1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/format/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "util/u_memory.h"
99 #include "drm-uapi/i915_drm.h"
100 #include "nir.h"
101 #include "intel/compiler/brw_compiler.h"
102 #include "intel/common/gen_aux_map.h"
103 #include "intel/common/gen_l3_config.h"
104 #include "intel/common/gen_sample_positions.h"
105 #include "iris_batch.h"
106 #include "iris_context.h"
107 #include "iris_defines.h"
108 #include "iris_pipe.h"
109 #include "iris_resource.h"
110
111 #include "iris_genx_macros.h"
112 #include "intel/common/gen_guardband.h"
113
114 /**
115 * Statically assert that PIPE_* enums match the hardware packets.
116 * (As long as they match, we don't need to translate them.)
117 */
pipe_asserts()118 UNUSED static void pipe_asserts()
119 {
120 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
121
122 /* pipe_logicop happens to match the hardware. */
123 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
124 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
125 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
126 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
127 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
128 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
129 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
130 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
131 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
132 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
133 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
134 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
135 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
136 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
137 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
138 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
139
140 /* pipe_blend_func happens to match the hardware. */
141 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
142 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
143 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
144 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
145 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
146 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
147 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
148 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
149 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
150 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
160
161 /* pipe_blend_func happens to match the hardware. */
162 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
163 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
164 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
165 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
166 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
167
168 /* pipe_stencil_op happens to match the hardware. */
169 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
170 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
171 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
172 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
173 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
174 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
175 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
176 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
177
178 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
179 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
180 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
181 #undef PIPE_ASSERT
182 }
183
184 static unsigned
translate_prim_type(enum pipe_prim_type prim,uint8_t verts_per_patch)185 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
186 {
187 static const unsigned map[] = {
188 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
189 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
190 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
191 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
192 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
193 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
194 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
195 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
196 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
197 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
198 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
199 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
200 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
201 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
202 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
203 };
204
205 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
206 }
207
208 static unsigned
translate_compare_func(enum pipe_compare_func pipe_func)209 translate_compare_func(enum pipe_compare_func pipe_func)
210 {
211 static const unsigned map[] = {
212 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
213 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
214 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
215 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
216 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
217 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
218 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
219 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
220 };
221 return map[pipe_func];
222 }
223
224 static unsigned
translate_shadow_func(enum pipe_compare_func pipe_func)225 translate_shadow_func(enum pipe_compare_func pipe_func)
226 {
227 /* Gallium specifies the result of shadow comparisons as:
228 *
229 * 1 if ref <op> texel,
230 * 0 otherwise.
231 *
232 * The hardware does:
233 *
234 * 0 if texel <op> ref,
235 * 1 otherwise.
236 *
237 * So we need to flip the operator and also negate.
238 */
239 static const unsigned map[] = {
240 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
241 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
242 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
243 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
244 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
245 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
246 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
247 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
248 };
249 return map[pipe_func];
250 }
251
252 static unsigned
translate_cull_mode(unsigned pipe_face)253 translate_cull_mode(unsigned pipe_face)
254 {
255 static const unsigned map[4] = {
256 [PIPE_FACE_NONE] = CULLMODE_NONE,
257 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
258 [PIPE_FACE_BACK] = CULLMODE_BACK,
259 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
260 };
261 return map[pipe_face];
262 }
263
264 static unsigned
translate_fill_mode(unsigned pipe_polymode)265 translate_fill_mode(unsigned pipe_polymode)
266 {
267 static const unsigned map[4] = {
268 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
269 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
270 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
271 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
272 };
273 return map[pipe_polymode];
274 }
275
276 static unsigned
translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)277 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
278 {
279 static const unsigned map[] = {
280 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
281 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
282 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
283 };
284 return map[pipe_mip];
285 }
286
287 static uint32_t
translate_wrap(unsigned pipe_wrap)288 translate_wrap(unsigned pipe_wrap)
289 {
290 static const unsigned map[] = {
291 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
292 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
293 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
294 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
295 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
296 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
297
298 /* These are unsupported. */
299 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
300 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
301 };
302 return map[pipe_wrap];
303 }
304
305 /**
306 * Allocate space for some indirect state.
307 *
308 * Return a pointer to the map (to fill it out) and a state ref (for
309 * referring to the state in GPU commands).
310 */
311 static void *
upload_state(struct u_upload_mgr * uploader,struct iris_state_ref * ref,unsigned size,unsigned alignment)312 upload_state(struct u_upload_mgr *uploader,
313 struct iris_state_ref *ref,
314 unsigned size,
315 unsigned alignment)
316 {
317 void *p = NULL;
318 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
319 return p;
320 }
321
322 /**
323 * Stream out temporary/short-lived state.
324 *
325 * This allocates space, pins the BO, and includes the BO address in the
326 * returned offset (which works because all state lives in 32-bit memory
327 * zones).
328 */
329 static uint32_t *
stream_state(struct iris_batch * batch,struct u_upload_mgr * uploader,struct pipe_resource ** out_res,unsigned size,unsigned alignment,uint32_t * out_offset)330 stream_state(struct iris_batch *batch,
331 struct u_upload_mgr *uploader,
332 struct pipe_resource **out_res,
333 unsigned size,
334 unsigned alignment,
335 uint32_t *out_offset)
336 {
337 void *ptr = NULL;
338
339 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
340
341 struct iris_bo *bo = iris_resource_bo(*out_res);
342 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
343
344 iris_record_state_size(batch->state_sizes,
345 bo->gtt_offset + *out_offset, size);
346
347 *out_offset += iris_bo_offset_from_base_address(bo);
348
349 return ptr;
350 }
351
352 /**
353 * stream_state() + memcpy.
354 */
355 static uint32_t
emit_state(struct iris_batch * batch,struct u_upload_mgr * uploader,struct pipe_resource ** out_res,const void * data,unsigned size,unsigned alignment)356 emit_state(struct iris_batch *batch,
357 struct u_upload_mgr *uploader,
358 struct pipe_resource **out_res,
359 const void *data,
360 unsigned size,
361 unsigned alignment)
362 {
363 unsigned offset = 0;
364 uint32_t *map =
365 stream_state(batch, uploader, out_res, size, alignment, &offset);
366
367 if (map)
368 memcpy(map, data, size);
369
370 return offset;
371 }
372
373 /**
374 * Did field 'x' change between 'old_cso' and 'new_cso'?
375 *
376 * (If so, we may want to set some dirty flags.)
377 */
378 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
379 #define cso_changed_memcmp(x) \
380 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
381
382 static void
flush_before_state_base_change(struct iris_batch * batch)383 flush_before_state_base_change(struct iris_batch *batch)
384 {
385 const struct gen_device_info *devinfo = &batch->screen->devinfo;
386
387 /* Flush before emitting STATE_BASE_ADDRESS.
388 *
389 * This isn't documented anywhere in the PRM. However, it seems to be
390 * necessary prior to changing the surface state base adress. We've
391 * seen issues in Vulkan where we get GPU hangs when using multi-level
392 * command buffers which clear depth, reset state base address, and then
393 * go render stuff.
