1 /*
2  *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "modules/pacing/pacing_controller.h"
12 
13 #include <algorithm>
14 #include <list>
15 #include <memory>
16 #include <string>
17 #include <utility>
18 #include <vector>
19 
20 #include "api/units/data_rate.h"
21 #include "modules/pacing/packet_router.h"
22 #include "system_wrappers/include/clock.h"
23 #include "test/explicit_key_value_config.h"
24 #include "test/field_trial.h"
25 #include "test/gmock.h"
26 #include "test/gtest.h"
27 
28 using ::testing::_;
29 using ::testing::Field;
30 using ::testing::Pointee;
31 using ::testing::Property;
32 using ::testing::Return;
33 
34 namespace webrtc {
35 namespace test {
36 namespace {
37 constexpr DataRate kFirstClusterRate = DataRate::KilobitsPerSec(900);
38 constexpr DataRate kSecondClusterRate = DataRate::KilobitsPerSec(1800);
39 
40 // The error stems from truncating the time interval of probe packets to integer
41 // values. This results in probing slightly higher than the target bitrate.
42 // For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets.
43 constexpr DataRate kProbingErrorMargin = DataRate::KilobitsPerSec(150);
44 
45 const float kPaceMultiplier = 2.5f;
46 
47 constexpr uint32_t kAudioSsrc = 12345;
48 constexpr uint32_t kVideoSsrc = 234565;
49 constexpr uint32_t kVideoRtxSsrc = 34567;
50 constexpr uint32_t kFlexFecSsrc = 45678;
51 
52 constexpr DataRate kTargetRate = DataRate::KilobitsPerSec(800);
53 
BuildPacket(RtpPacketMediaType type,uint32_t ssrc,uint16_t sequence_number,int64_t capture_time_ms,size_t size)54 std::unique_ptr<RtpPacketToSend> BuildPacket(RtpPacketMediaType type,
55                                              uint32_t ssrc,
56                                              uint16_t sequence_number,
57                                              int64_t capture_time_ms,
58                                              size_t size) {
59   auto packet = std::make_unique<RtpPacketToSend>(nullptr);
60   packet->set_packet_type(type);
61   packet->SetSsrc(ssrc);
62   packet->SetSequenceNumber(sequence_number);
63   packet->set_capture_time_ms(capture_time_ms);
64   packet->SetPayloadSize(size);
65   return packet;
66 }
67 }  // namespace
68 
69 // Mock callback proxy, where both new and old api redirects to common mock
70 // methods that focus on core aspects.
71 class MockPacingControllerCallback : public PacingController::PacketSender {
72  public:
SendPacket(std::unique_ptr<RtpPacketToSend> packet,const PacedPacketInfo & cluster_info)73   void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
74                   const PacedPacketInfo& cluster_info) override {
75     SendPacket(packet->Ssrc(), packet->SequenceNumber(),
76                packet->capture_time_ms(),
77                packet->packet_type() == RtpPacketMediaType::kRetransmission,
78                packet->packet_type() == RtpPacketMediaType::kPadding);
79   }
80 
GeneratePadding(DataSize target_size)81   std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
82       DataSize target_size) override {
83     std::vector<std::unique_ptr<RtpPacketToSend>> ret;
84     size_t padding_size = SendPadding(target_size.bytes());
85     if (padding_size > 0) {
86       auto packet = std::make_unique<RtpPacketToSend>(nullptr);
87       packet->SetPayloadSize(padding_size);
88       packet->set_packet_type(RtpPacketMediaType::kPadding);
89       ret.emplace_back(std::move(packet));
90     }
91     return ret;
92   }
93 
94   MOCK_METHOD(void,
95               SendPacket,
96               (uint32_t ssrc,
97                uint16_t sequence_number,
98                int64_t capture_timestamp,
99                bool retransmission,
100                bool padding));
101   MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>,
102               FetchFec,
103               (),
104               (override));
105   MOCK_METHOD(size_t, SendPadding, (size_t target_size));
106 };
107 
108 // Mock callback implementing the raw api.
109 class MockPacketSender : public PacingController::PacketSender {
110  public:
111   MOCK_METHOD(void,
112               SendPacket,
113               (std::unique_ptr<RtpPacketToSend> packet,
114                const PacedPacketInfo& cluster_info),
115               (override));
116   MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>,
117               FetchFec,
118               (),
119               (override));
120 
121   MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>,
122               GeneratePadding,
123               (DataSize target_size),
124               (override));
125 };
126 
127 class PacingControllerPadding : public PacingController::PacketSender {
128  public:
129   static const size_t kPaddingPacketSize = 224;
130 
PacingControllerPadding()131   PacingControllerPadding() : padding_sent_(0), total_bytes_sent_(0) {}
132 
SendPacket(std::unique_ptr<RtpPacketToSend> packet,const PacedPacketInfo & pacing_info)133   void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
134                   const PacedPacketInfo& pacing_info) override {
135     total_bytes_sent_ += packet->payload_size();
136   }
137 
FetchFec()138   std::vector<std::unique_ptr<RtpPacketToSend>> FetchFec() override {
139     return {};
140   }
141 
GeneratePadding(DataSize target_size)142   std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
143       DataSize target_size) override {
144     size_t num_packets =
145         (target_size.bytes() + kPaddingPacketSize - 1) / kPaddingPacketSize;
146     std::vector<std::unique_ptr<RtpPacketToSend>> packets;
147     for (size_t i = 0; i < num_packets; ++i) {
148       packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr));
149       packets.back()->SetPadding(kPaddingPacketSize);
150       packets.back()->set_packet_type(RtpPacketMediaType::kPadding);
151       padding_sent_ += kPaddingPacketSize;
152     }
153     return packets;
154   }
155 
padding_sent()156   size_t padding_sent() { return padding_sent_; }
total_bytes_sent()157   size_t total_bytes_sent() { return total_bytes_sent_; }
158 
159  private:
160   size_t padding_sent_;
161   size_t total_bytes_sent_;
162 };
163 
164 class PacingControllerProbing : public PacingController::PacketSender {
165  public:
PacingControllerProbing()166   PacingControllerProbing() : packets_sent_(0), padding_sent_(0) {}
167 
SendPacket(std::unique_ptr<RtpPacketToSend> packet,const PacedPacketInfo & pacing_info)168   void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
169                   const PacedPacketInfo& pacing_info) override {
170     if (packet->packet_type() != RtpPacketMediaType::kPadding) {
171       ++packets_sent_;
172     }
173     last_pacing_info_ = pacing_info;
174   }
175 
FetchFec()176   std::vector<std::unique_ptr<RtpPacketToSend>> FetchFec() override {
177     return {};
178   }
179 
GeneratePadding(DataSize target_size)180   std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
181       DataSize target_size) override {
182     // From RTPSender:
183     // Max in the RFC 3550 is 255 bytes, we limit it to be modulus 32 for SRTP.
184     const DataSize kMaxPadding = DataSize::Bytes(224);
185 
186     std::vector<std::unique_ptr<RtpPacketToSend>> packets;
187     while (target_size > DataSize::Zero()) {
188       DataSize padding_size = std::min(kMaxPadding, target_size);
189       packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr));
190       packets.back()->SetPadding(padding_size.bytes());
191       packets.back()->set_packet_type(RtpPacketMediaType::kPadding);
192       padding_sent_ += padding_size.bytes();
193       target_size -= padding_size;
194     }
195     return packets;
196   }
197 
packets_sent() const198   int packets_sent() const { return packets_sent_; }
padding_sent() const199   int padding_sent() const { return padding_sent_; }
total_packets_sent() const200   int total_packets_sent() const { return packets_sent_ + padding_sent_; }
last_pacing_info() const201   PacedPacketInfo last_pacing_info() const { return last_pacing_info_; }
202 
203  private:
204   int packets_sent_;
205   int padding_sent_;
206   PacedPacketInfo last_pacing_info_;
207 };
208 
209 class PacingControllerTest
210     : public ::testing::TestWithParam<PacingController::ProcessMode> {
211  protected:
PacingControllerTest()212   PacingControllerTest() : clock_(123456) {}
213 
SetUp()214   void SetUp() override {
215     srand(0);
216     // Need to initialize PacingController after we initialize clock.
217     pacer_ = std::make_unique<PacingController>(&clock_, &callback_, nullptr,
218                                                 nullptr, GetParam());
219     Init();
220   }
221 
PeriodicProcess() const222   bool PeriodicProcess() const {
223     return GetParam() == PacingController::ProcessMode::kPeriodic;
224   }
225 
Init()226   void Init() {
227     pacer_->CreateProbeCluster(kFirstClusterRate, /*cluster_id=*/0);
228     pacer_->CreateProbeCluster(kSecondClusterRate, /*cluster_id=*/1);
229     // Default to bitrate probing disabled for testing purposes. Probing tests
230     // have to enable probing, either by creating a new PacingController
231     // instance or by calling SetProbingEnabled(true).
