (triangleSubPixelSpaceCeil[nextEdgeNdx].x()), (endRounding&0x02) ? (triangleSubPixelSpaceFloor[nextEdgeNdx].y()) : (triangleSubPixelSpaceCeil[nextEdgeNdx].y()));
2607
2608 for (int pixelEdgeNdx = 0; pixelEdgeNdx < 4; ++pixelEdgeNdx)
2609 {
2610 const int pixelEdgeEnd = (pixelEdgeNdx + 1) % 4;
2611
2612 if (lineLineIntersect(startPos, endPos, pixelCorners[pixelEdgeNdx], pixelCorners[pixelEdgeEnd]))
2613 return COVERAGE_PARTIAL;
2614 }
2615 }
2616
2617 // fully inside or outside
2618 for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
2619 {
2620 const int nextEdgeNdx = (edgeNdx+1) % 3;
2621 const I64Vec2& startPos = triangleSubPixelSpaceFloor[edgeNdx];
2622 const I64Vec2& endPos = triangleSubPixelSpaceFloor[nextEdgeNdx];
2623 const I64Vec2 edge = endPos - startPos;
2624 const I64Vec2 v = pixelCorners[0] - endPos;
2625 const deInt64 crossProduct = (edge.x() * v.y() - edge.y() * v.x());
2626
2627 // a corner of the pixel is outside => "fully inside" option is impossible
2628 if (crossProduct < 0)
2629 return COVERAGE_NONE;
2630 }
2631
2632 return COVERAGE_FULL;
2633 }
2634 }
2635
logTriangleGroupRasterizationStash(const tcu::Surface & surface,tcu::TestLog & log,VerifyTriangleGroupRasterizationLogStash & logStash)2636 static void logTriangleGroupRasterizationStash (const tcu::Surface& surface, tcu::TestLog& log, VerifyTriangleGroupRasterizationLogStash& logStash)
2637 {
2638 // Output results
2639 log << tcu::TestLog::Message << "Verifying rasterization result." << tcu::TestLog::EndMessage;
2640
2641 for (size_t msgNdx = 0; msgNdx < logStash.messages.size(); ++msgNdx)
2642 log << tcu::TestLog::Message << logStash.messages[msgNdx] << tcu::TestLog::EndMessage;
2643
2644 if (!logStash.result)
2645 {
2646 log << tcu::TestLog::Message << "Invalid pixels found:\n\t"
2647 << logStash.missingPixels << " missing pixels. (Marked with purple)\n\t"
2648 << logStash.unexpectedPixels << " incorrectly filled pixels. (Marked with red)\n\t"
2649 << "Unknown (subpixel on edge) pixels are marked with yellow."
2650 << tcu::TestLog::EndMessage;
2651 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2652 << tcu::TestLog::Image("Result", "Result", surface)
2653 << tcu::TestLog::Image("ErrorMask", "ErrorMask", logStash.errorMask)
2654 << tcu::TestLog::EndImageSet;
2655 }
2656 else
2657 {
2658 log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
2659 log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
2660 << tcu::TestLog::Image("Result", "Result", surface)
2661 << tcu::TestLog::EndImageSet;
2662 }
2663 }
2664
verifyTriangleGroupRasterization(const tcu::Surface & surface,const TriangleSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,VerificationMode mode,VerifyTriangleGroupRasterizationLogStash * logStash,const bool vulkanLinesTest)2665 bool verifyTriangleGroupRasterization (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, VerificationMode mode, VerifyTriangleGroupRasterizationLogStash* logStash, const bool vulkanLinesTest)
2666 {
2667 DE_ASSERT(mode < VERIFICATIONMODE_LAST);
2668
2669 const tcu::RGBA backGroundColor = tcu::RGBA(0, 0, 0, 255);
2670 const tcu::RGBA triangleColor = tcu::RGBA(255, 255, 255, 255);
2671 const tcu::RGBA missingPixelColor = tcu::RGBA(255, 0, 255, 255);
2672 const tcu::RGBA unexpectedPixelColor = tcu::RGBA(255, 0, 0, 255);
2673 const tcu::RGBA partialPixelColor = tcu::RGBA(255, 255, 0, 255);
2674 const tcu::RGBA primitivePixelColor = tcu::RGBA(30, 30, 30, 255);
2675 const int weakVerificationThreshold = 10;
2676 const int weakerVerificationThreshold = 25;
2677 const bool multisampled = (args.numSamples != 0);
2678 const tcu::IVec2 viewportSize = tcu::IVec2(surface.getWidth(), surface.getHeight());
2679 int missingPixels = 0;
2680 int unexpectedPixels = 0;
2681 int subPixelBits = args.subpixelBits;
2682 tcu::TextureLevel coverageMap (tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
2683 tcu::Surface errorMask (surface.getWidth(), surface.getHeight());
2684 bool result = false;
2685
2686 // subpixel bits in a valid range?