394 *
395 * Normally, in GL, we would trust the kernel to do sufficient stalls
396 * and flushes prior to executing our batch. However, it doesn't seem
397 * as if the kernel's flushing is always sufficient and we don't want to
398 * rely on it.
399 *
400 * We make this an end-of-pipe sync instead of a normal flush because we
401 * do not know the current status of the GPU. On Haswell at least,
402 * having a fast-clear operation in flight at the same time as a normal
403 * rendering operation can cause hangs. Since the kernel's flushing is
404 * insufficient, we need to ensure that any rendering operations from
405 * other processes are definitely complete before we try to do our own
406 * rendering. It's a bit of a big hammer but it appears to work.
407 */
408 iris_emit_end_of_pipe_sync(batch,
409 "change STATE_BASE_ADDRESS (flushes)",
410 PIPE_CONTROL_RENDER_TARGET_FLUSH |
411 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
412 PIPE_CONTROL_DATA_CACHE_FLUSH |
413 /* GEN:BUG:1606662791:
414 *
415 * Software must program PIPE_CONTROL command
416 * with "HDC Pipeline Flush" prior to
417 * programming of the below two non-pipeline
418 * state :
419 * * STATE_BASE_ADDRESS
420 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
421 */
422 ((GEN_GEN == 12 && devinfo->revision == 0 /* A0 */ ?
423 PIPE_CONTROL_FLUSH_HDC : 0)));
424 }
425
426 static void
flush_after_state_base_change(struct iris_batch * batch)427 flush_after_state_base_change(struct iris_batch *batch)
428 {
429 /* After re-setting the surface state base address, we have to do some
430 * cache flusing so that the sampler engine will pick up the new
431 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
432 * Shared Function > 3D Sampler > State > State Caching (page 96):
433 *
434 * Coherency with system memory in the state cache, like the texture
435 * cache is handled partially by software. It is expected that the
436 * command stream or shader will issue Cache Flush operation or
437 * Cache_Flush sampler message to ensure that the L1 cache remains
438 * coherent with system memory.
439 *
440 * [...]
441 *
442 * Whenever the value of the Dynamic_State_Base_Addr,
443 * Surface_State_Base_Addr are altered, the L1 state cache must be
444 * invalidated to ensure the new surface or sampler state is fetched
445 * from system memory.
446 *
447 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
448 * which, according the PIPE_CONTROL instruction documentation in the
449 * Broadwell PRM:
450 *
451 * Setting this bit is independent of any other bit in this packet.
452 * This bit controls the invalidation of the L1 and L2 state caches
453 * at the top of the pipe i.e. at the parsing time.
454 *
455 * Unfortunately, experimentation seems to indicate that state cache
456 * invalidation through a PIPE_CONTROL does nothing whatsoever in
457 * regards to surface state and binding tables. In stead, it seems that
458 * invalidating the texture cache is what is actually needed.
459 *
460 * XXX: As far as we have been able to determine through
461 * experimentation, shows that flush the texture cache appears to be
462 * sufficient. The theory here is that all of the sampling/rendering
463 * units cache the binding table in the texture cache. However, we have
464 * yet to be able to actually confirm this.
465 */
466 iris_emit_end_of_pipe_sync(batch,
467 "change STATE_BASE_ADDRESS (invalidates)",
468 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
469 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
470 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
471 }
472
473 static void
_iris_emit_lri(struct iris_batch * batch,uint32_t reg,uint32_t val)474 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
475 {
476 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
477 lri.RegisterOffset = reg;
478 lri.DataDWord = val;
479 }
480 }
481 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
482
483 static void
_iris_emit_lrr(struct iris_batch * batch,uint32_t dst,uint32_t src)484 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
485 {
486 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
487 lrr.SourceRegisterAddress = src;
488 lrr.DestinationRegisterAddress = dst;
489 }
490 }
491
492 static void
iris_load_register_reg32(struct iris_batch * batch,uint32_t dst,uint32_t src)493 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
494 uint32_t src)
495 {
496 _iris_emit_lrr(batch, dst, src);
497 }
498
499 static void
iris_load_register_reg64(struct iris_batch * batch,uint32_t dst,uint32_t src)500 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
501 uint32_t src)
502 {
503 _iris_emit_lrr(batch, dst, src);
504 _iris_emit_lrr(batch, dst + 4, src + 4);
505 }
506
507 static void
iris_load_register_imm32(struct iris_batch * batch,uint32_t reg,uint32_t val)508 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
509 uint32_t val)
510 {
511 _iris_emit_lri(batch, reg, val);
512 }
513
514 static void
iris_load_register_imm64(struct iris_batch * batch,uint32_t reg,uint64_t val)515 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
516 uint64_t val)
517 {
518 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
519 _iris_emit_lri(batch, reg + 4, val >> 32);
520 }
521
522 /**
523 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
524 */
525 static void
iris_load_register_mem32(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset)526 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
527 struct iris_bo *bo, uint32_t offset)
528 {
529 iris_batch_sync_region_start(batch);
530 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
531 lrm.RegisterAddress = reg;
532 lrm.MemoryAddress = ro_bo(bo, offset);
533 }
534 iris_batch_sync_region_end(batch);
535 }
536
537 /**
538 * Load a 64-bit value from a buffer into a MMIO register via
539 * two MI_LOAD_REGISTER_MEM commands.
540 */
541 static void
iris_load_register_mem64(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset)542 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
543 struct iris_bo *bo, uint32_t offset)
544 {
545 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
546 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
547 }
548
549 static void
iris_store_register_mem32(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset,bool predicated)550 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
551 struct iris_bo *bo, uint32_t offset,
552 bool predicated)
553 {
554 iris_batch_sync_region_start(batch);
555 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
556 srm.RegisterAddress = reg;
557 srm.MemoryAddress = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
558 srm.PredicateEnable = predicated;
559 }
560 iris_batch_sync_region_end(batch);
561 }
562
563 static void
iris_store_register_mem64(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset,bool predicated)564 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
565 struct iris_bo *bo, uint32_t offset,
566 bool predicated)
567 {
568 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
569 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
570 }
571
572 static void
iris_store_data_imm32(struct iris_batch * batch,struct iris_bo * bo,uint32_t offset,uint32_t imm)573 iris_store_data_imm32(struct iris_batch *batch,
574 struct iris_bo *bo, uint32_t offset,
575 uint32_t imm)
576 {
577 iris_batch_sync_region_start(batch);
578 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
579 sdi.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
580 sdi.ImmediateData = imm;
581 }
582 iris_batch_sync_region_end(batch);
583 }
584
585 static void
iris_store_data_imm64(struct iris_batch * batch,struct iris_bo * bo,uint32_t offset,uint64_t imm)586 iris_store_data_imm64(struct iris_batch *batch,
587 struct iris_bo *bo, uint32_t offset,
588 uint64_t imm)
589 {
590 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
591 * 2 in genxml but it's actually variable length and we need 5 DWords.