232     pacer_->SetProbingEnabled(false);
233     pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
234 
235     clock_.AdvanceTime(TimeUntilNextProcess());
236   }
237 
Send(RtpPacketMediaType type,uint32_t ssrc,uint16_t sequence_number,int64_t capture_time_ms,size_t size)238   void Send(RtpPacketMediaType type,
239             uint32_t ssrc,
240             uint16_t sequence_number,
241             int64_t capture_time_ms,
242             size_t size) {
243     pacer_->EnqueuePacket(
244         BuildPacket(type, ssrc, sequence_number, capture_time_ms, size));
245   }
246 
SendAndExpectPacket(RtpPacketMediaType type,uint32_t ssrc,uint16_t sequence_number,int64_t capture_time_ms,size_t size)247   void SendAndExpectPacket(RtpPacketMediaType type,
248                            uint32_t ssrc,
249                            uint16_t sequence_number,
250                            int64_t capture_time_ms,
251                            size_t size) {
252     Send(type, ssrc, sequence_number, capture_time_ms, size);
253     EXPECT_CALL(callback_,
254                 SendPacket(ssrc, sequence_number, capture_time_ms,
255                            type == RtpPacketMediaType::kRetransmission, false))
256         .Times(1);
257   }
258 
BuildRtpPacket(RtpPacketMediaType type)259   std::unique_ptr<RtpPacketToSend> BuildRtpPacket(RtpPacketMediaType type) {
260     auto packet = std::make_unique<RtpPacketToSend>(nullptr);
261     packet->set_packet_type(type);
262     switch (type) {
263       case RtpPacketMediaType::kAudio:
264         packet->SetSsrc(kAudioSsrc);
265         break;
266       case RtpPacketMediaType::kVideo:
267         packet->SetSsrc(kVideoSsrc);
268         break;
269       case RtpPacketMediaType::kRetransmission:
270       case RtpPacketMediaType::kPadding:
271         packet->SetSsrc(kVideoRtxSsrc);
272         break;
273       case RtpPacketMediaType::kForwardErrorCorrection:
274         packet->SetSsrc(kFlexFecSsrc);
275         break;
276     }
277 
278     packet->SetPayloadSize(234);
279     return packet;
280   }
281 
TimeUntilNextProcess()282   TimeDelta TimeUntilNextProcess() {
283     Timestamp now = clock_.CurrentTime();
284     return std::max(pacer_->NextSendTime() - now, TimeDelta::Zero());
285   }
286 
AdvanceTimeAndProcess()287   void AdvanceTimeAndProcess() {
288     Timestamp now = clock_.CurrentTime();
289     Timestamp next_send_time = pacer_->NextSendTime();
290     clock_.AdvanceTime(std::max(TimeDelta::Zero(), next_send_time - now));
291     pacer_->ProcessPackets();
292   }
293 
ConsumeInitialBudget()294   void ConsumeInitialBudget() {
295     const uint32_t kSsrc = 54321;
296     uint16_t sequence_number = 1234;
297     int64_t capture_time_ms = clock_.TimeInMilliseconds();
298     const size_t kPacketSize = 250;
299 
300     EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
301 
302     // Due to the multiplicative factor we can send 5 packets during a send
303     // interval. (network capacity * multiplier / (8 bits per byte *
304     // (packet size * #send intervals per second)
305     const size_t packets_to_send_per_interval =
306         kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200);
307     for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
308       SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++,
309                           capture_time_ms, kPacketSize);
310     }
311 
312     while (pacer_->QueueSizePackets() > 0) {
313       if (PeriodicProcess()) {
314         clock_.AdvanceTime(TimeUntilNextProcess());
315         pacer_->ProcessPackets();
316       } else {
317         AdvanceTimeAndProcess();
318       }
319     }
320   }
321 
322   SimulatedClock clock_;
323   ::testing::NiceMock<MockPacingControllerCallback> callback_;
324   std::unique_ptr<PacingController> pacer_;
325 };
326 
327 class PacingControllerFieldTrialTest
328     : public ::testing::TestWithParam<PacingController::ProcessMode> {
329  protected:
330   struct MediaStream {
331     const RtpPacketMediaType type;
332     const uint32_t ssrc;
333     const size_t packet_size;
334     uint16_t seq_num;
335   };
336 
337   const int kProcessIntervalsPerSecond = 1000 / 5;
338 
PacingControllerFieldTrialTest()339   PacingControllerFieldTrialTest() : clock_(123456) {}
InsertPacket(PacingController * pacer,MediaStream * stream)340   void InsertPacket(PacingController* pacer, MediaStream* stream) {
341     pacer->EnqueuePacket(
342         BuildPacket(stream->type, stream->ssrc, stream->seq_num++,
343                     clock_.TimeInMilliseconds(), stream->packet_size));
344   }
ProcessNext(PacingController * pacer)345   void ProcessNext(PacingController* pacer) {
346     if (GetParam() == PacingController::ProcessMode::kPeriodic) {
347       TimeDelta process_interval = TimeDelta::Millis(5);
348       clock_.AdvanceTime(process_interval);
349       pacer->ProcessPackets();
350       return;
351     }
352 
353     Timestamp now = clock_.CurrentTime();
354     Timestamp next_send_time = pacer->NextSendTime();
355     TimeDelta wait_time = std::max(TimeDelta::Zero(), next_send_time - now);
356     clock_.AdvanceTime(wait_time);
357     pacer->ProcessPackets();
358   }
359   MediaStream audio{/*type*/ RtpPacketMediaType::kAudio,
360                     /*ssrc*/ 3333, /*packet_size*/ 100, /*seq_num*/ 1000};
361   MediaStream video{/*type*/ RtpPacketMediaType::kVideo,
362                     /*ssrc*/ 4444, /*packet_size*/ 1000, /*seq_num*/ 1000};
363   SimulatedClock clock_;
364   MockPacingControllerCallback callback_;
365 };
366 
TEST_P(PacingControllerFieldTrialTest,DefaultNoPaddingInSilence)367 TEST_P(PacingControllerFieldTrialTest, DefaultNoPaddingInSilence) {
368   PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
369   pacer.SetPacingRates(kTargetRate, DataRate::Zero());
370   // Video packet to reset last send time and provide padding data.
371   InsertPacket(&pacer, &video);
372   EXPECT_CALL(callback_, SendPacket).Times(1);
373   clock_.AdvanceTimeMilliseconds(5);
374   pacer.ProcessPackets();
375   EXPECT_CALL(callback_, SendPadding).Times(0);
376   // Waiting 500 ms should not trigger sending of padding.
377   clock_.AdvanceTimeMilliseconds(500);
378   pacer.ProcessPackets();
379 }
380 
TEST_P(PacingControllerFieldTrialTest,PaddingInSilenceWithTrial)381 TEST_P(PacingControllerFieldTrialTest, PaddingInSilenceWithTrial) {
382   ScopedFieldTrials trial("WebRTC-Pacer-PadInSilence/Enabled/");
383   PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
384   pacer.SetPacingRates(kTargetRate, DataRate::Zero());
385   // Video packet to reset last send time and provide padding data.
386   InsertPacket(&pacer, &video);
387   EXPECT_CALL(callback_, SendPacket).Times(2);
388   clock_.AdvanceTimeMilliseconds(5);
389   pacer.ProcessPackets();
390   EXPECT_CALL(callback_, SendPadding).WillOnce(Return(1000));
391   // Waiting 500 ms should trigger sending of padding.
392   clock_.AdvanceTimeMilliseconds(500);
393   pacer.ProcessPackets();
394 }
395 
TEST_P(PacingControllerFieldTrialTest,CongestionWindowAffectsAudioInTrial)396 TEST_P(PacingControllerFieldTrialTest, CongestionWindowAffectsAudioInTrial) {
397   ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Enabled/");
398   EXPECT_CALL(callback_, SendPadding).Times(0);
399   PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
400   pacer.SetPacingRates(DataRate::KilobitsPerSec(10000), DataRate::Zero());
401   pacer.SetCongestionWindow(DataSize::Bytes(video.packet_size - 100));
402   pacer.UpdateOutstandingData(DataSize::Zero());
403   // Video packet fills congestion window.
404   InsertPacket(&pacer, &video);
405   EXPECT_CALL(callback_, SendPacket).Times(1);
406   ProcessNext(&pacer);
407   // Audio packet blocked due to congestion.
408   InsertPacket(&pacer, &audio);
409   EXPECT_CALL(callback_, SendPacket).Times(0);
410   if (GetParam() == PacingController::ProcessMode::kDynamic) {
411     // Without interval budget we'll forward time to where we send keep-alive.
412     EXPECT_CALL(callback_, SendPadding(1)).Times(2);
413   }
414   ProcessNext(&pacer);
415   ProcessNext(&pacer);
416   // Audio packet unblocked when congestion window clear.
417   ::testing::Mock::VerifyAndClearExpectations(&callback_);
418   pacer.UpdateOutstandingData(DataSize::Zero());
419   EXPECT_CALL(callback_, SendPacket).Times(1);
420   ProcessNext(&pacer);
421 }
422 
TEST_P(PacingControllerFieldTrialTest,DefaultCongestionWindowDoesNotAffectAudio)423 TEST_P(PacingControllerFieldTrialTest,
424        DefaultCongestionWindowDoesNotAffectAudio) {
425   EXPECT_CALL(callback_, SendPadding).Times(0);
426   PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
427   pacer.SetPacingRates(DataRate::BitsPerSec(10000000), DataRate::Zero());
428   pacer.SetCongestionWindow(DataSize::Bytes(800));
429   pacer.UpdateOutstandingData(DataSize::Zero());
430   // Video packet fills congestion window.
431   InsertPacket(&pacer, &video);
432   EXPECT_CALL(callback_, SendPacket).Times(1);
433   ProcessNext(&pacer);
434   // Audio not blocked due to congestion.
435   InsertPacket(&pacer, &audio);
436   EXPECT_CALL(callback_, SendPacket).Times(1);
437   ProcessNext(&pacer);
438 }
439 
TEST_P(PacingControllerFieldTrialTest,BudgetAffectsAudioInTrial)440 TEST_P(PacingControllerFieldTrialTest, BudgetAffectsAudioInTrial) {
441   ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Enabled/");
442   PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
443   DataRate pacing_rate = DataRate::BitsPerSec(video.packet_size / 3 * 8 *
444                                               kProcessIntervalsPerSecond);
445   pacer.SetPacingRates(pacing_rate, DataRate::Zero());
446   // Video fills budget for following process periods.
447   InsertPacket(&pacer, &video);
448   EXPECT_CALL(callback_, SendPacket).Times(1);
449   ProcessNext(&pacer);
450   // Audio packet blocked due to budget limit.
451   InsertPacket(&pacer, &audio);
452   Timestamp wait_start_time = clock_.CurrentTime();
453   Timestamp wait_end_time = Timestamp::MinusInfinity();
454   EXPECT_CALL(callback_, SendPacket)
455       .WillOnce([&](uint32_t ssrc, uint16_t sequence_number,
456                     int64_t capture_timestamp, bool retransmission,
457                     bool padding) { wait_end_time = clock_.CurrentTime(); });
458   while (!wait_end_time.IsFinite()) {
459     ProcessNext(&pacer);
460   }
461   const TimeDelta expected_wait_time =
462       DataSize::Bytes(video.packet_size) / pacing_rate;
463   // Verify delay is near expectation, within timing margin.
464   EXPECT_LT(((wait_end_time - wait_start_time) - expected_wait_time).Abs(),
465             GetParam() == PacingController::ProcessMode::kPeriodic
466                 ? TimeDelta::Millis(5)
467                 : PacingController::kMinSleepTime);
468 }
469 
TEST_P(PacingControllerFieldTrialTest,DefaultBudgetDoesNotAffectAudio)470 TEST_P(PacingControllerFieldTrialTest, DefaultBudgetDoesNotAffectAudio) {
471   EXPECT_CALL(callback_, SendPadding).Times(0);
472   PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
473   pacer.SetPacingRates(DataRate::BitsPerSec(video.packet_size / 3 * 8 *
474                                             kProcessIntervalsPerSecond),
475                        DataRate::Zero());
476   // Video fills budget for following process periods.
477   InsertPacket(&pacer, &video);
478   EXPECT_CALL(callback_, SendPacket).Times(1);
479   ProcessNext(&pacer);
480   // Audio packet not blocked due to budget limit.
481   EXPECT_CALL(callback_, SendPacket).Times(1);
482   InsertPacket(&pacer, &audio);
483   ProcessNext(&pacer);
484 }
485 
486 INSTANTIATE_TEST_SUITE_P(WithAndWithoutIntervalBudget,
487                          PacingControllerFieldTrialTest,
488                          ::testing::Values(false, true));
489 
TEST_P(PacingControllerTest,FirstSentPacketTimeIsSet)490 TEST_P(PacingControllerTest, FirstSentPacketTimeIsSet) {
491   uint16_t sequence_number = 1234;
492   const uint32_t kSsrc = 12345;
493   const size_t kSizeBytes = 250;
494   const size_t kPacketToSend = 3;
495   const Timestamp kStartTime = clock_.CurrentTime();
496 
497   // No packet sent.
498   EXPECT_FALSE(pacer_->FirstSentPacketTime().has_value());
499 
500   for (size_t i = 0; i < kPacketToSend; ++i) {
501     SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++,
502                         clock_.TimeInMilliseconds(), kSizeBytes);
503     clock_.AdvanceTime(TimeUntilNextProcess());
504     pacer_->ProcessPackets();
505   }
506   EXPECT_EQ(kStartTime, pacer_->FirstSentPacketTime());
507 }
508 
TEST_P(PacingControllerTest,QueuePacket)509 TEST_P(PacingControllerTest, QueuePacket) {
510   if (!PeriodicProcess()) {
511     // This test checks behavior applicable only when using interval budget.
512     return;
513   }
514 
515   uint32_t ssrc = 12345;
516   uint16_t sequence_number = 1234;
517   // Due to the multiplicative factor we can send 5 packets during a 5ms send
518   // interval. (network capacity * multiplier / (8 bits per byte *
519   // (packet size * #send intervals per second)
520   const size_t kPacketsToSend =
521       kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
522   for (size_t i = 0; i < kPacketsToSend; ++i) {
523     SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
524                         clock_.TimeInMilliseconds(), 250);
525   }
526   EXPECT_CALL(callback_, SendPadding).Times(0);
527 
528   // Enqueue one extra packet.
529   int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
530   Send(RtpPacketMediaType::kVideo, ssrc, sequence_number,
531        queued_packet_timestamp, 250);
532   EXPECT_EQ(kPacketsToSend + 1, pacer_->QueueSizePackets());
533 
534   // The first kPacketsToSend packets will be sent with budget from the
535   // initial 5ms interval.
536   pacer_->ProcessPackets();
537   EXPECT_EQ(1u, pacer_->QueueSizePackets());
538 
539   // Advance time to next interval, make sure the last packet is sent.
