1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/core/lib/math/math_util.h"
17 
18 #include <cmath>
19 #include <limits>
20 #include <vector>
21 
22 #include "tensorflow/core/platform/logging.h"
23 #include "tensorflow/core/platform/test.h"
24 #include "tensorflow/core/platform/test_benchmark.h"
25 #include "tensorflow/core/platform/types.h"
26 
27 namespace tensorflow {
28 namespace {
29 
30 // Number of arguments for each test of the CeilOrRatio method
31 const int kNumTestArguments = 4;
32 
33 template <typename IntegralType, typename TestDataType>
TestCeilOfRatio(const TestDataType test_data[][kNumTestArguments],int num_tests)34 void TestCeilOfRatio(const TestDataType test_data[][kNumTestArguments],
35                      int num_tests) {
36   for (int i = 0; i < num_tests; ++i) {
37     const IntegralType numerator = test_data[i][0];
38     const IntegralType denominator = test_data[i][1];
39     const IntegralType expected_floor = test_data[i][2];
40     const IntegralType expected_ceil = test_data[i][3];
41     // Make sure the two ways to compute the floor return the same thing.
42     IntegralType floor_1 = MathUtil::FloorOfRatio(numerator, denominator);
43     IntegralType floor_2 = MathUtil::CeilOrFloorOfRatio<IntegralType, false>(
44         numerator, denominator);
45     EXPECT_EQ(floor_1, floor_2);
46     EXPECT_EQ(expected_floor, floor_1)
47         << "FloorOfRatio fails with numerator = " << numerator
48         << ", denominator = " << denominator << " "
49         << (8 * sizeof(IntegralType)) << " bits";
50     IntegralType ceil_1 = MathUtil::CeilOfRatio(numerator, denominator);
51     IntegralType ceil_2 = MathUtil::CeilOrFloorOfRatio<IntegralType, true>(
52         numerator, denominator);
53     EXPECT_EQ(ceil_1, ceil_2);
54     EXPECT_EQ(expected_ceil, ceil_1)
55         << "CeilOfRatio fails with numerator = " << numerator
56         << ", denominator = " << denominator << " "
57         << (8 * sizeof(IntegralType)) << " bits";
58   }
59 }
60 
61 template <typename UnsignedIntegralType>
TestCeilOfRatioUnsigned(uint64 kMax)62 void TestCeilOfRatioUnsigned(uint64 kMax) {
63   const int kNumTests = 12;
64   const uint64 kTestData[kNumTests][kNumTestArguments] = {
65       // Numerator  | Denominator | Expected floor of ratio | Expected ceil of
66       // ratio |
67       // When numerator = 0, the result is always zero
68       {0, 1, 0, 0},
69       {0, 2, 0, 0},
70       {0, kMax, 0, 0},
71       // Try some non-extreme cases
72       {1, 1, 1, 1},
73       {5, 2, 2, 3},
74       // Try with huge positive numerator
75       {kMax, 1, kMax, kMax},
76       {kMax, 2, kMax / 2, kMax / 2 + ((kMax % 2 != 0) ? 1 : 0)},
77       {kMax, 3, kMax / 3, kMax / 3 + ((kMax % 3 != 0) ? 1 : 0)},
78       // Try with a huge positive denominator
79       {1, kMax, 0, 1},
80       {2, kMax, 0, 1},
81       {3, kMax, 0, 1},
82       // Try with a huge numerator and a huge denominator
83       {kMax, kMax, 1, 1},
84   };
85   TestCeilOfRatio<UnsignedIntegralType, uint64>(kTestData, kNumTests);
86 }
87 
88 template <typename SignedInteger>
TestCeilOfRatioSigned(int64 kMin,int64 kMax)89 void TestCeilOfRatioSigned(int64 kMin, int64 kMax) {
90   const int kNumTests = 30;
91   const int64 kTestData[kNumTests][kNumTestArguments] = {
92       // Numerator  | Denominator | Expected floor of ratio | Expected ceil of
93       // ratio |
94       // When numerator = 0, the result is always zero
95       {0, 1, 0, 0},
96       {0, -1, 0, 0},
97       {0, 2, 0, 0},
98       {0, kMin, 0, 0},
99       {0, kMax, 0, 0},
100       // Try all four combinations of 1 and -1
101       {1, 1, 1, 1},
102       {-1, 1, -1, -1},
103       {1, -1, -1, -1},
104       {-1, -1, 1, 1},
105       // Try all four combinations of +/-5 divided by +/- 2
106       {5, 2, 2, 3},
107       {-5, 2, -3, -2},
108       {5, -2, -3, -2},