592 */
593 void *map = iris_get_command_space(batch, 4 * 5);
594 iris_batch_sync_region_start(batch);
595 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
596 sdi.DWordLength = 5 - 2;
597 sdi.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
598 sdi.ImmediateData = imm;
599 }
600 iris_batch_sync_region_end(batch);
601 }
602
603 static void
iris_copy_mem_mem(struct iris_batch * batch,struct iris_bo * dst_bo,uint32_t dst_offset,struct iris_bo * src_bo,uint32_t src_offset,unsigned bytes)604 iris_copy_mem_mem(struct iris_batch *batch,
605 struct iris_bo *dst_bo, uint32_t dst_offset,
606 struct iris_bo *src_bo, uint32_t src_offset,
607 unsigned bytes)
608 {
609 /* MI_COPY_MEM_MEM operates on DWords. */
610 assert(bytes % 4 == 0);
611 assert(dst_offset % 4 == 0);
612 assert(src_offset % 4 == 0);
613 iris_batch_sync_region_start(batch);
614
615 for (unsigned i = 0; i < bytes; i += 4) {
616 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
617 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i,
618 IRIS_DOMAIN_OTHER_WRITE);
619 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
620 }
621 }
622
623 iris_batch_sync_region_end(batch);
624 }
625
626 static void
emit_pipeline_select(struct iris_batch * batch,uint32_t pipeline)627 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
628 {
629 #if GEN_GEN >= 8 && GEN_GEN < 10
630 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
631 *
632 * Software must clear the COLOR_CALC_STATE Valid field in
633 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
634 * with Pipeline Select set to GPGPU.
635 *
636 * The internal hardware docs recommend the same workaround for Gen9
637 * hardware too.
638 */
639 if (pipeline == GPGPU)
640 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
641 #endif
642
643
644 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
645 * PIPELINE_SELECT [DevBWR+]":
646 *
647 * "Project: DEVSNB+
648 *
649 * Software must ensure all the write caches are flushed through a
650 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
651 * command to invalidate read only caches prior to programming
652 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
653 */
654 iris_emit_pipe_control_flush(batch,
655 "workaround: PIPELINE_SELECT flushes (1/2)",
656 PIPE_CONTROL_RENDER_TARGET_FLUSH |
657 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
658 PIPE_CONTROL_DATA_CACHE_FLUSH |
659 PIPE_CONTROL_CS_STALL);
660
661 iris_emit_pipe_control_flush(batch,
662 "workaround: PIPELINE_SELECT flushes (2/2)",
663 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
664 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
665 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
666 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
667
668 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
669 #if GEN_GEN >= 9
670 sel.MaskBits = GEN_GEN >= 12 ? 0x13 : 3;
671 sel.MediaSamplerDOPClockGateEnable = GEN_GEN >= 12;
672 #endif
673 sel.PipelineSelection = pipeline;
674 }
675 }
676
677 UNUSED static void
init_glk_barrier_mode(struct iris_batch * batch,uint32_t value)678 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
679 {
680 #if GEN_GEN == 9
681 /* Project: DevGLK
682 *
683 * "This chicken bit works around a hardware issue with barrier
684 * logic encountered when switching between GPGPU and 3D pipelines.
685 * To workaround the issue, this mode bit should be set after a
686 * pipeline is selected."
687 */
688 uint32_t reg_val;
689 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), ®_val, reg) {
690 reg.GLKBarrierMode = value;
691 reg.GLKBarrierModeMask = 1;
692 }
693 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
694 #endif
695 }
696
697 static void
init_state_base_address(struct iris_batch * batch)698 init_state_base_address(struct iris_batch *batch)
699 {
700 struct isl_device *isl_dev = &batch->screen->isl_dev;
701 uint32_t mocs = isl_mocs(isl_dev, 0);
702 flush_before_state_base_change(batch);
703
704 /* We program most base addresses once at context initialization time.
705 * Each base address points at a 4GB memory zone, and never needs to
706 * change. See iris_bufmgr.h for a description of the memory zones.
707 *
708 * The one exception is Surface State Base Address, which needs to be
709 * updated occasionally. See iris_binder.c for the details there.
710 */
711 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
712 sba.GeneralStateMOCS = mocs;
713 sba.StatelessDataPortAccessMOCS = mocs;
714 sba.DynamicStateMOCS = mocs;
715 sba.IndirectObjectMOCS = mocs;
716 sba.InstructionMOCS = mocs;
717 sba.SurfaceStateMOCS = mocs;
718
719 sba.GeneralStateBaseAddressModifyEnable = true;
720 sba.DynamicStateBaseAddressModifyEnable = true;
721 sba.IndirectObjectBaseAddressModifyEnable = true;
722 sba.InstructionBaseAddressModifyEnable = true;
723 sba.GeneralStateBufferSizeModifyEnable = true;
724 sba.DynamicStateBufferSizeModifyEnable = true;
725 #if (GEN_GEN >= 9)
726 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
727 sba.BindlessSurfaceStateMOCS = mocs;
728 #endif
729 sba.IndirectObjectBufferSizeModifyEnable = true;
730 sba.InstructionBuffersizeModifyEnable = true;
731
732 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
733 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
734
735 sba.GeneralStateBufferSize = 0xfffff;
736 sba.IndirectObjectBufferSize = 0xfffff;
737 sba.InstructionBufferSize = 0xfffff;
738 sba.DynamicStateBufferSize = 0xfffff;
739 }
740
741 flush_after_state_base_change(batch);
742 }
743
744 static void
iris_emit_l3_config(struct iris_batch * batch,const struct gen_l3_config * cfg)745 iris_emit_l3_config(struct iris_batch *batch,
746 const struct gen_l3_config *cfg)
747 {
748 uint32_t reg_val;
749 assert(cfg || GEN_GEN >= 12);
750
751 #if GEN_GEN >= 12
752 #define L3_ALLOCATION_REG GENX(L3ALLOC)
753 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
754 #else
755 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
756 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
757 #endif
758
759 iris_pack_state(L3_ALLOCATION_REG, ®_val, reg) {
760 #if GEN_GEN < 11
761 reg.SLMEnable = cfg->n[GEN_L3P_SLM] > 0;
762 #endif
763 #if GEN_GEN == 11
764 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
765 * in L3CNTLREG register. The default setting of the bit is not the
766 * desirable behavior.