540   clock_.AdvanceTimeMilliseconds(5);
541   EXPECT_CALL(callback_, SendPacket(ssrc, sequence_number++,
542                                     queued_packet_timestamp, false, false))
543       .Times(1);
544   pacer_->ProcessPackets();
545   sequence_number++;
546   EXPECT_EQ(0u, pacer_->QueueSizePackets());
547 
548   // We can send packets_to_send -1 packets of size 250 during the current
549   // interval since one packet has already been sent.
550   for (size_t i = 0; i < kPacketsToSend - 1; ++i) {
551     SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
552                         clock_.TimeInMilliseconds(), 250);
553   }
554   Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
555        clock_.TimeInMilliseconds(), 250);
556   EXPECT_EQ(kPacketsToSend, pacer_->QueueSizePackets());
557   pacer_->ProcessPackets();
558   EXPECT_EQ(1u, pacer_->QueueSizePackets());
559 }
560 
TEST_P(PacingControllerTest,QueueAndPacePackets)561 TEST_P(PacingControllerTest, QueueAndPacePackets) {
562   if (PeriodicProcess()) {
563     // This test checks behavior when not using interval budget.
564     return;
565   }
566 
567   const uint32_t kSsrc = 12345;
568   uint16_t sequence_number = 1234;
569   const DataSize kPackeSize = DataSize::Bytes(250);
570   const TimeDelta kSendInterval = TimeDelta::Millis(5);
571 
572   // Due to the multiplicative factor we can send 5 packets during a 5ms send
573   // interval. (send interval * network capacity * multiplier / packet size)
574   const size_t kPacketsToSend = (kSendInterval * kTargetRate).bytes() *
575                                 kPaceMultiplier / kPackeSize.bytes();
576 
577   for (size_t i = 0; i < kPacketsToSend; ++i) {
578     SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++,
579                         clock_.TimeInMilliseconds(), kPackeSize.bytes());
580   }
581   EXPECT_CALL(callback_, SendPadding).Times(0);
582 
583   // Enqueue one extra packet.
584   int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
585   Send(RtpPacketMediaType::kVideo, kSsrc, sequence_number,
586        queued_packet_timestamp, kPackeSize.bytes());
587   EXPECT_EQ(kPacketsToSend + 1, pacer_->QueueSizePackets());
588 
589   // Send packets until the initial kPacketsToSend packets are done.
590   Timestamp start_time = clock_.CurrentTime();
591   while (pacer_->QueueSizePackets() > 1) {
592     AdvanceTimeAndProcess();
593   }
594   EXPECT_LT(clock_.CurrentTime() - start_time, kSendInterval);
595 
596   // Proceed till last packet can be sent.
597   EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number,
598                                     queued_packet_timestamp, false, false))
599       .Times(1);
600   AdvanceTimeAndProcess();
601   EXPECT_GE(clock_.CurrentTime() - start_time, kSendInterval);
602   EXPECT_EQ(pacer_->QueueSizePackets(), 0u);
603 }
604 
TEST_P(PacingControllerTest,PaceQueuedPackets)605 TEST_P(PacingControllerTest, PaceQueuedPackets) {
606   uint32_t ssrc = 12345;
607   uint16_t sequence_number = 1234;
608   const size_t kPacketSize = 250;
609 
610   // Due to the multiplicative factor we can send 5 packets during a send
611   // interval. (network capacity * multiplier / (8 bits per byte *
612   // (packet size * #send intervals per second)
613   const size_t packets_to_send_per_interval =
614       kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200);
615   for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
616     SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
617                         clock_.TimeInMilliseconds(), kPacketSize);
618   }
619 
620   for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
621     Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
622          clock_.TimeInMilliseconds(), kPacketSize);
623   }
624   EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10,
625             pacer_->QueueSizePackets());
626   if (PeriodicProcess()) {
627     pacer_->ProcessPackets();
628   } else {
629     while (pacer_->QueueSizePackets() > packets_to_send_per_interval * 10) {
630       AdvanceTimeAndProcess();
631     }
632   }
633   EXPECT_EQ(pacer_->QueueSizePackets(), packets_to_send_per_interval * 10);
634   EXPECT_CALL(callback_, SendPadding).Times(0);
635 
636   EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, false))
637       .Times(pacer_->QueueSizePackets());
638   const TimeDelta expected_pace_time =
639       DataSize::Bytes(pacer_->QueueSizePackets() * kPacketSize) /
640       (kPaceMultiplier * kTargetRate);
641   Timestamp start_time = clock_.CurrentTime();
642   while (pacer_->QueueSizePackets() > 0) {
643     if (PeriodicProcess()) {
644       clock_.AdvanceTime(TimeUntilNextProcess());
645       pacer_->ProcessPackets();
646     } else {
647       AdvanceTimeAndProcess();
648     }
649   }
650   const TimeDelta actual_pace_time = clock_.CurrentTime() - start_time;
651   EXPECT_LT((actual_pace_time - expected_pace_time).Abs(),
652             PeriodicProcess() ? TimeDelta::Millis(5)
653                               : PacingController::kMinSleepTime);
654 
655   EXPECT_EQ(0u, pacer_->QueueSizePackets());
656   clock_.AdvanceTime(TimeUntilNextProcess());
657   EXPECT_EQ(0u, pacer_->QueueSizePackets());
658   pacer_->ProcessPackets();
659 
660   // Send some more packet, just show that we can..?
661   for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
662     SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
663                         clock_.TimeInMilliseconds(), 250);
664   }
665   EXPECT_EQ(packets_to_send_per_interval, pacer_->QueueSizePackets());
666   if (PeriodicProcess()) {
667     pacer_->ProcessPackets();
668   } else {
669     for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
670       AdvanceTimeAndProcess();
671     }
672   }
673   EXPECT_EQ(0u, pacer_->QueueSizePackets());
674 }
675 
TEST_P(PacingControllerTest,RepeatedRetransmissionsAllowed)676 TEST_P(PacingControllerTest, RepeatedRetransmissionsAllowed) {
677   // Send one packet, then two retransmissions of that packet.
678   for (size_t i = 0; i < 3; i++) {
679     constexpr uint32_t ssrc = 333;
680     constexpr uint16_t sequence_number = 444;
681     constexpr size_t bytes = 250;
682     bool is_retransmission = (i != 0);  // Original followed by retransmissions.
683     SendAndExpectPacket(is_retransmission ? RtpPacketMediaType::kRetransmission
684                                           : RtpPacketMediaType::kVideo,
685                         ssrc, sequence_number, clock_.TimeInMilliseconds(),
686                         bytes);
687     clock_.AdvanceTimeMilliseconds(5);
688   }
689   if (PeriodicProcess()) {
690     pacer_->ProcessPackets();
691   } else {
692     while (pacer_->QueueSizePackets() > 0) {
693       AdvanceTimeAndProcess();
694     }
695   }
696 }
697 
TEST_P(PacingControllerTest,CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs)698 TEST_P(PacingControllerTest,
699        CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
700   uint32_t ssrc = 12345;
701   uint16_t sequence_number = 1234;
702 
703   SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number,
704                       clock_.TimeInMilliseconds(), 250);
705 
706   // Expect packet on second ssrc to be queued and sent as well.
707   SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc + 1, sequence_number,
708                       clock_.TimeInMilliseconds(), 250);
709 
710   clock_.AdvanceTimeMilliseconds(1000);
711   if (PeriodicProcess()) {
712     pacer_->ProcessPackets();
713   } else {
714     while (pacer_->QueueSizePackets() > 0) {
715       AdvanceTimeAndProcess();
716     }
717   }
718 }
719 
TEST_P(PacingControllerTest,Padding)720 TEST_P(PacingControllerTest, Padding) {
721   uint32_t ssrc = 12345;
722   uint16_t sequence_number = 1234;
723   const size_t kPacketSize = 250;
724 
725   pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
726 
727   if (PeriodicProcess()) {
728     ConsumeInitialBudget();
729 
730     // 5 milliseconds later should not send padding since we filled the buffers
731     // initially.
732     EXPECT_CALL(callback_, SendPadding(kPacketSize)).Times(0);
733     clock_.AdvanceTime(TimeUntilNextProcess());
734     pacer_->ProcessPackets();
735 
736     // 5 milliseconds later we have enough budget to send some padding.
737     EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(kPacketSize));
738     EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
739     clock_.AdvanceTime(TimeUntilNextProcess());
740     pacer_->ProcessPackets();
741   } else {
742     const size_t kPacketsToSend = 20;
743     for (size_t i = 0; i < kPacketsToSend; ++i) {
744       SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
745                           clock_.TimeInMilliseconds(), kPacketSize);
746     }
747     const TimeDelta expected_pace_time =
748         DataSize::Bytes(pacer_->QueueSizePackets() * kPacketSize) /
749         (kPaceMultiplier * kTargetRate);
750     EXPECT_CALL(callback_, SendPadding).Times(0);
751     // Only the media packets should be sent.
752     Timestamp start_time = clock_.CurrentTime();
753     while (pacer_->QueueSizePackets() > 0) {
754       AdvanceTimeAndProcess();
755     }
756     const TimeDelta actual_pace_time = clock_.CurrentTime() - start_time;
757     EXPECT_LE((actual_pace_time - expected_pace_time).Abs(),
758               PacingController::kMinSleepTime);
759 
760     // Pacing media happens at 2.5x, but padding was configured with 1.0x
761     // factor. We have to wait until the padding debt is gone before we start
762     // sending padding.
763     const TimeDelta time_to_padding_debt_free =
764         (expected_pace_time * kPaceMultiplier) - actual_pace_time;
765     clock_.AdvanceTime(time_to_padding_debt_free -
766                        PacingController::kMinSleepTime);
767     pacer_->ProcessPackets();
768 
769     // Send 10 padding packets.
770     const size_t kPaddingPacketsToSend = 10;
771     DataSize padding_sent = DataSize::Zero();
772     size_t packets_sent = 0;
773     Timestamp first_send_time = Timestamp::MinusInfinity();
774     Timestamp last_send_time = Timestamp::MinusInfinity();
775 
776     EXPECT_CALL(callback_, SendPadding)
777         .Times(kPaddingPacketsToSend)
778         .WillRepeatedly([&](size_t target_size) {
779           ++packets_sent;
780           if (packets_sent < kPaddingPacketsToSend) {
781             // Don't count bytes of last packet, instead just
782             // use this as the time the last packet finished
783             // sending.
784             padding_sent += DataSize::Bytes(target_size);
785           }
786           if (first_send_time.IsInfinite()) {
787             first_send_time = clock_.CurrentTime();
788           } else {
789             last_send_time = clock_.CurrentTime();
790           }
791           return target_size;
792         });
793     EXPECT_CALL(callback_, SendPacket(_, _, _, false, true))
794         .Times(kPaddingPacketsToSend);
795 
796     while (packets_sent < kPaddingPacketsToSend) {
797       AdvanceTimeAndProcess();
798     }
799 
800     // Verify rate of sent padding.
801     TimeDelta padding_duration = last_send_time - first_send_time;
802     DataRate padding_rate = padding_sent / padding_duration;
803     EXPECT_EQ(padding_rate, kTargetRate);
804   }
805 }
806 
TEST_P(PacingControllerTest,NoPaddingBeforeNormalPacket)807 TEST_P(PacingControllerTest, NoPaddingBeforeNormalPacket) {
808   pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
809 
810   EXPECT_CALL(callback_, SendPadding).Times(0);
811 
812   pacer_->ProcessPackets();
813   clock_.AdvanceTime(TimeUntilNextProcess());
814 
815   pacer_->ProcessPackets();
816   clock_.AdvanceTime(TimeUntilNextProcess());
817 
818   uint32_t ssrc = 12345;
819   uint16_t sequence_number = 1234;
820   int64_t capture_time_ms = 56789;
821 
822   SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
823                       capture_time_ms, 250);
824   bool padding_sent = false;
825   EXPECT_CALL(callback_, SendPadding).WillOnce([&](size_t padding) {
826     padding_sent = true;
827     return padding;
828   });
829   EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
830   if (PeriodicProcess()) {
831     pacer_->ProcessPackets();
832   } else {
833     while (!padding_sent) {
834       AdvanceTimeAndProcess();
835     }
836   }
837 }
838 
TEST_P(PacingControllerTest,VerifyPaddingUpToBitrate)839 TEST_P(PacingControllerTest, VerifyPaddingUpToBitrate) {
840   if (!PeriodicProcess()) {
841     // Already tested in PacingControllerTest.Padding.