109       {-5, -2, 2, 3},
110       // Try with huge positive numerator
111       {kMax, 1, kMax, kMax},
112       {kMax, -1, -kMax, -kMax},
113       {kMax, 2, kMax / 2, kMax / 2 + ((kMax % 2 != 0) ? 1 : 0)},
114       {kMax, 3, kMax / 3, kMax / 3 + ((kMax % 3 != 0) ? 1 : 0)},
115       // Try with huge negative numerator
116       {kMin, 1, kMin, kMin},
117       {kMin, 2, kMin / 2 - ((kMin % 2 != 0) ? 1 : 0), kMin / 2},
118       {kMin, 3, kMin / 3 - ((kMin % 3 != 0) ? 1 : 0), kMin / 3},
119       // Try with a huge positive denominator
120       {1, kMax, 0, 1},
121       {2, kMax, 0, 1},
122       {3, kMax, 0, 1},
123       // Try with a huge negative denominator
124       {1, kMin, -1, 0},
125       {2, kMin, -1, 0},
126       {3, kMin, -1, 0},
127       // Try with a huge numerator and a huge denominator
128       {kMin, kMin, 1, 1},
129       {kMin, kMax, -2, -1},
130       {kMax, kMin, -1, 0},
131       {kMax, kMax, 1, 1},
132   };
133   TestCeilOfRatio<SignedInteger, int64>(kTestData, kNumTests);
134 }
135 
136 // ------------------------------------------------------------------------ //
137 // Benchmarking CeilOrFloorOfRatio
138 //
139 // We compare with other implementations that are unsafe in general.
140 // ------------------------------------------------------------------------ //
141 
142 // An implementation of CeilOfRatio that is correct for small enough values,
143 // and provided that the numerator and denominator are both positive
144 template <typename IntegralType>
CeilOfRatioDenomMinusOne(IntegralType numerator,IntegralType denominator)145 static IntegralType CeilOfRatioDenomMinusOne(IntegralType numerator,
146                                              IntegralType denominator) {
147   const IntegralType kOne(1);
148   return (numerator + denominator - kOne) / denominator;
149 }
150 
151 // An implementation of FloorOfRatio that is correct when the denominator is
152 // positive and the numerator non-negative
153 template <typename IntegralType>
FloorOfRatioByDivision(IntegralType numerator,IntegralType denominator)154 static IntegralType FloorOfRatioByDivision(IntegralType numerator,
155                                            IntegralType denominator) {
156   return numerator / denominator;
157 }
158 
159 template <typename Integer, bool ComputeCeil>
CeilOrFloorOfRatioArithmetic(Integer numerator,Integer denominator)160 static Integer CeilOrFloorOfRatioArithmetic(Integer numerator,
161                                             Integer denominator) {
162   if (ComputeCeil) {
163     return CeilOfRatioDenomMinusOne(numerator, denominator);
164   } else {
165     return FloorOfRatioByDivision(numerator, denominator);
166   }
167 }
168 
TestThatCeilOfRatioDenomMinusOneIsIncorrect(int64 numerator,int64 denominator,int64 expected_error)169 void TestThatCeilOfRatioDenomMinusOneIsIncorrect(int64 numerator,
170                                                  int64 denominator,
171                                                  int64 expected_error) {
172   const int64 correct_result = MathUtil::CeilOfRatio(numerator, denominator);
173   const int64 result_by_denom_minus_one =
174       CeilOfRatioDenomMinusOne(numerator, denominator);
175   EXPECT_EQ(result_by_denom_minus_one + expected_error, correct_result)
176       << "numerator = " << numerator << " denominator = " << denominator
177       << " expected error = " << expected_error
178       << " Actual difference: " << (correct_result - result_by_denom_minus_one);
179 }
180 
181 // Here we demonstrate why not to use CeilOfRatioDenomMinusOne
TestThatCeilOfRatioDenomMinusOneIsIncorrect()182 void TestThatCeilOfRatioDenomMinusOneIsIncorrect() {
183   // It does not work with negative values
184   TestThatCeilOfRatioDenomMinusOneIsIncorrect(-1LL, -2LL, -1LL);
185 
186   // This would also fail if given kint64max because of signed integer overflow.