767 */
768 reg.ErrorDetectionBehaviorControl = true;
769 reg.UseFullWays = true;
770 #endif
771 if (GEN_GEN < 12 || cfg) {
772 reg.URBAllocation = cfg->n[GEN_L3P_URB];
773 reg.ROAllocation = cfg->n[GEN_L3P_RO];
774 reg.DCAllocation = cfg->n[GEN_L3P_DC];
775 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
776 } else {
777 #if GEN_GEN >= 12
778 reg.L3FullWayAllocationEnable = true;
779 #endif
780 }
781 }
782 _iris_emit_lri(batch, L3_ALLOCATION_REG_num, reg_val);
783 }
784
785 #if GEN_GEN == 9
786 static void
iris_enable_obj_preemption(struct iris_batch * batch,bool enable)787 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
788 {
789 uint32_t reg_val;
790
791 /* A fixed function pipe flush is required before modifying this field */
792 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
793 : "disable preemption",
794 PIPE_CONTROL_RENDER_TARGET_FLUSH);
795
796 /* enable object level preemption */
797 iris_pack_state(GENX(CS_CHICKEN1), ®_val, reg) {
798 reg.ReplayMode = enable;
799 reg.ReplayModeMask = true;
800 }
801 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
802 }
803 #endif
804
805 #if GEN_GEN == 11
806 static void
iris_upload_slice_hashing_state(struct iris_batch * batch)807 iris_upload_slice_hashing_state(struct iris_batch *batch)
808 {
809 const struct gen_device_info *devinfo = &batch->screen->devinfo;
810 int subslices_delta =
811 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
812 if (subslices_delta == 0)
813 return;
814
815 struct iris_context *ice = NULL;
816 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
817 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
818
819 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
820 uint32_t hash_address;
821 struct pipe_resource *tmp = NULL;
822 uint32_t *map =
823 stream_state(batch, ice->state.dynamic_uploader, &tmp,
824 size, 64, &hash_address);
825 pipe_resource_reference(&tmp, NULL);
826
827 struct GENX(SLICE_HASH_TABLE) table0 = {
828 .Entry = {
829 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
830 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
831 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
832 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
833 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
834 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
835 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
836 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
837 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
838 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
839 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
840 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
841 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
842 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
843 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
844 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
845 }
846 };
847
848 struct GENX(SLICE_HASH_TABLE) table1 = {
849 .Entry = {
850 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
851 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
852 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
853 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
854 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
855 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
856 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
857 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
858 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
859 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
860 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
861 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
862 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
863 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
864 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
865 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
866 }
867 };
868
869 const struct GENX(SLICE_HASH_TABLE) *table =
870 subslices_delta < 0 ? &table0 : &table1;
871 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
872
873 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
874 ptr.SliceHashStatePointerValid = true;
875 ptr.SliceHashTableStatePointer = hash_address;
876 }
877
878 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
879 mode.SliceHashingTableEnable = true;
880 }
881 }
882 #endif
883
884 static void
iris_alloc_push_constants(struct iris_batch * batch)885 iris_alloc_push_constants(struct iris_batch *batch)
886 {
887 /* For now, we set a static partitioning of the push constant area,
888 * assuming that all stages could be in use.
889 *
890 * TODO: Try lazily allocating the HS/DS/GS sections as needed, and
891 * see if that improves performance by offering more space to
892 * the VS/FS when those aren't in use. Also, try dynamically
893 * enabling/disabling it like i965 does. This would be more
894 * stalls and may not actually help; we don't know yet.
895 */
896 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
897 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
898 alloc._3DCommandSubOpcode = 18 + i;
899 alloc.ConstantBufferOffset = 6 * i;
900 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
901 }
902 }
903 }
904
905 #if GEN_GEN >= 12
906 static void
907 init_aux_map_state(struct iris_batch *batch);
908 #endif
909
910 /**
911 * Upload initial GPU state for any kind of context.
912 *
913 * These need to happen for both render and compute.
914 */
915 static void
iris_init_common_context(struct iris_batch * batch)916 iris_init_common_context(struct iris_batch *batch)
917 {
918 #if GEN_GEN == 11
919 uint32_t reg_val;
920
921 iris_pack_state(GENX(SAMPLER_MODE), ®_val, reg) {
922 reg.HeaderlessMessageforPreemptableContexts = 1;
923 reg.HeaderlessMessageforPreemptableContextsMask = 1;
924 }
925 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
926
927 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
928 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), ®_val, reg) {
929 reg.EnabledTexelOffsetPrecisionFix = 1;
930 reg.EnabledTexelOffsetPrecisionFixMask = 1;
931 }
932 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
933 #endif
934 }
935
936 /**
937 * Upload the initial GPU state for a render context.
938 *
939 * This sets some invariant state that needs to be programmed a particular
940 * way, but we never actually change.
941 */
942 static void
iris_init_render_context(struct iris_batch * batch)943 iris_init_render_context(struct iris_batch *batch)
944 {
945 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
946 uint32_t reg_val;
947
948 iris_batch_sync_region_start(batch);
949
950 emit_pipeline_select(batch, _3D);
951
952 iris_emit_l3_config(batch, batch->screen->l3_config_3d);
953
954 init_state_base_address(batch);
955
956 iris_init_common_context(batch);
957
958 #if GEN_GEN >= 9
959 iris_pack_state(GENX(CS_DEBUG_MODE2), ®_val, reg) {
960 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
961 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
962 }
963 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
964 #else
965 iris_pack_state(GENX(INSTPM), ®_val, reg) {
966 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
967 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
968 }
969 iris_emit_lri(batch, INSTPM, reg_val);
970 #endif
971
972 #if GEN_GEN == 9
973 iris_pack_state(GENX(CACHE_MODE_1), ®_val, reg) {
974 reg.FloatBlendOptimizationEnable = true;
975 reg.FloatBlendOptimizationEnableMask = true;
976 reg.MSCRAWHazardAvoidanceBit = true;
977 reg.MSCRAWHazardAvoidanceBitMask = true;
978 reg.PartialResolveDisableInVC = true;
979 reg.PartialResolveDisableInVCMask = true;
980 }
981 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
982
983 if (devinfo->is_geminilake)
984 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
985 #endif
986
987 #if GEN_GEN == 11
988 iris_pack_state(GENX(TCCNTLREG), ®_val, reg) {
989 reg.L3DataPartialWriteMergingEnable = true;
990 reg.ColorZPartialWriteMergingEnable = true;
991 reg.URBPartialWriteMergingEnable = true;
992 reg.TCDisable = true;
993 }
994 iris_emit_lri(batch, TCCNTLREG, reg_val);
995
996 /* Hardware specification recommends disabling repacking for the
997 * compatibility with decompression mechanism in display controller.
998 */
999 if (devinfo->disable_ccs_repack) {
1000 iris_pack_state(GENX(CACHE_MODE_0), ®_val, reg) {
1001 reg.DisableRepackingforCompression = true;
1002 reg.DisableRepackingforCompressionMask = true;
1003 }
1004 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
1005 }
1006
1007 iris_upload_slice_hashing_state(batch);
1008 #endif
1009
1010 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
1011 * changing it dynamically. We set it to the maximum size here, and
1012 * instead include the render target dimensions in the viewport, so
1013 * viewport extents clipping takes care of pruning stray geometry.