842     return;
843   }
844 
845   uint32_t ssrc = 12345;
846   uint16_t sequence_number = 1234;
847   int64_t capture_time_ms = 56789;
848   const int kTimeStep = 5;
849   const int64_t kBitrateWindow = 100;
850   pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
851 
852   int64_t start_time = clock_.TimeInMilliseconds();
853   while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
854     SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
855                         capture_time_ms, 250);
856     EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250));
857     EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
858     pacer_->ProcessPackets();
859     clock_.AdvanceTimeMilliseconds(kTimeStep);
860   }
861 }
862 
TEST_P(PacingControllerTest,VerifyAverageBitrateVaryingMediaPayload)863 TEST_P(PacingControllerTest, VerifyAverageBitrateVaryingMediaPayload) {
864   uint32_t ssrc = 12345;
865   uint16_t sequence_number = 1234;
866   int64_t capture_time_ms = 56789;
867   const int kTimeStep = 5;
868   const TimeDelta kAveragingWindowLength = TimeDelta::Seconds(10);
869   PacingControllerPadding callback;
870   pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr,
871                                               nullptr, GetParam());
872   pacer_->SetProbingEnabled(false);
873   pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
874 
875   Timestamp start_time = clock_.CurrentTime();
876   size_t media_bytes = 0;
877   while (clock_.CurrentTime() - start_time < kAveragingWindowLength) {
878     // Maybe add some new media packets corresponding to expected send rate.
879     int rand_value = rand();  // NOLINT (rand_r instead of rand)
880     while (
881         media_bytes <
882         (kTargetRate * (clock_.CurrentTime() - start_time)).bytes<size_t>()) {
883       size_t media_payload = rand_value % 400 + 800;  // [400, 1200] bytes.
884       Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, capture_time_ms,
885            media_payload);
886       media_bytes += media_payload;
887     }
888 
889     if (PeriodicProcess()) {
890       clock_.AdvanceTimeMilliseconds(kTimeStep);
891       pacer_->ProcessPackets();
892     } else {
893       AdvanceTimeAndProcess();
894     }
895   }
896 
897   EXPECT_NEAR(
898       kTargetRate.bps(),
899       (DataSize::Bytes(callback.total_bytes_sent()) / kAveragingWindowLength)
900           .bps(),
901       (kTargetRate * 0.01 /* 1% error marging */).bps());
902 }
903 
TEST_P(PacingControllerTest,Priority)904 TEST_P(PacingControllerTest, Priority) {
905   uint32_t ssrc_low_priority = 12345;
906   uint32_t ssrc = 12346;
907   uint16_t sequence_number = 1234;
908   int64_t capture_time_ms = 56789;
909   int64_t capture_time_ms_low_priority = 1234567;
910 
911   ConsumeInitialBudget();
912 
913   // Expect normal and low priority to be queued and high to pass through.
914   Send(RtpPacketMediaType::kVideo, ssrc_low_priority, sequence_number++,
915        capture_time_ms_low_priority, 250);
916 
917   const size_t packets_to_send_per_interval =
918       kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
919   for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
920     Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++,
921          capture_time_ms, 250);
922   }
923   Send(RtpPacketMediaType::kAudio, ssrc, sequence_number++, capture_time_ms,
924        250);
925 
926   // Expect all high and normal priority to be sent out first.
927   EXPECT_CALL(callback_, SendPadding).Times(0);
928   EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _))
929       .Times(packets_to_send_per_interval + 1);
930 
931   if (PeriodicProcess()) {
932     clock_.AdvanceTime(TimeUntilNextProcess());
933     pacer_->ProcessPackets();
934   } else {
935     while (pacer_->QueueSizePackets() > 1) {
936       AdvanceTimeAndProcess();
937     }
938   }
939 
940   EXPECT_EQ(1u, pacer_->QueueSizePackets());
941 
942   EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
943                                     capture_time_ms_low_priority, _, _))
944       .Times(1);
945   if (PeriodicProcess()) {
946     clock_.AdvanceTime(TimeUntilNextProcess());
947     pacer_->ProcessPackets();
948   } else {
949     AdvanceTimeAndProcess();
950   }
951 }
952 
TEST_P(PacingControllerTest,RetransmissionPriority)953 TEST_P(PacingControllerTest, RetransmissionPriority) {
954   uint32_t ssrc = 12345;
955   uint16_t sequence_number = 1234;
956   int64_t capture_time_ms = 45678;
957   int64_t capture_time_ms_retransmission = 56789;
958 
959   // Due to the multiplicative factor we can send 5 packets during a send
960   // interval. (network capacity * multiplier / (8 bits per byte *
961   // (packet size * #send intervals per second)
962   const size_t packets_to_send_per_interval =
963       kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
964   pacer_->ProcessPackets();
965   EXPECT_EQ(0u, pacer_->QueueSizePackets());
966 
967   // Alternate retransmissions and normal packets.
968   for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
969     Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, capture_time_ms,
970          250);
971     Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++,
972          capture_time_ms_retransmission, 250);
973   }
974   EXPECT_EQ(2 * packets_to_send_per_interval, pacer_->QueueSizePackets());
975 
976   // Expect all retransmissions to be sent out first despite having a later
977   // capture time.
978   EXPECT_CALL(callback_, SendPadding).Times(0);
979   EXPECT_CALL(callback_, SendPacket(_, _, _, false, _)).Times(0);
980   EXPECT_CALL(callback_,
981               SendPacket(ssrc, _, capture_time_ms_retransmission, true, _))
982       .Times(packets_to_send_per_interval);
983 
984   if (PeriodicProcess()) {
985     clock_.AdvanceTime(TimeUntilNextProcess());
986     pacer_->ProcessPackets();
987   } else {
988     while (pacer_->QueueSizePackets() > packets_to_send_per_interval) {
989       AdvanceTimeAndProcess();
990     }
991   }
992   EXPECT_EQ(packets_to_send_per_interval, pacer_->QueueSizePackets());
993 
994   // Expect the remaining (non-retransmission) packets to be sent.
995   EXPECT_CALL(callback_, SendPadding).Times(0);
996   EXPECT_CALL(callback_, SendPacket(_, _, _, true, _)).Times(0);
997   EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, false, _))
998       .Times(packets_to_send_per_interval);
999 
1000   if (PeriodicProcess()) {
1001     clock_.AdvanceTime(TimeUntilNextProcess());
1002     pacer_->ProcessPackets();
1003   } else {
1004     while (pacer_->QueueSizePackets() > 0) {
1005       AdvanceTimeAndProcess();
1006     }
1007   }
1008 
1009   EXPECT_EQ(0u, pacer_->QueueSizePackets());
1010 }
1011 
TEST_P(PacingControllerTest,HighPrioDoesntAffectBudget)1012 TEST_P(PacingControllerTest, HighPrioDoesntAffectBudget) {
1013   const size_t kPacketSize = 250;
1014   uint32_t ssrc = 12346;
1015   uint16_t sequence_number = 1234;
1016   int64_t capture_time_ms = 56789;
1017 
1018   // As high prio packets doesn't affect the budget, we should be able to send
1019   // a high number of them at once.
1020   const size_t kNumAudioPackets = 25;
1021   for (size_t i = 0; i < kNumAudioPackets; ++i) {
1022     SendAndExpectPacket(RtpPacketMediaType::kAudio, ssrc, sequence_number++,
1023                         capture_time_ms, kPacketSize);
1024   }
1025   pacer_->ProcessPackets();
1026   // Low prio packets does affect the budget.
1027   // Due to the multiplicative factor we can send 5 packets during a send
1028   // interval. (network capacity * multiplier / (8 bits per byte *
1029   // (packet size * #send intervals per second)
1030   const size_t kPacketsToSendPerInterval =
1031       kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200);
1032   for (size_t i = 0; i < kPacketsToSendPerInterval; ++i) {
1033     SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1034                         clock_.TimeInMilliseconds(), kPacketSize);
1035   }
1036 
1037   // Send all packets and measure pace time.
1038   Timestamp start_time = clock_.CurrentTime();
1039   while (pacer_->QueueSizePackets() > 0) {
1040     if (PeriodicProcess()) {
1041       clock_.AdvanceTime(TimeUntilNextProcess());
1042       pacer_->ProcessPackets();
1043     } else {
1044       AdvanceTimeAndProcess();
1045     }
1046   }
1047 
1048   // Measure pacing time. Expect only low-prio packets to affect this.
1049   TimeDelta pacing_time = clock_.CurrentTime() - start_time;
1050   TimeDelta expected_pacing_time =
1051       DataSize::Bytes(kPacketsToSendPerInterval * kPacketSize) /
1052       (kTargetRate * kPaceMultiplier);
1053   EXPECT_NEAR(pacing_time.us<double>(), expected_pacing_time.us<double>(),
1054               PeriodicProcess() ? 5000.0
1055                                 : PacingController::kMinSleepTime.us<double>());
1056 }
1057 
TEST_P(PacingControllerTest,SendsOnlyPaddingWhenCongested)1058 TEST_P(PacingControllerTest, SendsOnlyPaddingWhenCongested) {
1059   uint32_t ssrc = 202020;
1060   uint16_t sequence_number = 1000;
1061   int kPacketSize = 250;
1062   int kCongestionWindow = kPacketSize * 10;
1063 
1064   pacer_->UpdateOutstandingData(DataSize::Zero());
1065   pacer_->SetCongestionWindow(DataSize::Bytes(kCongestionWindow));
1066   int sent_data = 0;
1067   while (sent_data < kCongestionWindow) {
1068     sent_data += kPacketSize;
1069     SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1070                         clock_.TimeInMilliseconds(), kPacketSize);
1071     AdvanceTimeAndProcess();
1072   }
1073   ::testing::Mock::VerifyAndClearExpectations(&callback_);
1074   EXPECT_CALL(callback_, SendPacket).Times(0);
1075   EXPECT_CALL(callback_, SendPadding).Times(0);
1076 
1077   size_t blocked_packets = 0;
1078   int64_t expected_time_until_padding = 500;
1079   while (expected_time_until_padding > 5) {
1080     Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1081          clock_.TimeInMilliseconds(), kPacketSize);
1082     blocked_packets++;
1083     clock_.AdvanceTimeMilliseconds(5);
1084     pacer_->ProcessPackets();
1085     expected_time_until_padding -= 5;
1086   }
1087   ::testing::Mock::VerifyAndClearExpectations(&callback_);
1088   EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1));
1089   EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
1090   clock_.AdvanceTimeMilliseconds(5);
1091   pacer_->ProcessPackets();
1092   EXPECT_EQ(blocked_packets, pacer_->QueueSizePackets());
1093 }
1094 
TEST_P(PacingControllerTest,DoesNotAllowOveruseAfterCongestion)1095 TEST_P(PacingControllerTest, DoesNotAllowOveruseAfterCongestion) {
1096   uint32_t ssrc = 202020;
1097   uint16_t seq_num = 1000;
1098   int size = 1000;
1099   auto now_ms = [this] { return clock_.TimeInMilliseconds(); };
1100   EXPECT_CALL(callback_, SendPadding).Times(0);
1101   // The pacing rate is low enough that the budget should not allow two packets
1102   // to be sent in a row.
1103   pacer_->SetPacingRates(DataRate::BitsPerSec(400 * 8 * 1000 / 5),
1104                          DataRate::Zero());
1105   // The congestion window is small enough to only let one packet through.
