/external/tensorflow/tensorflow/lite/g3doc/convert/ |
D | rnn.md | 6 fused LSTM operations. Fused operations exist to maximize the performance of 13 1. Provide **native support for standard TensorFlow RNN APIs** like Keras LSTM. 39 # Keras LSTM layers. 62 Keras LSTM to TensorFlow Lite 70 ### Keras LSTM conversion (recommended) 72 We support out-of-the-box conversion of Keras LSTM to TensorFlow Lite. For 74 [Keras LSTM interface](https://github.com/tensorflow/tensorflow/blob/35a3ab91b42503776f428bda574b74… 78 Also important is to highlight the TensorFlow Lite’s LSTM contract with respect 90 #### Keras LSTM Variants 94 Users may choose time-major or no time-major. Keras LSTM adds a time-major [all …]
|
D | operation_fusion.md | 47 LSTM, convolution (conv2d, bias add, relu), fully connected (matmul, bias add, 48 relu) and more. In TensorFlow Lite, LSTM quantization is currently only 49 implemented in the fused LSTM operations. 62 TensorFlow Lite operation. For example, there are many LSTM implementations 65 same fused LSTM operation in TensorFlow Lite. 98 [Keras LSTM](https://github.com/tensorflow/tensorflow/blob/1099faa8d6a941ef44d09ed8c372ff0ffda94112…
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | lstm_v2_test.py | 75 layer = rnn.LSTM( 86 layer = rnn.LSTM(1, activation=nn.tanh) 89 layer = rnn.LSTM(1, recurrent_activation=nn.sigmoid) 102 layer = rnn.LSTM(units, return_sequences=True) 112 layer = rnn.LSTM(units, input_shape=(None, embedding_dim)) 125 model.add(rnn.LSTM(10, return_sequences=True, unroll=False)) 126 model.add(rnn.LSTM(5, return_sequences=True, unroll=False)) 133 layer_class = rnn.LSTM 149 layer = rnn.LSTM(units) 183 layer = rnn.LSTM(units) [all …]
|
D | lstm_test.py | 44 keras.layers.LSTM, 58 keras.layers.LSTM, 75 layer = keras.layers.LSTM(units, return_sequences=True) 85 layer = keras.layers.LSTM(units, input_shape=(None, embedding_dim)) 103 keras.layers.LSTM, 110 layer = keras.layers.LSTM(2, recurrent_dropout=0.1, implementation=2) 121 keras.layers.LSTM, 128 layer_class = keras.layers.LSTM 150 layer_class = keras.layers.LSTM 180 layer_class = keras.layers.LSTM [all …]
|
D | recurrent_v2_test.py | 41 @parameterized.parameters([rnn_v2.LSTM, rnn_v2.GRU]) 68 @parameterized.parameters([rnn_v2.LSTM, rnn_v2.GRU]) 95 @parameterized.parameters([rnn_v2.LSTM, rnn_v2.GRU]) 117 @parameterized.parameters([rnn_v2.LSTM, rnn_v2.GRU])
|
D | serialization_test.py | 140 @parameterized.parameters([rnn_v1.LSTM, rnn_v2.LSTM]) 149 self.assertIsInstance(new_layer, rnn_v2.LSTM) 151 self.assertIsInstance(new_layer, rnn_v1.LSTM) 152 self.assertNotIsInstance(new_layer, rnn_v2.LSTM)
|
D | __init__.py | 226 from tensorflow.python.keras.layers.recurrent_v2 import LSTM 230 from tensorflow.python.keras.layers.recurrent import LSTM as LSTMV1 234 LSTMV2 = LSTM 239 from tensorflow.python.keras.layers.recurrent import LSTM 243 from tensorflow.python.keras.layers.recurrent_v2 import LSTM as LSTMV2 247 LSTMV1 = LSTM
|
D | wrappers_test.py | 382 rnn_layer = keras.layers.LSTM(4, return_sequences=True, stateful=True) 410 layer=[keras.layers.LSTM, 669 rnn = keras.layers.LSTM 765 rnn = keras.layers.LSTM 791 rnn = keras.layers.LSTM 820 rnn = keras.layers.LSTM 975 @parameterized.parameters([keras.layers.LSTM, keras.layers.GRU]) 978 num_state = 4 if rnn == keras.layers.LSTM else 2 1042 rnn = keras.layers.LSTM 1067 @parameterized.parameters([keras.layers.LSTM, keras.layers.GRU]) [all …]
|
/external/tensorflow/tensorflow/lite/examples/experimental_new_converter/ |