1014 */
1015 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
1016 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
1017 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
1018 }
1019
1020 /* Set the initial MSAA sample positions. */
1021 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
1022 GEN_SAMPLE_POS_1X(pat._1xSample);
1023 GEN_SAMPLE_POS_2X(pat._2xSample);
1024 GEN_SAMPLE_POS_4X(pat._4xSample);
1025 GEN_SAMPLE_POS_8X(pat._8xSample);
1026 #if GEN_GEN >= 9
1027 GEN_SAMPLE_POS_16X(pat._16xSample);
1028 #endif
1029 }
1030
1031 /* Use the legacy AA line coverage computation. */
1032 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
1033
1034 /* Disable chromakeying (it's for media) */
1035 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
1036
1037 /* We want regular rendering, not special HiZ operations. */
1038 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
1039
1040 /* No polygon stippling offsets are necessary. */
1041 /* TODO: may need to set an offset for origin-UL framebuffers */
1042 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
1043
1044 iris_alloc_push_constants(batch);
1045
1046
1047 #if GEN_GEN >= 12
1048 init_aux_map_state(batch);
1049 #endif
1050
1051 iris_batch_sync_region_end(batch);
1052 }
1053
1054 static void
iris_init_compute_context(struct iris_batch * batch)1055 iris_init_compute_context(struct iris_batch *batch)
1056 {
1057 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
1058
1059 iris_batch_sync_region_start(batch);
1060
1061 /* GEN:BUG:1607854226:
1062 *
1063 * Start with pipeline in 3D mode to set the STATE_BASE_ADDRESS.
1064 */
1065 #if GEN_GEN == 12
1066 emit_pipeline_select(batch, _3D);
1067 #else
1068 emit_pipeline_select(batch, GPGPU);
1069 #endif
1070
1071 iris_emit_l3_config(batch, batch->screen->l3_config_cs);
1072
1073 init_state_base_address(batch);
1074
1075 iris_init_common_context(batch);
1076
1077 #if GEN_GEN == 12
1078 emit_pipeline_select(batch, GPGPU);
1079 #endif
1080
1081 #if GEN_GEN == 9
1082 if (devinfo->is_geminilake)
1083 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
1084 #endif
1085
1086 #if GEN_GEN >= 12
1087 init_aux_map_state(batch);
1088 #endif
1089
1090 iris_batch_sync_region_end(batch);
1091 }
1092
1093 struct iris_vertex_buffer_state {
1094 /** The VERTEX_BUFFER_STATE hardware structure. */
1095 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
1096
1097 /** The resource to source vertex data from. */
1098 struct pipe_resource *resource;
1099
1100 int offset;
1101 };
1102
1103 struct iris_depth_buffer_state {
1104 /* Depth/HiZ/Stencil related hardware packets. */
1105 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1106 GENX(3DSTATE_STENCIL_BUFFER_length) +
1107 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
1108 GENX(3DSTATE_CLEAR_PARAMS_length) +
1109 GENX(MI_LOAD_REGISTER_IMM_length) * 2];
1110 };
1111
1112 /**
1113 * Generation-specific context state (ice->state.genx->...).
1114 *
1115 * Most state can go in iris_context directly, but these encode hardware
1116 * packets which vary by generation.
1117 */
1118 struct iris_genx_state {
1119 struct iris_vertex_buffer_state vertex_buffers[33];
1120 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
1121
1122 struct iris_depth_buffer_state depth_buffer;
1123
1124 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
1125
1126 #if GEN_GEN == 8
1127 bool pma_fix_enabled;
1128 #endif
1129
1130 #if GEN_GEN == 9
1131 /* Is object level preemption enabled? */
1132 bool object_preemption;
1133 #endif
1134
1135 struct {
1136 #if GEN_GEN == 8
1137 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
1138 #endif
1139 } shaders[MESA_SHADER_STAGES];
1140 };
1141
1142 /**
1143 * The pipe->set_blend_color() driver hook.
1144 *
1145 * This corresponds to our COLOR_CALC_STATE.
1146 */
1147 static void
iris_set_blend_color(struct pipe_context * ctx,const struct pipe_blend_color * state)1148 iris_set_blend_color(struct pipe_context *ctx,
1149 const struct pipe_blend_color *state)
1150 {
1151 struct iris_context *ice = (struct iris_context *) ctx;
1152
1153 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
1154 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
1155 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1156 }
1157
1158 /**
1159 * Gallium CSO for blend state (see pipe_blend_state).
1160 */
1161 struct iris_blend_state {
1162 /** Partial 3DSTATE_PS_BLEND */
1163 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
1164
1165 /** Partial BLEND_STATE */
1166 uint32_t blend_state[GENX(BLEND_STATE_length) +
1167 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
1168
1169 bool alpha_to_coverage; /* for shader key */
1170
1171 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
1172 uint8_t blend_enables;
1173
1174 /** Bitfield of whether color writes are enabled for RT[i] */
1175 uint8_t color_write_enables;
1176
1177 /** Does RT[0] use dual color blending? */
1178 bool dual_color_blending;
1179 };
1180
1181 static enum pipe_blendfactor
fix_blendfactor(enum pipe_blendfactor f,bool alpha_to_one)1182 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
1183 {
1184 if (alpha_to_one) {
1185 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
1186 return PIPE_BLENDFACTOR_ONE;
1187
1188 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
1189 return PIPE_BLENDFACTOR_ZERO;
1190 }
1191
1192 return f;
1193 }
1194
1195 /**
1196 * The pipe->create_blend_state() driver hook.
1197 *
1198 * Translates a pipe_blend_state into iris_blend_state.
1199 */
1200 static void *
iris_create_blend_state(struct pipe_context * ctx,const struct pipe_blend_state * state)1201 iris_create_blend_state(struct pipe_context *ctx,
1202 const struct pipe_blend_state *state)
1203 {
1204 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1205 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1206
1207 cso->blend_enables = 0;
1208 cso->color_write_enables = 0;
1209 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
1210
1211 cso->alpha_to_coverage = state->alpha_to_coverage;
1212
1213 bool indep_alpha_blend = false;
1214
1215 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
1216 const struct pipe_rt_blend_state *rt =
1217 &state->rt[state->independent_blend_enable ? i : 0];
1218
1219 enum pipe_blendfactor src_rgb =
1220 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1221 enum pipe_blendfactor src_alpha =
1222 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1223 enum pipe_blendfactor dst_rgb =
1224 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1225 enum pipe_blendfactor dst_alpha =
1226 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1227
1228 if (rt->rgb_func != rt->alpha_func ||
1229 src_rgb != src_alpha || dst_rgb != dst_alpha)
1230 indep_alpha_blend = true;
1231
1232 if (rt->blend_enable)
1233 cso->blend_enables |= 1u << i;
1234
1235 if (rt->colormask)
1236 cso->color_write_enables |= 1u << i;
1237
1238 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1239 be.LogicOpEnable = state->logicop_enable;
1240 be.LogicOpFunction = state->logicop_func;
1241
1242 be.PreBlendSourceOnlyClampEnable = false;
1243 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1244 be.PreBlendColorClampEnable = true;
1245 be.PostBlendColorClampEnable = true;
1246
1247 be.ColorBufferBlendEnable = rt->blend_enable;
1248
1249 be.ColorBlendFunction = rt->rgb_func;
1250 be.AlphaBlendFunction = rt->alpha_func;
1251 be.SourceBlendFactor = src_rgb;
1252 be.SourceAlphaBlendFactor = src_alpha;
1253 be.DestinationBlendFactor = dst_rgb;
1254 be.DestinationAlphaBlendFactor = dst_alpha;
1255
1256 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1257 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1258 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1259 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1260 }
1261 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1262 }
1263
1264 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1265 /* pb.HasWriteableRT is filled in at draw time.