1106   pacer_->SetCongestionWindow(DataSize::Bytes(800));
1107   pacer_->UpdateOutstandingData(DataSize::Zero());
1108   // Not yet budget limited or congested, packet is sent.
1109   Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size);
1110   EXPECT_CALL(callback_, SendPacket).Times(1);
1111   clock_.AdvanceTimeMilliseconds(5);
1112   pacer_->ProcessPackets();
1113   // Packet blocked due to congestion.
1114   Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size);
1115   EXPECT_CALL(callback_, SendPacket).Times(0);
1116   clock_.AdvanceTimeMilliseconds(5);
1117   pacer_->ProcessPackets();
1118   // Packet blocked due to congestion.
1119   Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size);
1120   EXPECT_CALL(callback_, SendPacket).Times(0);
1121   clock_.AdvanceTimeMilliseconds(5);
1122   pacer_->ProcessPackets();
1123   // Congestion removed and budget has recovered, packet is sent.
1124   Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size);
1125   EXPECT_CALL(callback_, SendPacket).Times(1);
1126   clock_.AdvanceTimeMilliseconds(5);
1127   pacer_->UpdateOutstandingData(DataSize::Zero());
1128   pacer_->ProcessPackets();
1129   // Should be blocked due to budget limitation as congestion has be removed.
1130   Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size);
1131   EXPECT_CALL(callback_, SendPacket).Times(0);
1132   clock_.AdvanceTimeMilliseconds(5);
1133   pacer_->ProcessPackets();
1134 }
1135 
TEST_P(PacingControllerTest,ResumesSendingWhenCongestionEnds)1136 TEST_P(PacingControllerTest, ResumesSendingWhenCongestionEnds) {
1137   uint32_t ssrc = 202020;
1138   uint16_t sequence_number = 1000;
1139   int64_t kPacketSize = 250;
1140   int64_t kCongestionCount = 10;
1141   int64_t kCongestionWindow = kPacketSize * kCongestionCount;
1142   int64_t kCongestionTimeMs = 1000;
1143 
1144   pacer_->UpdateOutstandingData(DataSize::Zero());
1145   pacer_->SetCongestionWindow(DataSize::Bytes(kCongestionWindow));
1146   int sent_data = 0;
1147   while (sent_data < kCongestionWindow) {
1148     sent_data += kPacketSize;
1149     SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1150                         clock_.TimeInMilliseconds(), kPacketSize);
1151     clock_.AdvanceTimeMilliseconds(5);
1152     pacer_->ProcessPackets();
1153   }
1154   ::testing::Mock::VerifyAndClearExpectations(&callback_);
1155   EXPECT_CALL(callback_, SendPacket).Times(0);
1156   int unacked_packets = 0;
1157   for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
1158     Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1159          clock_.TimeInMilliseconds(), kPacketSize);
1160     unacked_packets++;
1161     clock_.AdvanceTimeMilliseconds(5);
1162     pacer_->ProcessPackets();
1163   }
1164   ::testing::Mock::VerifyAndClearExpectations(&callback_);
1165 
1166   // First mark half of the congested packets as cleared and make sure that just
1167   // as many are sent
1168   int ack_count = kCongestionCount / 2;
1169   EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _)).Times(ack_count);
1170   pacer_->UpdateOutstandingData(
1171       DataSize::Bytes(kCongestionWindow - kPacketSize * ack_count));
1172 
1173   for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
1174     clock_.AdvanceTimeMilliseconds(5);
1175     pacer_->ProcessPackets();
1176   }
1177   unacked_packets -= ack_count;
1178   ::testing::Mock::VerifyAndClearExpectations(&callback_);
1179 
1180   // Second make sure all packets are sent if sent packets are continuously
1181   // marked as acked.
1182   EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _))
1183       .Times(unacked_packets);
1184   for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
1185     pacer_->UpdateOutstandingData(DataSize::Zero());
1186     clock_.AdvanceTimeMilliseconds(5);
1187     pacer_->ProcessPackets();
1188   }
1189 }
1190 
TEST_P(PacingControllerTest,Pause)1191 TEST_P(PacingControllerTest, Pause) {
1192   uint32_t ssrc_low_priority = 12345;
1193   uint32_t ssrc = 12346;
1194   uint32_t ssrc_high_priority = 12347;
1195   uint16_t sequence_number = 1234;
1196 
1197   EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
1198 
1199   ConsumeInitialBudget();
1200 
1201   pacer_->Pause();
1202 
1203   int64_t capture_time_ms = clock_.TimeInMilliseconds();
1204   const size_t packets_to_send_per_interval =
1205       kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
1206   for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
1207     Send(RtpPacketMediaType::kVideo, ssrc_low_priority, sequence_number++,
1208          capture_time_ms, 250);
1209     Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++,
1210          capture_time_ms, 250);
1211     Send(RtpPacketMediaType::kAudio, ssrc_high_priority, sequence_number++,
1212          capture_time_ms, 250);
1213   }
1214   clock_.AdvanceTimeMilliseconds(10000);
1215   int64_t second_capture_time_ms = clock_.TimeInMilliseconds();
1216   for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
1217     Send(RtpPacketMediaType::kVideo, ssrc_low_priority, sequence_number++,
1218          second_capture_time_ms, 250);
1219     Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++,
1220          second_capture_time_ms, 250);
1221     Send(RtpPacketMediaType::kAudio, ssrc_high_priority, sequence_number++,
1222          second_capture_time_ms, 250);
1223   }
1224 
1225   // Expect everything to be queued.
1226   EXPECT_EQ(TimeDelta::Millis(second_capture_time_ms - capture_time_ms),
1227             pacer_->OldestPacketWaitTime());
1228 
1229   // Process triggers keep-alive packet.
1230   EXPECT_CALL(callback_, SendPadding).WillOnce([](size_t padding) {
1231     return padding;
1232   });
1233   EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
1234   pacer_->ProcessPackets();
1235 
1236   // Verify no packets sent for the rest of the paused process interval.
1237   const TimeDelta kProcessInterval = TimeDelta::Millis(5);
1238   TimeDelta expected_time_until_send = PacingController::kPausedProcessInterval;
1239   EXPECT_CALL(callback_, SendPadding).Times(0);
1240   while (expected_time_until_send >= kProcessInterval) {
1241     pacer_->ProcessPackets();
1242     clock_.AdvanceTime(kProcessInterval);
1243     expected_time_until_send -= kProcessInterval;
1244   }
1245 
1246   // New keep-alive packet.
1247   ::testing::Mock::VerifyAndClearExpectations(&callback_);
1248   EXPECT_CALL(callback_, SendPadding).WillOnce([](size_t padding) {
1249     return padding;
1250   });
1251   EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
1252   clock_.AdvanceTime(kProcessInterval);
1253   pacer_->ProcessPackets();
1254   ::testing::Mock::VerifyAndClearExpectations(&callback_);
1255 
1256   // Expect high prio packets to come out first followed by normal
1257   // prio packets and low prio packets (all in capture order).
1258   {
1259     ::testing::InSequence sequence;
1260     EXPECT_CALL(callback_,
1261                 SendPacket(ssrc_high_priority, _, capture_time_ms, _, _))
1262         .Times(packets_to_send_per_interval);
1263     EXPECT_CALL(callback_,
1264                 SendPacket(ssrc_high_priority, _, second_capture_time_ms, _, _))
1265         .Times(packets_to_send_per_interval);
1266 
1267     for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
1268       EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _))
1269           .Times(1);
1270     }
1271     for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
1272       EXPECT_CALL(callback_, SendPacket(ssrc, _, second_capture_time_ms, _, _))
1273           .Times(1);
1274     }
1275     for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
1276       EXPECT_CALL(callback_,
1277                   SendPacket(ssrc_low_priority, _, capture_time_ms, _, _))
1278           .Times(1);
1279     }
1280     for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
1281       EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
1282                                         second_capture_time_ms, _, _))
1283           .Times(1);
1284     }
1285   }
1286   pacer_->Resume();
1287 
1288   if (PeriodicProcess()) {
1289     // The pacer was resumed directly after the previous process call finished.
1290     // It will therefore wait 5 ms until next process.
1291     clock_.AdvanceTime(TimeUntilNextProcess());
1292 
1293     for (size_t i = 0; i < 4; i++) {
1294       pacer_->ProcessPackets();
1295       clock_.AdvanceTime(TimeUntilNextProcess());
1296     }
1297   } else {
1298     while (pacer_->QueueSizePackets() > 0) {
1299       AdvanceTimeAndProcess();
1300     }
1301   }
1302 
1303   EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
1304 }
1305 
TEST_P(PacingControllerTest,InactiveFromStart)1306 TEST_P(PacingControllerTest, InactiveFromStart) {
1307   // Recreate the pacer without the inital time forwarding.
1308   pacer_ = std::make_unique<PacingController>(&clock_, &callback_, nullptr,
1309                                               nullptr, GetParam());
1310   pacer_->SetProbingEnabled(false);
1311   pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
1312 
1313   if (PeriodicProcess()) {
1314     // In period mode, pause the pacer to check the same idle behavior as
1315     // dynamic.
1316     pacer_->Pause();
1317   }
1318 
1319   // No packets sent, there should be no keep-alives sent either.
1320   EXPECT_CALL(callback_, SendPadding).Times(0);
1321   EXPECT_CALL(callback_, SendPacket).Times(0);
1322   pacer_->ProcessPackets();
1323 
1324   const Timestamp start_time = clock_.CurrentTime();
1325 
1326   // Determine the margin need so we can advance to the last possible moment
1327   // that will not cause a process event.
1328   const TimeDelta time_margin =
1329       (GetParam() == PacingController::ProcessMode::kDynamic
1330            ? PacingController::kMinSleepTime
1331            : TimeDelta::Zero()) +
1332       TimeDelta::Micros(1);
1333 
1334   EXPECT_EQ(pacer_->NextSendTime() - start_time,
1335             PacingController::kPausedProcessInterval);
1336   clock_.AdvanceTime(PacingController::kPausedProcessInterval - time_margin);
1337   pacer_->ProcessPackets();
1338   EXPECT_EQ(pacer_->NextSendTime() - start_time,
1339             PacingController::kPausedProcessInterval);
1340 
1341   clock_.AdvanceTime(time_margin);
1342   pacer_->ProcessPackets();
1343   EXPECT_EQ(pacer_->NextSendTime() - start_time,
1344             2 * PacingController::kPausedProcessInterval);
1345 }
1346 
TEST_P(PacingControllerTest,ExpectedQueueTimeMs)1347 TEST_P(PacingControllerTest, ExpectedQueueTimeMs) {
1348   uint32_t ssrc = 12346;
1349   uint16_t sequence_number = 1234;
1350   const size_t kNumPackets = 60;
1351   const size_t kPacketSize = 1200;
1352   const int32_t kMaxBitrate = kPaceMultiplier * 30000;
1353   EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
1354 
1355   pacer_->SetPacingRates(DataRate::BitsPerSec(30000 * kPaceMultiplier),
1356                          DataRate::Zero());
1357   for (size_t i = 0; i < kNumPackets; ++i) {
1358     SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1359                         clock_.TimeInMilliseconds(), kPacketSize);
1360   }
1361 
1362   // Queue in ms = 1000 * (bytes in queue) *8 / (bits per second)
1363   TimeDelta queue_time =
1364       TimeDelta::Millis(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate);
1365   EXPECT_EQ(queue_time, pacer_->ExpectedQueueTime());
1366 
1367   const Timestamp time_start = clock_.CurrentTime();
1368   while (pacer_->QueueSizePackets() > 0) {
1369     clock_.AdvanceTime(TimeUntilNextProcess());
1370     pacer_->ProcessPackets();
1371   }
1372   TimeDelta duration = clock_.CurrentTime() - time_start;
1373 
1374   EXPECT_EQ(TimeDelta::Zero(), pacer_->ExpectedQueueTime());
1375 
1376   // Allow for aliasing, duration should be within one pack of max time limit.