D | Keras_LSTM_fusion_Codelab.ipynb | 6 "name": "Keras LSTM fusion Codelab.ipynb", 25 …"This CodeLab demonstrates how to build a fused TFLite LSTM model for MNIST recognition using Kera… 27 …LSTM [CodeLab](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/exper… 64 "# Step 1: Build the MNIST LSTM model." 92 " tf.keras.layers.LSTM(20, time_major=False, return_sequences=True),\n", 237 "Let's check the model, you can see the LSTM will be in it's fused format.\n", 239 …"![Fused LSTM](https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/lite/exam…
|
D | keras_lstm.ipynb | 12 …"This CodeLab demonstrates how to build a LSTM model for MNIST recognition using Keras, and how to… 53 "## Step 1: Build the MNIST LSTM model.\n", 84 " tf.keras.layers.LSTM(20),\n",
|
/external/tensorflow/tensorflow/security/advisory/ |
D | tfsa-2020-033.md | 1 ## TFSA-2020-033: CHECK-fail in LSTM with zero-length input 7 Running an LSTM/GRU model where the LSTM/GRU layer receives an input with
|
/external/tensorflow/tensorflow/python/keras/tests/ |
D | model_architectures.py | 60 x = keras.layers.LSTM(4, return_sequences=True)(inputs) 61 x = keras.layers.LSTM(3, return_sequences=True)(x) 62 x = keras.layers.LSTM(2, return_sequences=False)(x) 74 body_features = keras.layers.LSTM(5)(x) 105 encoder = keras.layers.LSTM(latent_dim, return_state=True) 109 decoder_lstm = keras.layers.LSTM( 126 lstm_out = keras.layers.LSTM(3)(x)
|
/external/tensorflow/tensorflow/python/keras/benchmarks/ |
D | optimizer_benchmarks_test.py | 34 tf.keras.layers.LSTM(64, return_sequences=True))( 36 x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x)
|
/external/tensorflow/tensorflow/python/keras/benchmarks/layer_benchmarks/ |
D | layer_benchmarks_test.py | 41 return {"layer": tf.keras.layers.LSTM(1)} 117 ("LSTM_small_shape", tf.keras.layers.LSTM, 119 ("LSTM_normal_shape", tf.keras.layers.LSTM, 283 tf.keras.layers.LSTM, tf.keras.layers.Bidirectional,
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | vis_utils_test.py | 48 lstm = keras.layers.LSTM(6, return_sequences=True, name='lstm') 52 keras.layers.LSTM(16, return_sequences=True, name='bilstm'))
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | keras_rnn_model_correctness_test.py | 103 return rnn_v2.LSTM 105 return rnn_v1.LSTM
|
/external/tensorflow/tensorflow/lite/g3doc/guide/ |
D | roadmap.md | 22 * **LSTM / RNN support** 23 * Full LSTM and RNN conversion support, including support in Keras 65 * Better op coverage, including LSTM
|
/external/tensorflow/tensorflow/python/keras/benchmarks/keras_examples_benchmarks/ |
D | bidirectional_lstm_benchmark_test.py | 42 tf.keras.layers.LSTM(64, return_sequences=True))( 44 x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x)
|
D | mnist_hierarchical_rnn_benchmark_test.py | 45 tf.keras.layers.LSTM(self.row_hidden))( 47 encoded_cols = tf.keras.layers.LSTM(self.col_hidden)(encoded_rows)
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_CudnnRNN.pbtxt | 21 input_c: For LSTM, a 3-D tensor with the shape of 30 output_c: The same shape as input_c for LSTM. An empty tensor for other models.
|
D | api_def_LSTMBlockCell.pbtxt | 7 The input to the LSTM cell, shape (batch_size, num_inputs). 112 summary: "Computes the LSTM cell forward propagation for 1 time step."
|
D | api_def_LSTMBlockCellGrad.pbtxt | 7 The input to the LSTM cell, shape (batch_size, num_inputs). 136 summary: "Computes the LSTM cell backward propagation for 1 timestep."
|
D | api_def_CudnnRNNV2.pbtxt | 22 input_c: For LSTM, a 3-D tensor with the shape of 31 output_c: The same shape as input_c for LSTM. An empty tensor for other models.
|
D | api_def_CudnnRNNBackprop.pbtxt | 20 input_c: For LSTM, a 3-D tensor with the shape of 29 output_c: The same shape as input_c for LSTM. An empty tensor for other models.
|
/external/tensorflow/tensorflow/lite/delegates/gpu/cl/kernels/ |
D | lstm_test.cc | 31 TEST_F(OpenCLOperationTest, LSTM) { in TEST_F() argument
|