1266 * pb.AlphaTestEnable is filled in at draw time.
1267 *
1268 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1269 * setting it when dual color blending without an appropriate shader.
1270 */
1271
1272 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1273 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1274
1275 pb.SourceBlendFactor =
1276 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1277 pb.SourceAlphaBlendFactor =
1278 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1279 pb.DestinationBlendFactor =
1280 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1281 pb.DestinationAlphaBlendFactor =
1282 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1283 }
1284
1285 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1286 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1287 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1288 bs.AlphaToOneEnable = state->alpha_to_one;
1289 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1290 bs.ColorDitherEnable = state->dither;
1291 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1292 }
1293
1294 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1295
1296 return cso;
1297 }
1298
1299 /**
1300 * The pipe->bind_blend_state() driver hook.
1301 *
1302 * Bind a blending CSO and flag related dirty bits.
1303 */
1304 static void
iris_bind_blend_state(struct pipe_context * ctx,void * state)1305 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1306 {
1307 struct iris_context *ice = (struct iris_context *) ctx;
1308 struct iris_blend_state *cso = state;
1309
1310 ice->state.cso_blend = cso;
1311
1312 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1313 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1314 ice->state.stage_dirty |= ice->state.stage_dirty_for_nos[IRIS_NOS_BLEND];
1315
1316 if (GEN_GEN == 8)
1317 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1318 }
1319
1320 /**
1321 * Return true if the FS writes to any color outputs which are not disabled
1322 * via color masking.
1323 */
1324 static bool
has_writeable_rt(const struct iris_blend_state * cso_blend,const struct shader_info * fs_info)1325 has_writeable_rt(const struct iris_blend_state *cso_blend,
1326 const struct shader_info *fs_info)
1327 {
1328 if (!fs_info)
1329 return false;
1330
1331 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1332
1333 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1334 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1335
1336 return cso_blend->color_write_enables & rt_outputs;
1337 }
1338
1339 /**
1340 * Gallium CSO for depth, stencil, and alpha testing state.
1341 */
1342 struct iris_depth_stencil_alpha_state {
1343 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1344 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1345
1346 #if GEN_GEN >= 12
1347 uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
1348 #endif
1349
1350 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1351 struct pipe_alpha_state alpha;
1352
1353 /** Outbound to resolve and cache set tracking. */
1354 bool depth_writes_enabled;
1355 bool stencil_writes_enabled;
1356
1357 /** Outbound to Gen8-9 PMA stall equations */
1358 bool depth_test_enabled;
1359 };
1360
1361 /**
1362 * The pipe->create_depth_stencil_alpha_state() driver hook.
1363 *
1364 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1365 * testing state since we need pieces of it in a variety of places.
1366 */
1367 static void *
iris_create_zsa_state(struct pipe_context * ctx,const struct pipe_depth_stencil_alpha_state * state)1368 iris_create_zsa_state(struct pipe_context *ctx,
1369 const struct pipe_depth_stencil_alpha_state *state)
1370 {
1371 struct iris_depth_stencil_alpha_state *cso =
1372 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1373
1374 bool two_sided_stencil = state->stencil[1].enabled;
1375
1376 cso->alpha = state->alpha;
1377 cso->depth_writes_enabled = state->depth.writemask;
1378 cso->depth_test_enabled = state->depth.enabled;
1379 cso->stencil_writes_enabled =
1380 state->stencil[0].writemask != 0 ||
1381 (two_sided_stencil && state->stencil[1].writemask != 0);
1382
1383 /* gallium frontends need to optimize away EQUAL writes for us. */
1384 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1385
1386 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1387 wmds.StencilFailOp = state->stencil[0].fail_op;
1388 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1389 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1390 wmds.StencilTestFunction =
1391 translate_compare_func(state->stencil[0].func);
1392 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1393 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1394 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1395 wmds.BackfaceStencilTestFunction =
1396 translate_compare_func(state->stencil[1].func);
1397 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1398 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1399 wmds.StencilTestEnable = state->stencil[0].enabled;
1400 wmds.StencilBufferWriteEnable =
1401 state->stencil[0].writemask != 0 ||
1402 (two_sided_stencil && state->stencil[1].writemask != 0);
1403 wmds.DepthTestEnable = state->depth.enabled;
1404 wmds.DepthBufferWriteEnable = state->depth.writemask;
1405 wmds.StencilTestMask = state->stencil[0].valuemask;
1406 wmds.StencilWriteMask = state->stencil[0].writemask;
1407 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1408 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1409 /* wmds.[Backface]StencilReferenceValue are merged later */
1410 #if GEN_GEN >= 12
1411 wmds.StencilReferenceValueModifyDisable = true;
1412 #endif
1413 }
1414
1415 #if GEN_GEN >= 12
1416 iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
1417 depth_bounds.DepthBoundsTestValueModifyDisable = false;
1418 depth_bounds.DepthBoundsTestEnableModifyDisable = false;
1419 depth_bounds.DepthBoundsTestEnable = state->depth.bounds_test;
1420 depth_bounds.DepthBoundsTestMinValue = state->depth.bounds_min;
1421 depth_bounds.DepthBoundsTestMaxValue = state->depth.bounds_max;
1422 }
1423 #endif
1424
1425 return cso;
1426 }
1427
1428 /**
1429 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1430 *
1431 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1432 */
1433 static void
iris_bind_zsa_state(struct pipe_context * ctx,void * state)1434 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1435 {
1436 struct iris_context *ice = (struct iris_context *) ctx;
1437 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1438 struct iris_depth_stencil_alpha_state *new_cso = state;
1439
1440 if (new_cso) {
1441 if (cso_changed(alpha.ref_value))
1442 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1443
1444 if (cso_changed(alpha.enabled))
1445 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1446
1447 if (cso_changed(alpha.func))
1448 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1449
1450 if (cso_changed(depth_writes_enabled))
1451 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1452
1453 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1454 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1455
1456 #if GEN_GEN >= 12
1457 if (cso_changed(depth_bounds))
1458 ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
1459 #endif
1460 }
1461
1462 ice->state.cso_zsa = new_cso;
1463 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1464 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1465 ice->state.stage_dirty |=
1466 ice->state.stage_dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1467
1468 if (GEN_GEN == 8)
1469 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1470 }
1471
1472 #if GEN_GEN == 8
1473 static bool
want_pma_fix(struct iris_context * ice)1474 want_pma_fix(struct iris_context *ice)
1475 {
1476 UNUSED struct iris_screen *screen = (void *) ice->ctx.screen;
1477 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
1478 const struct brw_wm_prog_data *wm_prog_data = (void *)
1479 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
1480 const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
1481 const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
1482 const struct iris_blend_state *cso_blend = ice->state.cso_blend;
1483
1484 /* In very specific combinations of state, we can instruct Gen8-9 hardware
1485 * to avoid stalling at the pixel mask array. The state equations are
1486 * documented in these places:
1487 *
1488 * - Gen8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
1489 * - Gen9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
1490 *
1491 * Both equations share some common elements:
1492 *
1493 * no_hiz_op =
1494 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1495 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1496 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1497 * 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
1498 *
1499 * killpixels =
1500 * 3DSTATE_WM::ForceKillPix != ForceOff &&
1501 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1502 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1503 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1504 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1505 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1506 *
1507 * (Technically the stencil PMA treats ForceKillPix differently,
1508 * but I think this is a documentation oversight, and we don't
1509 * ever use it in this way, so it doesn't matter).