1377   const TimeDelta deviation =
1378       duration - PacingController::kMaxExpectedQueueLength;
1379   EXPECT_LT(deviation.Abs(),
1380             TimeDelta::Millis(1000 * kPacketSize * 8 / kMaxBitrate));
1381 }
1382 
TEST_P(PacingControllerTest,QueueTimeGrowsOverTime)1383 TEST_P(PacingControllerTest, QueueTimeGrowsOverTime) {
1384   uint32_t ssrc = 12346;
1385   uint16_t sequence_number = 1234;
1386   EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
1387 
1388   pacer_->SetPacingRates(DataRate::BitsPerSec(30000 * kPaceMultiplier),
1389                          DataRate::Zero());
1390   SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number,
1391                       clock_.TimeInMilliseconds(), 1200);
1392 
1393   clock_.AdvanceTimeMilliseconds(500);
1394   EXPECT_EQ(TimeDelta::Millis(500), pacer_->OldestPacketWaitTime());
1395   pacer_->ProcessPackets();
1396   EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
1397 }
1398 
TEST_P(PacingControllerTest,ProbingWithInsertedPackets)1399 TEST_P(PacingControllerTest, ProbingWithInsertedPackets) {
1400   const size_t kPacketSize = 1200;
1401   const int kInitialBitrateBps = 300000;
1402   uint32_t ssrc = 12346;
1403   uint16_t sequence_number = 1234;
1404 
1405   PacingControllerProbing packet_sender;
1406   pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender, nullptr,
1407                                               nullptr, GetParam());
1408   pacer_->CreateProbeCluster(kFirstClusterRate,
1409                              /*cluster_id=*/0);
1410   pacer_->CreateProbeCluster(kSecondClusterRate,
1411                              /*cluster_id=*/1);
1412   pacer_->SetPacingRates(
1413       DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier),
1414       DataRate::Zero());
1415 
1416   for (int i = 0; i < 10; ++i) {
1417     Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1418          clock_.TimeInMilliseconds(), kPacketSize);
1419   }
1420 
1421   int64_t start = clock_.TimeInMilliseconds();
1422   while (packet_sender.packets_sent() < 5) {
1423     clock_.AdvanceTime(TimeUntilNextProcess());
1424     pacer_->ProcessPackets();
1425   }
1426   int packets_sent = packet_sender.packets_sent();
1427   // Validate first cluster bitrate. Note that we have to account for number
1428   // of intervals and hence (packets_sent - 1) on the first cluster.
1429   EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
1430                   (clock_.TimeInMilliseconds() - start),
1431               kFirstClusterRate.bps(), kProbingErrorMargin.bps());
1432   EXPECT_EQ(0, packet_sender.padding_sent());
1433 
1434   clock_.AdvanceTime(TimeUntilNextProcess());
1435   start = clock_.TimeInMilliseconds();
1436   while (packet_sender.packets_sent() < 10) {
1437     clock_.AdvanceTime(TimeUntilNextProcess());
1438     pacer_->ProcessPackets();
1439   }
1440   packets_sent = packet_sender.packets_sent() - packets_sent;
1441   // Validate second cluster bitrate.
1442   EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
1443                   (clock_.TimeInMilliseconds() - start),
1444               kSecondClusterRate.bps(), kProbingErrorMargin.bps());
1445 }
1446 
TEST_P(PacingControllerTest,SkipsProbesWhenProcessIntervalTooLarge)1447 TEST_P(PacingControllerTest, SkipsProbesWhenProcessIntervalTooLarge) {
1448   const size_t kPacketSize = 1200;
1449   const int kInitialBitrateBps = 300000;
1450   const uint32_t ssrc = 12346;
1451   const int kProbeClusterId = 3;
1452 
1453   // Test with both legacy and new probe discard modes.
1454   // TODO(bugs.webrtc.org/11780): Clean up when legacy is gone.
1455   for (bool abort_delayed_probes : {false, true}) {
1456     uint16_t sequence_number = 1234;
1457 
1458     PacingControllerProbing packet_sender;
1459 
1460     const test::ExplicitKeyValueConfig trials(
1461         abort_delayed_probes ? "WebRTC-Bwe-ProbingBehavior/"
1462                                "abort_delayed_probes:1,max_probe_delay:2ms/"
1463                              : "WebRTC-Bwe-ProbingBehavior/"
1464                                "abort_delayed_probes:0,max_probe_delay:2ms/");
1465     pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender,
1466                                                 nullptr, &trials, GetParam());
1467     pacer_->SetPacingRates(
1468         DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier),
1469         DataRate::BitsPerSec(kInitialBitrateBps));
1470 
1471     for (int i = 0; i < 10; ++i) {
1472       Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1473            clock_.TimeInMilliseconds(), kPacketSize);
1474     }
1475     while (pacer_->QueueSizePackets() > 0) {
1476       clock_.AdvanceTime(TimeUntilNextProcess());
1477       pacer_->ProcessPackets();
1478     }
1479 
1480     // Probe at a very high rate.
1481     pacer_->CreateProbeCluster(DataRate::KilobitsPerSec(10000),  // 10 Mbps.
1482                                /*cluster_id=*/kProbeClusterId);
1483     // We need one packet to start the probe.
1484     Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1485          clock_.TimeInMilliseconds(), kPacketSize);
1486     const int packets_sent_before_probe = packet_sender.packets_sent();
1487     clock_.AdvanceTime(TimeUntilNextProcess());
1488     pacer_->ProcessPackets();
1489     EXPECT_EQ(packet_sender.packets_sent(), packets_sent_before_probe + 1);
1490 
1491     // Figure out how long between probe packets.
1492     Timestamp start_time = clock_.CurrentTime();
1493     clock_.AdvanceTime(TimeUntilNextProcess());
1494     TimeDelta time_between_probes = clock_.CurrentTime() - start_time;
1495     // Advance that distance again + 1ms.
1496     clock_.AdvanceTime(time_between_probes);
1497 
1498     // Send second probe packet.
1499     Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1500          clock_.TimeInMilliseconds(), kPacketSize);
1501     pacer_->ProcessPackets();
1502     EXPECT_EQ(packet_sender.packets_sent(), packets_sent_before_probe + 2);
1503     PacedPacketInfo last_pacing_info = packet_sender.last_pacing_info();
1504     EXPECT_EQ(last_pacing_info.probe_cluster_id, kProbeClusterId);
1505 
1506     // We're exactly where we should be for the next probe.
1507     const Timestamp probe_time = clock_.CurrentTime();
1508     EXPECT_EQ(pacer_->NextSendTime(), clock_.CurrentTime());
1509 
1510     BitrateProberConfig probing_config(&trials);
1511     EXPECT_GT(probing_config.max_probe_delay.Get(), TimeDelta::Zero());
1512     // Advance to within max probe delay, should still return same target.
1513     clock_.AdvanceTime(probing_config.max_probe_delay.Get());
1514     EXPECT_EQ(pacer_->NextSendTime(), probe_time);
1515 
1516     // Too high probe delay, drop it!
1517     clock_.AdvanceTime(TimeDelta::Micros(1));
1518 
1519     int packets_sent_before_timeout = packet_sender.total_packets_sent();
1520     if (abort_delayed_probes) {
1521       // Expected next process time is unchanged, but calling should not
1522       // generate new packets.
1523       EXPECT_EQ(pacer_->NextSendTime(), probe_time);
1524       pacer_->ProcessPackets();
1525       EXPECT_EQ(packet_sender.total_packets_sent(),
1526                 packets_sent_before_timeout);
1527 
1528       // Next packet sent is not part of probe.
1529       if (PeriodicProcess()) {
1530         do {
1531           AdvanceTimeAndProcess();
1532         } while (packet_sender.total_packets_sent() ==
1533                  packets_sent_before_timeout);
1534       } else {
1535         AdvanceTimeAndProcess();
1536       }
1537       const int expected_probe_id = PacedPacketInfo::kNotAProbe;
1538       EXPECT_EQ(packet_sender.last_pacing_info().probe_cluster_id,
1539                 expected_probe_id);
1540     } else {
1541       // Legacy behaviour, probe "aborted" so send time moved back. Next call to
1542       // ProcessPackets() still results in packets being marked as part of probe
1543       // cluster.
1544       EXPECT_GT(pacer_->NextSendTime(), probe_time);
1545       AdvanceTimeAndProcess();
1546       EXPECT_GT(packet_sender.total_packets_sent(),
1547                 packets_sent_before_timeout);
1548       const int expected_probe_id = last_pacing_info.probe_cluster_id;
1549       EXPECT_EQ(packet_sender.last_pacing_info().probe_cluster_id,
1550                 expected_probe_id);
1551 
1552       // Time between sent packets keeps being too large, but we still mark the
1553       // packets as being part of the cluster.
1554       Timestamp a = clock_.CurrentTime();
1555       AdvanceTimeAndProcess();
1556       EXPECT_GT(packet_sender.total_packets_sent(),
1557                 packets_sent_before_timeout);
1558       EXPECT_EQ(packet_sender.last_pacing_info().probe_cluster_id,
1559                 expected_probe_id);
1560       EXPECT_GT(clock_.CurrentTime() - a, time_between_probes);
1561     }
1562   }
1563 }
1564 
TEST_P(PacingControllerTest,ProbingWithPaddingSupport)1565 TEST_P(PacingControllerTest, ProbingWithPaddingSupport) {
1566   const size_t kPacketSize = 1200;
1567   const int kInitialBitrateBps = 300000;
1568   uint32_t ssrc = 12346;
1569   uint16_t sequence_number = 1234;
1570 
1571   PacingControllerProbing packet_sender;
1572   pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender, nullptr,
1573                                               nullptr, GetParam());
1574   pacer_->CreateProbeCluster(kFirstClusterRate,
1575                              /*cluster_id=*/0);
1576   pacer_->SetPacingRates(
1577       DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier),
1578       DataRate::Zero());
1579 
1580   for (int i = 0; i < 3; ++i) {
1581     Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1582          clock_.TimeInMilliseconds(), kPacketSize);
1583   }
1584 
1585   int64_t start = clock_.TimeInMilliseconds();
1586   int process_count = 0;
1587   while (process_count < 5) {
1588     clock_.AdvanceTime(TimeUntilNextProcess());
1589     pacer_->ProcessPackets();
1590     ++process_count;
1591   }
1592   int packets_sent = packet_sender.packets_sent();
1593   int padding_sent = packet_sender.padding_sent();
1594   EXPECT_GT(packets_sent, 0);
1595   EXPECT_GT(padding_sent, 0);
1596   // Note that the number of intervals here for kPacketSize is
1597   // packets_sent due to padding in the same cluster.
1598   EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) /
1599                   (clock_.TimeInMilliseconds() - start),
1600               kFirstClusterRate.bps(), kProbingErrorMargin.bps());
1601 }
1602 
TEST_P(PacingControllerTest,PaddingOveruse)1603 TEST_P(PacingControllerTest, PaddingOveruse) {
1604   uint32_t ssrc = 12346;
1605   uint16_t sequence_number = 1234;
1606   const size_t kPacketSize = 1200;
1607 
1608   // Initially no padding rate.
1609   pacer_->ProcessPackets();
1610   pacer_->SetPacingRates(DataRate::BitsPerSec(60000 * kPaceMultiplier),
1611                          DataRate::Zero());
1612 
1613   SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1614                       clock_.TimeInMilliseconds(), kPacketSize);
1615   pacer_->ProcessPackets();
1616 
1617   // Add 30kbit padding. When increasing budget, media budget will increase from
1618   // negative (overuse) while padding budget will increase from 0.
1619   clock_.AdvanceTimeMilliseconds(5);
1620   pacer_->SetPacingRates(DataRate::BitsPerSec(60000 * kPaceMultiplier),
1621                          DataRate::BitsPerSec(30000));
1622 
1623   SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1624                       clock_.TimeInMilliseconds(), kPacketSize);
1625   EXPECT_LT(TimeDelta::Millis(5), pacer_->ExpectedQueueTime());
1626   // Don't send padding if queue is non-empty, even if padding budget > 0.