187 }
188 
TEST(MathUtil,CeilOfRatio)189 TEST(MathUtil, CeilOfRatio) {
190   TestCeilOfRatioUnsigned<uint8>(kuint8max);
191   TestCeilOfRatioUnsigned<uint16>(kuint16max);
192   TestCeilOfRatioUnsigned<uint32>(kuint32max);
193   TestCeilOfRatioUnsigned<uint64>(kuint64max);
194   TestCeilOfRatioSigned<int8>(kint8min, kint8max);
195   TestCeilOfRatioSigned<int16>(kint16min, kint16max);
196   TestCeilOfRatioSigned<int32>(kint32min, kint32max);
197   TestCeilOfRatioSigned<int64>(kint64min, kint64max);
198 #if 0
199   TestThatCeilOfRatioDenomMinusOneIsIncorrect();
200 #endif
201 }
202 
203 struct GCDTestCase {
204   unsigned int x;
205   unsigned int y;
206   unsigned int gcd;
207 };
208 
TEST(MathUtil,GCD)209 TEST(MathUtil, GCD) {
210   std::vector<GCDTestCase> testcases({
211       {10, 20, 10},  //
212       {27, 8, 1},    //
213       {4, 3, 1},     //
214       {6, 8, 2},     //
215       {5, 0, 5},     //
216       {5, 5, 5},     //
217       {0, 0, 0}      //
218   });
219 
220   for (const auto& tc : testcases) {
221     EXPECT_EQ(tc.gcd, MathUtil::GCD<uint32>(tc.x, tc.y));
222     EXPECT_EQ(tc.gcd, MathUtil::GCD<uint32>(tc.y, tc.x));
223     EXPECT_EQ(tc.gcd, MathUtil::GCD<uint64>(tc.x, tc.y));
224     EXPECT_EQ(tc.gcd, MathUtil::GCD<uint64>(tc.y, tc.x));
225   }
226 
227   const uint64 biggish_prime = 1666666667;
228   EXPECT_EQ(biggish_prime,
229             MathUtil::GCD<uint64>(biggish_prime * 3, biggish_prime * 4));
230 }
231 
232 template <typename T>
TestOneIPowN()233 void TestOneIPowN() {
234   const T one{1};
235   for (int i = 0; i < 1024; ++i) {
236     // Computations are exact.
237     EXPECT_EQ(MathUtil::IPow(one, i), one);
238   }
239 }
240 
241 template <typename T>
TestTwoIPowN()242 void TestTwoIPowN() {
243   int limit = std::is_integral<T>::value ? std::numeric_limits<T>::digits : 63;
244   for (int i = 0; i < limit; ++i) {
245     // Computations are exact.
246     EXPECT_EQ(MathUtil::IPow(T{2}, i), static_cast<T>(1ull << i));
247   }
248 }
249 
250 template <typename T>
TestFloatIPow(const int max_exponent,const T start,const T end,const T step)251 void TestFloatIPow(const int max_exponent, const T start, const T end,
252                    const T step) {
253   for (T f = start; f < end; f += step) {
254     for (int i = 0; i < max_exponent; ++i) {
255       EXPECT_FLOAT_EQ(MathUtil::IPow(f, i), std::pow(f, i));
256     }
257   }
258 }
259 
TEST(MathUtil,IPow)260 TEST(MathUtil, IPow) {
261   TestOneIPowN<double>();
262   TestOneIPowN<float>();
263   TestOneIPowN<int>();
264   TestOneIPowN<int64>();
265   TestTwoIPowN<double>();
266   TestTwoIPowN<float>();
267   TestTwoIPowN<int>();
268   TestTwoIPowN<int64>();
269 
270   EXPECT_EQ(MathUtil::IPow(3, 0), 1);
271   EXPECT_EQ(MathUtil::IPow(3, 1), 3);
272   EXPECT_EQ(MathUtil::IPow(3, 2), 9);
273   EXPECT_EQ(MathUtil::IPow(3, 3), 27);
274   EXPECT_EQ(MathUtil::IPow(3, 4), 81);
275   EXPECT_EQ(MathUtil::IPow(3, 5), 243);
276 
277   TestFloatIPow<float>(13, -16.0f, 16.0f, 1.0f / 8);
278   TestFloatIPow<double>(13, -16.0, 16.0, 1.0 / 8);
279 
280   TestFloatIPow<float>(13, -1.0f / (1 << 12), -1.0f / (1 << 12),
281                        1.0f / (1 << 16));
282   TestFloatIPow<double>(13, -1.0 / (1 << 12), -1.0 / (1 << 12),
283                         1.0 / (1 << 16));
284 }
285 
TEST(MathUtil,IPowEdgeCases)286 TEST(MathUtil, IPowEdgeCases) {
287   constexpr const double kInf = std::numeric_limits<double>::infinity();
288 
289   EXPECT_EQ(MathUtil::IPow(-12345.0, 79), -kInf);
290   EXPECT_EQ(MathUtil::IPow(-12345.0, 80), +kInf);
291 
292   // The semantics of the edge cases that follow  are defined in the standard:
293   // http://en.cppreference.com/w/cpp/numeric/math/pow for a summary.