1510 *
1511 * common_pma_fix =
1512 * 3DSTATE_WM::ForceThreadDispatch != 1 &&
1513 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
1514 * 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1515 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1516 * 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
1517 * 3DSTATE_PS_EXTRA::PixelShaderValid &&
1518 * no_hiz_op
1519 *
1520 * These are always true:
1521 *
1522 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
1523 * 3DSTATE_PS_EXTRA::PixelShaderValid
1524 *
1525 * Also, we never use the normal drawing path for HiZ ops; these are true:
1526 *
1527 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1528 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1529 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1530 * 3DSTATE_WM_HZ_OP::StencilBufferClear)
1531 *
1532 * This happens sometimes:
1533 *
1534 * 3DSTATE_WM::ForceThreadDispatch != 1
1535 *
1536 * However, we choose to ignore it as it either agrees with the signal
1537 * (dispatch was already enabled, so nothing out of the ordinary), or
1538 * there are no framebuffer attachments (so no depth or HiZ anyway,
1539 * meaning the PMA signal will already be disabled).
1540 */
1541
1542 if (!cso_fb->zsbuf)
1543 return false;
1544
1545 struct iris_resource *zres, *sres;
1546 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres);
1547
1548 /* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1549 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1550 */
1551 if (!zres || !iris_resource_level_has_hiz(zres, cso_fb->zsbuf->u.tex.level))
1552 return false;
1553
1554 /* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
1555 if (wm_prog_data->early_fragment_tests)
1556 return false;
1557
1558 /* 3DSTATE_WM::ForceKillPix != ForceOff &&
1559 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1560 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1561 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1562 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1563 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1564 */
1565 bool killpixels = wm_prog_data->uses_kill || wm_prog_data->uses_omask ||
1566 cso_blend->alpha_to_coverage || cso_zsa->alpha.enabled;
1567
1568 /* The Gen8 depth PMA equation becomes:
1569 *
1570 * depth_writes =
1571 * 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
1572 * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
1573 *
1574 * stencil_writes =
1575 * 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
1576 * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
1577 * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
1578 *
1579 * Z_PMA_OPT =
1580 * common_pma_fix &&
1581 * 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
1582 * ((killpixels && (depth_writes || stencil_writes)) ||
1583 * 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
1584 *
1585 */
1586 if (!cso_zsa->depth_test_enabled)
1587 return false;
1588
1589 return wm_prog_data->computed_depth_mode != PSCDEPTH_OFF ||
1590 (killpixels && (cso_zsa->depth_writes_enabled ||
1591 (sres && cso_zsa->stencil_writes_enabled)));
1592 }
1593 #endif
1594
1595 void
genX(update_pma_fix)1596 genX(update_pma_fix)(struct iris_context *ice,
1597 struct iris_batch *batch,
1598 bool enable)
1599 {
1600 #if GEN_GEN == 8
1601 struct iris_genx_state *genx = ice->state.genx;
1602
1603 if (genx->pma_fix_enabled == enable)
1604 return;
1605
1606 genx->pma_fix_enabled = enable;
1607
1608 /* According to the Broadwell PIPE_CONTROL documentation, software should
1609 * emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
1610 * prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary.
1611 *
1612 * The Gen9 docs say to use a depth stall rather than a command streamer
1613 * stall. However, the hardware seems to violently disagree. A full
1614 * command streamer stall seems to be needed in both cases.
1615 */
1616 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1617 PIPE_CONTROL_CS_STALL |
1618 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1619 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1620
1621 uint32_t reg_val;
1622 iris_pack_state(GENX(CACHE_MODE_1), ®_val, reg) {
1623 reg.NPPMAFixEnable = enable;
1624 reg.NPEarlyZFailsDisable = enable;
1625 reg.NPPMAFixEnableMask = true;
1626 reg.NPEarlyZFailsDisableMask = true;
1627 }
1628 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
1629
1630 /* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
1631 * Flush bits is often necessary. We do it regardless because it's easier.
1632 * The render cache flush is also necessary if stencil writes are enabled.
1633 *
1634 * Again, the Gen9 docs give a different set of flushes but the Broadwell
1635 * flushes seem to work just as well.
1636 */
1637 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1638 PIPE_CONTROL_DEPTH_STALL |
1639 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1640 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1641 #endif
1642 }
1643
1644 /**
1645 * Gallium CSO for rasterizer state.
1646 */
1647 struct iris_rasterizer_state {
1648 uint32_t sf[GENX(3DSTATE_SF_length)];
1649 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1650 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1651 uint32_t wm[GENX(3DSTATE_WM_length)];
1652 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1653
1654 uint8_t num_clip_plane_consts;
1655 bool clip_halfz; /* for CC_VIEWPORT */
1656 bool depth_clip_near; /* for CC_VIEWPORT */
1657 bool depth_clip_far; /* for CC_VIEWPORT */
1658 bool flatshade; /* for shader state */
1659 bool flatshade_first; /* for stream output */
1660 bool clamp_fragment_color; /* for shader state */
1661 bool light_twoside; /* for shader state */
1662 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1663 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1664 bool line_stipple_enable;
1665 bool poly_stipple_enable;
1666 bool multisample;
1667 bool force_persample_interp;
1668 bool conservative_rasterization;
1669 bool fill_mode_point;
1670 bool fill_mode_line;
1671 bool fill_mode_point_or_line;
1672 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1673 uint16_t sprite_coord_enable;
1674 };
1675
1676 static float
get_line_width(const struct pipe_rasterizer_state * state)1677 get_line_width(const struct pipe_rasterizer_state *state)
1678 {
1679 float line_width = state->line_width;
1680
1681 /* From the OpenGL 4.4 spec:
1682 *
1683 * "The actual width of non-antialiased lines is determined by rounding
1684 * the supplied width to the nearest integer, then clamping it to the
1685 * implementation-dependent maximum non-antialiased line width."
1686 */
1687 if (!state->multisample && !state->line_smooth)
1688 line_width = roundf(state->line_width);
1689
1690 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1691 /* For 1 pixel line thickness or less, the general anti-aliasing
1692 * algorithm gives up, and a garbage line is generated. Setting a
1693 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1694 * (one-pixel-wide), non-antialiased lines.