1627   EXPECT_CALL(callback_, SendPadding).Times(0);
1628   if (PeriodicProcess()) {
1629     pacer_->ProcessPackets();
1630   } else {
1631     AdvanceTimeAndProcess();
1632   }
1633 }
1634 
TEST_P(PacingControllerTest,ProbeClusterId)1635 TEST_P(PacingControllerTest, ProbeClusterId) {
1636   MockPacketSender callback;
1637 
1638   pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr,
1639                                               nullptr, GetParam());
1640   Init();
1641 
1642   uint32_t ssrc = 12346;
1643   uint16_t sequence_number = 1234;
1644   const size_t kPacketSize = 1200;
1645 
1646   pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
1647   pacer_->SetProbingEnabled(true);
1648   for (int i = 0; i < 10; ++i) {
1649     Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
1650          clock_.TimeInMilliseconds(), kPacketSize);
1651   }
1652 
1653   // First probing cluster.
1654   EXPECT_CALL(callback,
1655               SendPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 0)))
1656       .Times(5);
1657 
1658   for (int i = 0; i < 5; ++i) {
1659     AdvanceTimeAndProcess();
1660   }
1661 
1662   // Second probing cluster.
1663   EXPECT_CALL(callback,
1664               SendPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 1)))
1665       .Times(5);
1666 
1667   for (int i = 0; i < 5; ++i) {
1668     AdvanceTimeAndProcess();
1669   }
1670 
1671   // Needed for the Field comparer below.
1672   const int kNotAProbe = PacedPacketInfo::kNotAProbe;
1673   // No more probing packets.
1674   EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) {
1675     std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
1676     padding_packets.emplace_back(
1677         BuildPacket(RtpPacketMediaType::kPadding, ssrc, sequence_number++,
1678                     clock_.TimeInMilliseconds(), padding_size.bytes()));
1679     return padding_packets;
1680   });
1681   bool non_probe_packet_seen = false;
1682   EXPECT_CALL(callback, SendPacket)
1683       .WillOnce([&](std::unique_ptr<RtpPacketToSend> packet,
1684                     const PacedPacketInfo& cluster_info) {
1685         EXPECT_EQ(cluster_info.probe_cluster_id, kNotAProbe);
1686         non_probe_packet_seen = true;
1687       });
1688   while (!non_probe_packet_seen) {
1689     AdvanceTimeAndProcess();
1690   }
1691 }
1692 
TEST_P(PacingControllerTest,OwnedPacketPrioritizedOnType)1693 TEST_P(PacingControllerTest, OwnedPacketPrioritizedOnType) {
1694   MockPacketSender callback;
1695   pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr,
1696                                               nullptr, GetParam());
1697   Init();
1698 
1699   // Insert a packet of each type, from low to high priority. Since priority
1700   // is weighted higher than insert order, these should come out of the pacer
1701   // in backwards order with the exception of FEC and Video.
1702   for (RtpPacketMediaType type :
1703        {RtpPacketMediaType::kPadding,
1704         RtpPacketMediaType::kForwardErrorCorrection, RtpPacketMediaType::kVideo,
1705         RtpPacketMediaType::kRetransmission, RtpPacketMediaType::kAudio}) {
1706     pacer_->EnqueuePacket(BuildRtpPacket(type));
1707   }
1708 
1709   ::testing::InSequence seq;
1710   EXPECT_CALL(
1711       callback,
1712       SendPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kAudioSsrc)), _));
1713   EXPECT_CALL(
1714       callback,
1715       SendPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _));
1716 
1717   // FEC and video actually have the same priority, so will come out in
1718   // insertion order.
1719   EXPECT_CALL(
1720       callback,
1721       SendPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kFlexFecSsrc)), _));
1722   EXPECT_CALL(
1723       callback,
1724       SendPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kVideoSsrc)), _));
1725 
1726   EXPECT_CALL(
1727       callback,
1728       SendPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _));
1729 
1730   while (pacer_->QueueSizePackets() > 0) {
1731     if (PeriodicProcess()) {
1732       clock_.AdvanceTimeMilliseconds(5);
1733       pacer_->ProcessPackets();
1734     } else {
1735       AdvanceTimeAndProcess();
1736     }
1737   }
1738 }
1739 
TEST_P(PacingControllerTest,SmallFirstProbePacket)1740 TEST_P(PacingControllerTest, SmallFirstProbePacket) {
1741   ScopedFieldTrials trial("WebRTC-Pacer-SmallFirstProbePacket/Enabled/");
1742   MockPacketSender callback;
1743   pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr,
1744                                               nullptr, GetParam());
1745   pacer_->CreateProbeCluster(kFirstClusterRate, /*cluster_id=*/0);
1746   pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
1747 
1748   // Add high prio media.
1749   pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kAudio));
1750 
1751   // Expect small padding packet to be requested.
1752   EXPECT_CALL(callback, GeneratePadding(DataSize::Bytes(1)))
1753       .WillOnce([&](DataSize padding_size) {
1754         std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
1755         padding_packets.emplace_back(
1756             BuildPacket(RtpPacketMediaType::kPadding, kAudioSsrc, 1,
1757                         clock_.TimeInMilliseconds(), 1));
1758         return padding_packets;
1759       });
1760 
1761   size_t packets_sent = 0;
1762   bool media_seen = false;
1763   EXPECT_CALL(callback, SendPacket)
1764       .Times(::testing::AnyNumber())
1765       .WillRepeatedly([&](std::unique_ptr<RtpPacketToSend> packet,
1766                           const PacedPacketInfo& cluster_info) {
1767         if (packets_sent == 0) {
1768           EXPECT_EQ(packet->packet_type(), RtpPacketMediaType::kPadding);
1769         } else {
1770           if (packet->packet_type() == RtpPacketMediaType::kAudio) {
1771             media_seen = true;
1772           }
1773         }
1774         packets_sent++;
1775       });
1776   while (!media_seen) {
1777     pacer_->ProcessPackets();
1778     clock_.AdvanceTimeMilliseconds(5);
1779   }
1780 }
1781 
TEST_P(PacingControllerTest,TaskLate)1782 TEST_P(PacingControllerTest, TaskLate) {
1783   if (PeriodicProcess()) {
1784     // This test applies only when NOT using interval budget.
1785     return;
1786   }
1787 
1788   // Set a low send rate to more easily test timing issues.
1789   DataRate kSendRate = DataRate::KilobitsPerSec(30);
1790   pacer_->SetPacingRates(kSendRate, DataRate::Zero());
1791 
1792   // Add four packets of equal size and priority.
1793   pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo));
1794   pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo));
1795   pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo));
1796   pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo));
1797 
1798   // Process packets, only first should be sent.
1799   EXPECT_CALL(callback_, SendPacket).Times(1);
1800   pacer_->ProcessPackets();
1801 
1802   Timestamp next_send_time = pacer_->NextSendTime();
1803   // Determine time between packets (ca 62ms)
1804   const TimeDelta time_between_packets = next_send_time - clock_.CurrentTime();
1805 
1806   // Simulate a late process call, executed just before we allow sending the
1807   // fourth packet.
1808   const TimeDelta kOffset = TimeDelta::Millis(1);
1809   clock_.AdvanceTime((time_between_packets * 3) - kOffset);
1810 
1811   EXPECT_CALL(callback_, SendPacket).Times(2);
1812   pacer_->ProcessPackets();
1813 
1814   // Check that next scheduled send time is in ca 1ms.
1815   next_send_time = pacer_->NextSendTime();
1816   const TimeDelta time_left = next_send_time - clock_.CurrentTime();
1817   EXPECT_EQ(time_left.RoundTo(TimeDelta::Millis(1)), kOffset);
1818 
1819   clock_.AdvanceTime(time_left);
1820   EXPECT_CALL(callback_, SendPacket);
1821   pacer_->ProcessPackets();
1822 }
1823 
TEST_P(PacingControllerTest,NoProbingWhilePaused)1824 TEST_P(PacingControllerTest, NoProbingWhilePaused) {
1825   uint32_t ssrc = 12345;
1826   uint16_t sequence_number = 1234;
1827 
1828   pacer_->SetProbingEnabled(true);
1829 
1830   // Send at least one packet so probing can initate.
1831   SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number,
1832                       clock_.TimeInMilliseconds(), 250);
1833   while (pacer_->QueueSizePackets() > 0) {
1834     AdvanceTimeAndProcess();
1835   }
1836 
1837   // Trigger probing.
1838   pacer_->CreateProbeCluster(DataRate::KilobitsPerSec(10000),  // 10 Mbps.
1839                              /*cluster_id=*/3);
1840 
1841   // Time to next send time should be small.
1842   EXPECT_LT(pacer_->NextSendTime() - clock_.CurrentTime(),
1843             PacingController::kPausedProcessInterval);
1844 
1845   // Pause pacer, time to next send time should now be the pause process
1846   // interval.
1847   pacer_->Pause();
1848 
1849   EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(),
1850             PacingController::kPausedProcessInterval);
1851 }
1852 
TEST_P(PacingControllerTest,AudioNotPacedEvenWhenAccountedFor)1853 TEST_P(PacingControllerTest, AudioNotPacedEvenWhenAccountedFor) {
1854   const uint32_t kSsrc = 12345;
1855   uint16_t sequence_number = 1234;
1856   const size_t kPacketSize = 123;
1857 
1858   // Account for audio - so that audio packets can cause pushback on other
1859   // types such as video. Audio packet should still be immediated passed
1860   // through though ("WebRTC-Pacer-BlockAudio" needs to be enabled in order
1861   // to pace audio packets).
1862   pacer_->SetAccountForAudioPackets(true);
1863 
1864   // Set pacing rate to 1 packet/s, no padding.
1865   pacer_->SetPacingRates(DataSize::Bytes(kPacketSize) / TimeDelta::Seconds(1),
1866                          DataRate::Zero());
1867 
1868   // Add and send an audio packet.
1869   SendAndExpectPacket(RtpPacketMediaType::kAudio, kSsrc, sequence_number++,
1870                       clock_.TimeInMilliseconds(), kPacketSize);
1871   pacer_->ProcessPackets();
1872 
1873   // Advance time, add another audio packet and process. It should be sent
1874   // immediately.
1875   clock_.AdvanceTimeMilliseconds(5);
1876   SendAndExpectPacket(RtpPacketMediaType::kAudio, kSsrc, sequence_number++,
1877                       clock_.TimeInMilliseconds(), kPacketSize);
1878   pacer_->ProcessPackets();
1879 }
1880 
TEST_P(PacingControllerTest,PaddingResumesAfterSaturationEvenWithConcurrentAudio)1881 TEST_P(PacingControllerTest,
1882        PaddingResumesAfterSaturationEvenWithConcurrentAudio) {
1883   const uint32_t kSsrc = 12345;
1884   const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
1885   const DataRate kPaddingDataRate = DataRate::KilobitsPerSec(100);
1886   const TimeDelta kMaxBufferInTime = TimeDelta::Millis(500);
1887   const DataSize kPacketSize = DataSize::Bytes(130);
1888   const TimeDelta kAudioPacketInterval = TimeDelta::Millis(20);
1889 
1890   // In this test, we fist send a burst of video in order to saturate the
1891   // padding debt level.
1892   // We then proceed to send audio at a bitrate that is slightly lower than
1893   // the padding rate, meaning there will be a period with audio but no
1894   // padding sent while the debt is draining, then audio and padding will
1895   // be interlieved.
1896 
1897   // Verify both with and without accounting for audio.
1898   for (bool account_for_audio : {false, true}) {
1899     uint16_t sequence_number = 1234;
1900     MockPacketSender callback;
1901     EXPECT_CALL(callback, SendPacket).Times(::testing::AnyNumber());
1902     pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr,
1903                                                 nullptr, GetParam());
1904     pacer_->SetAccountForAudioPackets(account_for_audio);
1905 
1906     // First, saturate the padding budget.