294 
295   // 1 - These edge cases apply.
296   // pow(+0, exp), where exp is a positive odd integer, returns +0
297   EXPECT_EQ(MathUtil::IPow(+0.0, 3), +0.0);
298   // pow(-0, exp), where exp is a positive odd integer, returns -0
299   EXPECT_EQ(MathUtil::IPow(-0.0, 3), -0.0);
300   // pow(±0, exp), where exp is positive non-integer or a positive even integer,
301   // returns +0
302   EXPECT_EQ(MathUtil::IPow(+0.0, 42), +0.0);
303   EXPECT_EQ(MathUtil::IPow(-0.0, 42), +0.0);
304   // pow(base, ±0) returns 1 for any base, even when base is NaN
305   EXPECT_EQ(MathUtil::IPow(-kInf, 0.0), 1.0);
306   EXPECT_EQ(MathUtil::IPow(-2.0, 0.0), 1.0);
307   EXPECT_EQ(MathUtil::IPow(-1.0, 0.0), 1.0);
308   EXPECT_EQ(MathUtil::IPow(-0.0, 0.0), 1.0);
309   EXPECT_EQ(MathUtil::IPow(+0.0, 0.0), 1.0);
310   EXPECT_EQ(MathUtil::IPow(+1.0, 0.0), 1.0);
311   EXPECT_EQ(MathUtil::IPow(+2.0, 0.0), 1.0);
312   EXPECT_EQ(MathUtil::IPow(+kInf, 0.0), 1.0);
313   EXPECT_EQ(MathUtil::IPow(std::numeric_limits<double>::quiet_NaN(), 0.0), 1.0);
314   // pow(-∞, exp) returns -∞ if exp is a positive odd integer
315   EXPECT_EQ(MathUtil::IPow(-kInf, 43), -kInf);
316   // pow(-∞, exp) returns +∞ if exp is a positive non-integer or even integer
317   EXPECT_EQ(MathUtil::IPow(-kInf, 42), +kInf);
318   // pow(+∞, exp) returns +∞ for any positive exp
319   EXPECT_EQ(MathUtil::IPow(+kInf, 42), +kInf);
320   EXPECT_EQ(MathUtil::IPow(+kInf, 43), +kInf);
321 
322   // 2 - These do not apply due to the restricted exp range.
323   // pow(+0, exp), where exp is a negative odd integer, returns +∞ and raises
324   // FE_DIVBYZERO pow(-0, exp), where exp is a negative odd integer, returns -∞
325   // and raises FE_DIVBYZERO pow(±0, exp), where exp is negative, finite, and is
326   // an even integer or a non-integer, returns +∞ and raises FE_DIVBYZERO
327   // pow(-1, ±∞) returns 1
328   // pow(+1, exp) returns 1 for any exp, even when exp is NaN
329   // pow(±0, -∞) returns +∞ and may raise FE_DIVBYZERO
330   // pow(base, exp) returns NaN and raises FE_INVALID if base is finite and
331   // negative and exp is finite and non-integer. pow(base, -∞) returns +∞ for
332   // any |base|<1 pow(base, -∞) returns +0 for any |base|>1 pow(base, +∞)
333   // returns +0 for any |base|<1 pow(base, +∞) returns +∞ for any |base|>1
334   // pow(-∞, exp) returns -0 if exp is a negative odd integer
335   // pow(-∞, exp) returns +0 if exp is a negative non-integer or even integer
336   // pow(+∞, exp) returns +0 for any negative exp
337 }
338 
339 }  // namespace
340 }  // namespace tensorflow
341