2687
2688 if (subPixelBits < 0)
2689 {
2690 log << tcu::TestLog::Message << "Invalid subpixel count (" << subPixelBits << "), assuming 0" << tcu::TestLog::EndMessage;
2691 subPixelBits = 0;
2692 }
2693 else if (subPixelBits > 16)
2694 {
2695 // At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
2696 log << tcu::TestLog::Message << "Subpixel count is greater than 16 (" << subPixelBits << "). Checking results using less strict 16 bit requirements. This may produce false positives." << tcu::TestLog::EndMessage;
2697 subPixelBits = 16;
2698 }
2699
2700 // generate coverage map
2701
2702 tcu::clear(coverageMap.getAccess(), tcu::IVec4(COVERAGE_NONE, 0, 0, 0));
2703
2704 for (int triNdx = 0; triNdx < (int)scene.triangles.size(); ++triNdx)
2705 {
2706 const tcu::IVec4 aabb = getTriangleAABB(scene.triangles[triNdx], viewportSize);
2707
2708 for (int y = de::max(0, aabb.y()); y <= de::min(aabb.w(), coverageMap.getHeight() - 1); ++y)
2709 for (int x = de::max(0, aabb.x()); x <= de::min(aabb.z(), coverageMap.getWidth() - 1); ++x)
2710 {
2711 if (coverageMap.getAccess().getPixelUint(x, y).x() == COVERAGE_FULL)
2712 continue;
2713
2714 const CoverageType coverage = calculateTriangleCoverage(scene.triangles[triNdx].positions[0],
2715 scene.triangles[triNdx].positions[1],
2716 scene.triangles[triNdx].positions[2],
2717 tcu::IVec2(x, y),
2718 viewportSize,
2719 subPixelBits,
2720 multisampled);
2721
2722 if (coverage == COVERAGE_FULL)
2723 {
2724 coverageMap.getAccess().setPixel(tcu::IVec4(COVERAGE_FULL, 0, 0, 0), x, y);
2725 }
2726 else if (coverage == COVERAGE_PARTIAL)
2727 {
2728 CoverageType resultCoverage = COVERAGE_PARTIAL;
2729
2730 // Sharing an edge with another triangle?
2731 // There should always be such a triangle, but the pixel in the other triangle might be
2732 // on multiple edges, some of which are not shared. In these cases the coverage cannot be determined.
2733 // Assume full coverage if the pixel is only on a shared edge in shared triangle too.
2734 if (pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[triNdx], viewportSize))
2735 {
2736 bool friendFound = false;
2737 for (int friendTriNdx = 0; friendTriNdx < (int)scene.triangles.size(); ++friendTriNdx)
2738 {
2739 if (friendTriNdx == triNdx)
2740 continue;
2741
2742 const CoverageType friendCoverage = calculateTriangleCoverage(scene.triangles[friendTriNdx].positions[0],
2743 scene.triangles[friendTriNdx].positions[1],
2744 scene.triangles[friendTriNdx].positions[2],
2745 tcu::IVec2(x, y),
2746 viewportSize,
2747 subPixelBits,
2748 multisampled);
2749
2750 if (friendCoverage != COVERAGE_NONE && pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[friendTriNdx], viewportSize))
2751 {
2752 friendFound = true;
2753 break;
2754 }
2755 }
2756
2757 if (friendFound)
2758 resultCoverage = COVERAGE_FULL;
2759 }
2760
2761 coverageMap.getAccess().setPixel(tcu::IVec4(resultCoverage, 0, 0, 0), x, y);
2762 }
2763 }
2764 }
2765
2766 // check pixels
2767
2768 tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
2769
2770 // Use these to sanity check there is something drawn when a test expects something else than an empty picture.