1907     pacer_->SetPacingRates(kPacingDataRate, kPaddingDataRate);
1908 
1909     const TimeDelta kPaddingSaturationTime =
1910         kMaxBufferInTime * kPaddingDataRate /
1911         (kPacingDataRate - kPaddingDataRate);
1912     const DataSize kVideoToSend = kPaddingSaturationTime * kPacingDataRate;
1913     const DataSize kVideoPacketSize = DataSize::Bytes(1200);
1914     DataSize video_sent = DataSize::Zero();
1915     while (video_sent < kVideoToSend) {
1916       pacer_->EnqueuePacket(
1917           BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++,
1918                       clock_.TimeInMilliseconds(), kVideoPacketSize.bytes()));
1919       video_sent += kVideoPacketSize;
1920     }
1921     while (pacer_->QueueSizePackets() > 0) {
1922       AdvanceTimeAndProcess();
1923     }
1924 
1925     // Add a stream of audio packets at a rate slightly lower than the padding
1926     // rate, once the padding debt is paid off we expect padding to be
1927     // generated.
1928     pacer_->SetPacingRates(kPacingDataRate, kPaddingDataRate);
1929     bool padding_seen = false;
1930     EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) {
1931       padding_seen = true;
1932       std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
1933       padding_packets.emplace_back(
1934           BuildPacket(RtpPacketMediaType::kPadding, kSsrc, sequence_number++,
1935                       clock_.TimeInMilliseconds(), padding_size.bytes()));
1936       return padding_packets;
1937     });
1938 
1939     Timestamp start_time = clock_.CurrentTime();
1940     Timestamp last_audio_time = start_time;
1941     while (!padding_seen) {
1942       Timestamp now = clock_.CurrentTime();
1943       Timestamp next_send_time = pacer_->NextSendTime();
1944       TimeDelta sleep_time =
1945           std::min(next_send_time, last_audio_time + kAudioPacketInterval) -
1946           now;
1947       clock_.AdvanceTime(sleep_time);
1948       while (clock_.CurrentTime() >= last_audio_time + kAudioPacketInterval) {
1949         pacer_->EnqueuePacket(
1950             BuildPacket(RtpPacketMediaType::kAudio, kSsrc, sequence_number++,
1951                         clock_.TimeInMilliseconds(), kPacketSize.bytes()));
1952         last_audio_time += kAudioPacketInterval;
1953       }
1954       pacer_->ProcessPackets();
1955     }
1956 
1957     // Verify how long it took to drain the padding debt. Allow 2% error margin.
1958     const DataRate kAudioDataRate = kPacketSize / kAudioPacketInterval;
1959     const TimeDelta expected_drain_time =
1960         account_for_audio ? (kMaxBufferInTime * kPaddingDataRate /
1961                              (kPaddingDataRate - kAudioDataRate))
1962                           : kMaxBufferInTime;
1963     const TimeDelta actual_drain_time = clock_.CurrentTime() - start_time;
1964     EXPECT_NEAR(actual_drain_time.ms(), expected_drain_time.ms(),
1965                 expected_drain_time.ms() * 0.02)
1966         << " where account_for_audio = "
1967         << (account_for_audio ? "true" : "false");
1968   }
1969 }
1970 
TEST_P(PacingControllerTest,AccountsForAudioEnqueuTime)1971 TEST_P(PacingControllerTest, AccountsForAudioEnqueuTime) {
1972   if (PeriodicProcess()) {
1973     // This test applies only when NOT using interval budget.
1974     return;
1975   }
1976 
1977   const uint32_t kSsrc = 12345;
1978   const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
1979   const DataRate kPaddingDataRate = DataRate::Zero();
1980   const DataSize kPacketSize = DataSize::Bytes(130);
1981   const TimeDelta kPacketPacingTime = kPacketSize / kPacingDataRate;
1982 
1983   uint32_t sequnce_number = 1;
1984   // Audio not paced, but still accounted for in budget.
1985   pacer_->SetAccountForAudioPackets(true);
1986   pacer_->SetPacingRates(kPacingDataRate, kPaddingDataRate);
1987 
1988   // Enqueue two audio packets, advance clock to where one packet
1989   // should have drained the buffer already, has they been sent
1990   // immediately.
1991   SendAndExpectPacket(RtpPacketMediaType::kAudio, kSsrc, sequnce_number++,
1992                       clock_.TimeInMilliseconds(), kPacketSize.bytes());
1993   SendAndExpectPacket(RtpPacketMediaType::kAudio, kSsrc, sequnce_number++,
1994                       clock_.TimeInMilliseconds(), kPacketSize.bytes());
1995   clock_.AdvanceTime(kPacketPacingTime);
1996   // Now process and make sure both packets were sent.
1997   pacer_->ProcessPackets();
1998   ::testing::Mock::VerifyAndClearExpectations(&callback_);
1999 
2000   // Add a video packet. I can't be sent until debt from audio
2001   // packets have been drained.
2002   Send(RtpPacketMediaType::kVideo, kSsrc + 1, sequnce_number++,
2003        clock_.TimeInMilliseconds(), kPacketSize.bytes());
2004   EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
2005 }
2006 
TEST_P(PacingControllerTest,NextSendTimeAccountsForPadding)2007 TEST_P(PacingControllerTest, NextSendTimeAccountsForPadding) {
2008   if (PeriodicProcess()) {
2009     // This test applies only when NOT using interval budget.
2010     return;
2011   }
2012 
2013   const uint32_t kSsrc = 12345;
2014   const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
2015   const DataSize kPacketSize = DataSize::Bytes(130);
2016   const TimeDelta kPacketPacingTime = kPacketSize / kPacingDataRate;
2017 
2018   uint32_t sequnce_number = 1;
2019 
2020   // Start with no padding.
2021   pacer_->SetPacingRates(kPacingDataRate, DataRate::Zero());
2022 
2023   // Send a single packet.
2024   SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequnce_number++,
2025                       clock_.TimeInMilliseconds(), kPacketSize.bytes());
2026   pacer_->ProcessPackets();
2027   ::testing::Mock::VerifyAndClearExpectations(&callback_);
2028 
2029   // With current conditions, no need to wake until next keep-alive.
2030   EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(),
2031             PacingController::kPausedProcessInterval);
2032 
2033   // Enqueue a new packet, that can't be sent until previous buffer has
2034   // drained.
2035   SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequnce_number++,
2036                       clock_.TimeInMilliseconds(), kPacketSize.bytes());
2037   EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
2038   clock_.AdvanceTime(kPacketPacingTime);
2039   pacer_->ProcessPackets();
2040   ::testing::Mock::VerifyAndClearExpectations(&callback_);
2041 
2042   // With current conditions, again no need to wake until next keep-alive.
2043   EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(),
2044             PacingController::kPausedProcessInterval);
2045 
2046   // Set a non-zero padding rate. Padding also can't be sent until
2047   // previous debt has cleared. Since padding was disabled before, there
2048   // currently is no padding debt.
2049   pacer_->SetPacingRates(kPacingDataRate, kPacingDataRate / 2);
2050   EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
2051 
2052   // Advance time, expect padding.
2053   EXPECT_CALL(callback_, SendPadding).WillOnce(Return(kPacketSize.bytes()));
2054   clock_.AdvanceTime(kPacketPacingTime);
2055   pacer_->ProcessPackets();
2056   ::testing::Mock::VerifyAndClearExpectations(&callback_);
2057 
2058   // Since padding rate is half of pacing rate, next time we can send
2059   // padding is double the packet pacing time.
2060   EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(),
2061             kPacketPacingTime * 2);
2062 
2063   // Insert a packet to be sent, this take precedence again.
2064   Send(RtpPacketMediaType::kVideo, kSsrc, sequnce_number++,
2065        clock_.TimeInMilliseconds(), kPacketSize.bytes());
2066   EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
2067 }
2068 
TEST_P(PacingControllerTest,PaddingTargetAccountsForPaddingRate)2069 TEST_P(PacingControllerTest, PaddingTargetAccountsForPaddingRate) {
2070   if (PeriodicProcess()) {
2071     // This test applies only when NOT using interval budget.
2072     return;
2073   }
2074 
2075   // Re-init pacer with an explicitly set padding target of 10ms;
2076   const TimeDelta kPaddingTarget = TimeDelta::Millis(10);
2077   ScopedFieldTrials field_trials(
2078       "WebRTC-Pacer-DynamicPaddingTarget/timedelta:10ms/");
2079   SetUp();
2080 
2081   const uint32_t kSsrc = 12345;
2082   const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
2083   const DataSize kPacketSize = DataSize::Bytes(130);
2084 
2085   uint32_t sequnce_number = 1;
2086 
2087   // Start with pacing and padding rate equal.
2088   pacer_->SetPacingRates(kPacingDataRate, kPacingDataRate);
2089 
2090   // Send a single packet.
2091   SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequnce_number++,
2092                       clock_.TimeInMilliseconds(), kPacketSize.bytes());
2093   AdvanceTimeAndProcess();
2094   ::testing::Mock::VerifyAndClearExpectations(&callback_);
2095 
2096   size_t expected_padding_target_bytes =
2097       (kPaddingTarget * kPacingDataRate).bytes();
2098   EXPECT_CALL(callback_, SendPadding(expected_padding_target_bytes))
2099       .WillOnce(Return(expected_padding_target_bytes));
2100   AdvanceTimeAndProcess();
2101 
2102   // Half the padding rate - expect half the padding target.
2103   pacer_->SetPacingRates(kPacingDataRate, kPacingDataRate / 2);
2104   EXPECT_CALL(callback_, SendPadding(expected_padding_target_bytes / 2))
2105       .WillOnce(Return(expected_padding_target_bytes / 2));
2106   AdvanceTimeAndProcess();
2107 }
2108 
TEST_P(PacingControllerTest,SendsDeferredFecPackets)2109 TEST_P(PacingControllerTest, SendsDeferredFecPackets) {
2110   ScopedFieldTrials trial("WebRTC-DeferredFecGeneration/Enabled/");
2111   SetUp();
2112 
2113   const uint32_t kSsrc = 12345;
2114   const uint32_t kFlexSsrc = 54321;
2115   uint16_t sequence_number = 1234;
2116   uint16_t flexfec_sequence_number = 4321;
2117   const size_t kPacketSize = 123;
2118 
2119   // Set pacing rate to 1000 packet/s, no padding.
2120   pacer_->SetPacingRates(
2121       DataSize::Bytes(1000 * kPacketSize) / TimeDelta::Seconds(1),
2122       DataRate::Zero());
2123 
2124   int64_t now = clock_.TimeInMilliseconds();
2125   Send(RtpPacketMediaType::kVideo, kSsrc, sequence_number, now, kPacketSize);
2126   EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number, now, false, false));
2127   EXPECT_CALL(callback_, FetchFec).WillOnce([&]() {
2128     EXPECT_CALL(callback_, SendPacket(kFlexSsrc, flexfec_sequence_number, now,
2129                                       false, false));
2130     EXPECT_CALL(callback_, FetchFec);
2131     std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets;
2132     fec_packets.push_back(
2133         BuildPacket(RtpPacketMediaType::kForwardErrorCorrection, kFlexSsrc,
2134                     flexfec_sequence_number, now, kPacketSize));
2135     return fec_packets;
2136   });
2137   AdvanceTimeAndProcess();
2138   AdvanceTimeAndProcess();
2139 }
2140 
2141 INSTANTIATE_TEST_SUITE_P(
2142     WithAndWithoutIntervalBudget,
2143     PacingControllerTest,
2144     ::testing::Values(PacingController::ProcessMode::kPeriodic,
2145                       PacingController::ProcessMode::kDynamic));
2146 
2147 }  // namespace test
2148 }  // namespace webrtc
2149