2771 bool referenceEmpty = true;
2772 bool resultEmpty = true;
2773
2774 for (int y = 0; y < surface.getHeight(); ++y)
2775 for (int x = 0; x < surface.getWidth(); ++x)
2776 {
2777 const tcu::RGBA color = surface.getPixel(x, y);
2778 const bool imageNoCoverage = compareColors(color, backGroundColor, args.redBits, args.greenBits, args.blueBits);
2779 const bool imageFullCoverage = compareColors(color, triangleColor, args.redBits, args.greenBits, args.blueBits);
2780 CoverageType referenceCoverage = (CoverageType)coverageMap.getAccess().getPixelUint(x, y).x();
2781
2782 if (!imageNoCoverage)
2783 resultEmpty = false;
2784
2785 switch (referenceCoverage)
2786 {
2787 case COVERAGE_NONE:
2788 if (!imageNoCoverage)
2789 {
2790 // coverage where there should not be
2791 ++unexpectedPixels;
2792 errorMask.setPixel(x, y, unexpectedPixelColor);
2793 }
2794 break;
2795
2796 case COVERAGE_PARTIAL:
2797 {
2798 referenceEmpty = false;
2799 bool foundFragment = false;
2800 if (vulkanLinesTest == true)
2801 {
2802 for (int dy = -1; dy < 2 && !foundFragment; ++dy)
2803 for (int dx = -1; dx < 2 && !foundFragment; ++dx)
2804 {
2805 if (x + dx >= 0 && x + dx != surface.getWidth() && y + dy >= 0 && y + dy != surface.getHeight()
2806 && (CoverageType)coverageMap.getAccess().getPixelUint(x + dx, y + dy).x() != COVERAGE_NONE)
2807 {
2808 const tcu::RGBA color2 = surface.getPixel(x + dx , y + dy);
2809 if (compareColors(color2, triangleColor, args.redBits, args.greenBits, args.blueBits))
2810 foundFragment = true;
2811 }
2812 }
2813 }
2814 // anything goes
2815 if (foundFragment == false)
2816 {
2817 errorMask.setPixel(x, y, partialPixelColor);
2818 if (vulkanLinesTest == true)
2819 ++missingPixels;
2820 }
2821 }
2822 break;
2823
2824 case COVERAGE_FULL:
2825 referenceEmpty = false;
2826 if (!imageFullCoverage)
2827 {
2828 // no coverage where there should be
2829 ++missingPixels;
2830 errorMask.setPixel(x, y, missingPixelColor);
2831 }
2832 else
2833 {
2834 errorMask.setPixel(x, y, primitivePixelColor);
2835 }
2836 break;
2837
2838 default:
2839 DE_ASSERT(false);
2840 };
2841 }
2842
2843 if (((mode == VERIFICATIONMODE_STRICT) && (missingPixels + unexpectedPixels > 0)) ||
2844 ((mode == VERIFICATIONMODE_WEAK) && (missingPixels + unexpectedPixels > weakVerificationThreshold)) ||
2845 ((mode == VERIFICATIONMODE_WEAKER) && (missingPixels + unexpectedPixels > weakerVerificationThreshold)) ||
2846 ((mode == VERIFICATIONMODE_SMOOTH) && (missingPixels > weakVerificationThreshold)) ||
2847 referenceEmpty != resultEmpty)
2848 {
2849 result = false;
2850 }
2851 else
2852 {
2853 result = true;
2854 }
2855
2856 // Output or stash results
2857 {
2858 VerifyTriangleGroupRasterizationLogStash* tempLogStash = (logStash == DE_NULL) ? new VerifyTriangleGroupRasterizationLogStash : logStash;
2859
2860 tempLogStash->result = result;
2861 tempLogStash->missingPixels = missingPixels;
2862 tempLogStash->unexpectedPixels = unexpectedPixels;
2863 tempLogStash->errorMask = errorMask;
2864
2865 if (logStash == DE_NULL)
2866 {
2867 logTriangleGroupRasterizationStash(surface, log, *tempLogStash);
2868 delete tempLogStash;
2869 }
2870 }
2871
2872 return result;
2873 }
2874
verifyLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2875 bool verifyLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
2876 {
2877 const bool multisampled = args.numSamples != 0;
2878
2879 if (multisampled)
2880 return verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_NO_CLIPPING, DE_NULL, false, true);
2881 else
2882 return verifySinglesampleLineGroupRasterization(surface, scene, args, log);
2883 }
2884
verifyClippedTriangulatedLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2885 bool verifyClippedTriangulatedLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
2886 {
2887 return verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_USE_CLIPPING_BOX, DE_NULL, false, true);
2888 }
2889
verifyRelaxedLineGroupRasterization(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,const bool vulkanLinesTest,const bool strict)2890 bool verifyRelaxedLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, const bool vulkanLinesTest, const bool strict)
2891 {
2892 VerifyTriangleGroupRasterizationLogStash useClippingLogStash;
2893 VerifyTriangleGroupRasterizationLogStash noClippingLogStash;
2894 VerifyTriangleGroupRasterizationLogStash useClippingForcedStrictLogStash;
2895 VerifyTriangleGroupRasterizationLogStash noClippingForcedStrictLogStash;
2896
2897 if (verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_USE_CLIPPING_BOX, &useClippingLogStash, vulkanLinesTest, strict))
2898 {
2899 logTriangleGroupRasterizationStash(surface, log, useClippingLogStash);
2900
2901 return true;
2902 }
2903 else if (verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_NO_CLIPPING, &noClippingLogStash, vulkanLinesTest, strict))
2904 {
2905 logTriangleGroupRasterizationStash(surface, log, noClippingLogStash);
2906
2907 return true;
2908 }
2909 else if (strict == false && verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_USE_CLIPPING_BOX, &useClippingForcedStrictLogStash, vulkanLinesTest, true))
2910 {
2911 logTriangleGroupRasterizationStash(surface, log, useClippingForcedStrictLogStash);
2912
2913 return true;
2914 }
2915 else if (strict == false && verifyMultisampleLineGroupRasterization(surface, scene, args, log, CLIPMODE_NO_CLIPPING, &noClippingForcedStrictLogStash, vulkanLinesTest, true))
2916 {
2917 logTriangleGroupRasterizationStash(surface, log, noClippingForcedStrictLogStash);
2918
2919 return true;
2920 }
2921 else if (strict == false && args.numSamples == 0 && verifyLineGroupRasterization(surface, scene, args, log))
2922 {
2923 return true;
2924 }
2925 else
2926 {
2927 log << tcu::TestLog::Message << "Relaxed rasterization failed, details follow." << tcu::TestLog::EndMessage;
2928
2929 logTriangleGroupRasterizationStash(surface, log, useClippingLogStash);
2930 logTriangleGroupRasterizationStash(surface, log, noClippingLogStash);
2931
2932 if (strict == false)
2933 {
2934 logTriangleGroupRasterizationStash(surface, log, useClippingForcedStrictLogStash);
2935 logTriangleGroupRasterizationStash(surface, log, noClippingForcedStrictLogStash);
2936 }
2937
2938 return false;
2939 }
2940 }
2941
verifyPointGroupRasterization(const tcu::Surface & surface,const PointSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2942 bool verifyPointGroupRasterization (const tcu::Surface& surface, const PointSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
2943 {
2944 // Splitting to triangles is a valid solution in multisampled cases and even in non-multisample cases too.
2945 return verifyMultisamplePointGroupRasterization(surface, scene, args, log);
2946 }
2947
verifyTriangleGroupInterpolation(const tcu::Surface & surface,const TriangleSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2948 bool verifyTriangleGroupInterpolation (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
2949 {
2950 VerifyTriangleGroupInterpolationLogStash logStash;
2951 const bool result = verifyTriangleGroupInterpolationWithInterpolator(surface, scene, args, logStash, TriangleInterpolator(scene));
2952
2953 logTriangleGroupnterpolationStash(surface, log, logStash);
2954
2955 return result;
2956 }
2957
verifyLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log)2958 LineInterpolationMethod verifyLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
2959 {
2960 const bool multisampled = args.numSamples != 0;
2961
2962 if (multisampled)
2963 {
2964 if (verifyMultisampleLineGroupInterpolation(surface, scene, args, log))
2965 return LINEINTERPOLATION_STRICTLY_CORRECT;
2966 return LINEINTERPOLATION_INCORRECT;
2967 }
2968 else
2969 {
2970 const bool isNarrow = (scene.lineWidth == 1.0f);
2971
2972 // accurate interpolation
2973 if (isNarrow)
2974 {
2975 if (verifySinglesampleNarrowLineGroupInterpolation(surface, scene, args, log))
2976 return LINEINTERPOLATION_STRICTLY_CORRECT;
2977 }
2978 else
2979 {
2980 if (verifySinglesampleWideLineGroupInterpolation(surface, scene, args, log))
2981 return LINEINTERPOLATION_STRICTLY_CORRECT;
2982 }
2983
2984 // check with projected (inaccurate) interpolation
2985 log << tcu::TestLog::Message << "Accurate verification failed, checking with projected weights (inaccurate equation)." << tcu::TestLog::EndMessage;
2986 if (verifyLineGroupInterpolationWithProjectedWeights(surface, scene, args, log))
2987 return LINEINTERPOLATION_PROJECTED;
2988
2989 return LINEINTERPOLATION_INCORRECT;
2990 }
2991 }
2992
verifyTriangulatedLineGroupInterpolation(const tcu::Surface & surface,const LineSceneSpec & scene,const RasterizationArguments & args,tcu::TestLog & log,const bool strictMode,const bool allowBresenhamForNonStrictLines)2993 bool verifyTriangulatedLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, const bool strictMode, const bool allowBresenhamForNonStrictLines)
2994 {
2995 return verifyMultisampleLineGroupInterpolation(surface, scene, args, log, strictMode, allowBresenhamForNonStrictLines);
2996 }
2997
2998 } // tcu
2999