1695 *
1696 * Lines rendered with zero Line Width are rasterized using the
1697 * "Grid Intersection Quantization" rules as specified by the
1698 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1699 */
1700 line_width = 0.0f;
1701 }
1702
1703 return line_width;
1704 }
1705
1706 /**
1707 * The pipe->create_rasterizer_state() driver hook.
1708 */
1709 static void *
iris_create_rasterizer_state(struct pipe_context * ctx,const struct pipe_rasterizer_state * state)1710 iris_create_rasterizer_state(struct pipe_context *ctx,
1711 const struct pipe_rasterizer_state *state)
1712 {
1713 struct iris_rasterizer_state *cso =
1714 malloc(sizeof(struct iris_rasterizer_state));
1715
1716 cso->multisample = state->multisample;
1717 cso->force_persample_interp = state->force_persample_interp;
1718 cso->clip_halfz = state->clip_halfz;
1719 cso->depth_clip_near = state->depth_clip_near;
1720 cso->depth_clip_far = state->depth_clip_far;
1721 cso->flatshade = state->flatshade;
1722 cso->flatshade_first = state->flatshade_first;
1723 cso->clamp_fragment_color = state->clamp_fragment_color;
1724 cso->light_twoside = state->light_twoside;
1725 cso->rasterizer_discard = state->rasterizer_discard;
1726 cso->half_pixel_center = state->half_pixel_center;
1727 cso->sprite_coord_mode = state->sprite_coord_mode;
1728 cso->sprite_coord_enable = state->sprite_coord_enable;
1729 cso->line_stipple_enable = state->line_stipple_enable;
1730 cso->poly_stipple_enable = state->poly_stipple_enable;
1731 cso->conservative_rasterization =
1732 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1733
1734 cso->fill_mode_point =
1735 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1736 state->fill_back == PIPE_POLYGON_MODE_POINT;
1737 cso->fill_mode_line =
1738 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1739 state->fill_back == PIPE_POLYGON_MODE_LINE;
1740 cso->fill_mode_point_or_line =
1741 cso->fill_mode_point ||
1742 cso->fill_mode_line;
1743
1744 if (state->clip_plane_enable != 0)
1745 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1746 else
1747 cso->num_clip_plane_consts = 0;
1748
1749 float line_width = get_line_width(state);
1750
1751 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1752 sf.StatisticsEnable = true;
1753 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1754 sf.LineEndCapAntialiasingRegionWidth =
1755 state->line_smooth ? _10pixels : _05pixels;
1756 sf.LastPixelEnable = state->line_last_pixel;
1757 sf.LineWidth = line_width;
1758 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1759 !state->point_quad_rasterization;
1760 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1761 sf.PointWidth = state->point_size;
1762
1763 if (state->flatshade_first) {
1764 sf.TriangleFanProvokingVertexSelect = 1;
1765 } else {
1766 sf.TriangleStripListProvokingVertexSelect = 2;
1767 sf.TriangleFanProvokingVertexSelect = 2;
1768 sf.LineStripListProvokingVertexSelect = 1;
1769 }
1770 }
1771
1772 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1773 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1774 rr.CullMode = translate_cull_mode(state->cull_face);
1775 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1776 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1777 rr.DXMultisampleRasterizationEnable = state->multisample;
1778 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1779 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1780 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1781 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1782 rr.GlobalDepthOffsetScale = state->offset_scale;
1783 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1784 rr.SmoothPointEnable = state->point_smooth;
1785 rr.AntialiasingEnable = state->line_smooth;
1786 rr.ScissorRectangleEnable = state->scissor;
1787 #if GEN_GEN >= 9
1788 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1789 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1790 rr.ConservativeRasterizationEnable =
1791 cso->conservative_rasterization;
1792 #else
1793 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1794 #endif
1795 }
1796
1797 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1798 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1799 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1800 */
1801 cl.EarlyCullEnable = true;
1802 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1803 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1804 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1805 cl.GuardbandClipTestEnable = true;
1806 cl.ClipEnable = true;
1807 cl.MinimumPointWidth = 0.125;
1808 cl.MaximumPointWidth = 255.875;
1809
1810 if (state->flatshade_first) {
1811 cl.TriangleFanProvokingVertexSelect = 1;
1812 } else {
1813 cl.TriangleStripListProvokingVertexSelect = 2;
1814 cl.TriangleFanProvokingVertexSelect = 2;
1815 cl.LineStripListProvokingVertexSelect = 1;
1816 }
1817 }
1818
1819 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1820 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1821 * filled in at draw time from the FS program.
1822 */
1823 wm.LineAntialiasingRegionWidth = _10pixels;
1824 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1825 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1826 wm.LineStippleEnable = state->line_stipple_enable;
1827 wm.PolygonStippleEnable = state->poly_stipple_enable;
1828 }
1829
1830 /* Remap from 0..255 back to 1..256 */
1831 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1832
1833 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1834 if (state->line_stipple_enable) {
1835 line.LineStipplePattern = state->line_stipple_pattern;
1836 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1837 line.LineStippleRepeatCount = line_stipple_factor;
1838 }
1839 }
1840
1841 return cso;
1842 }
1843
1844 /**
1845 * The pipe->bind_rasterizer_state() driver hook.
1846 *
1847 * Bind a rasterizer CSO and flag related dirty bits.
1848 */
1849 static void
iris_bind_rasterizer_state(struct pipe_context * ctx,void * state)1850 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1851 {
1852 struct iris_context *ice = (struct iris_context *) ctx;
1853 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1854 struct iris_rasterizer_state *new_cso = state;
1855
1856 if (new_cso) {
1857 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1858 if (cso_changed_memcmp(line_stipple))
1859 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1860
1861 if (cso_changed(half_pixel_center))
1862 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1863
1864 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1865 ice->state.dirty |= IRIS_DIRTY_WM;
1866
1867 if (cso_changed(rasterizer_discard))
1868 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1869
1870 if (cso_changed(flatshade_first))
1871 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1872
1873 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1874 cso_changed(clip_halfz))
1875 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1876
1877 if (cso_changed(sprite_coord_enable) ||
1878 cso_changed(sprite_coord_mode) ||
1879 cso_changed(light_twoside))
1880 ice->state.dirty |= IRIS_DIRTY_SBE;
1881
1882 if (cso_changed(conservative_rasterization))
1883 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
1884 }
1885
1886 ice->state.cso_rast = new_cso;
1887 ice->state.dirty |= IRIS_DIRTY_RASTER;
1888 ice->state.dirty |= IRIS_DIRTY_CLIP;
1889 ice->state.stage_dirty |=
1890 ice->state.stage_dirty_for_nos[IRIS_NOS_RASTERIZER];
1891 }
1892
1893 /**
1894 * Return true if the given wrap mode requires the border color to exist.
1895 *
1896 * (We can skip uploading it if the sampler isn't going to use it.)
1897 */
1898 static bool
wrap_mode_needs_border_color(unsigned wrap_mode)1899 wrap_mode_needs_border_color(unsigned wrap_mode)
1900 {
1901 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1902 }
1903
1904 /**
1905 * Gallium CSO for sampler state.
1906 */
1907 struct iris_sampler_state {
1908 union pipe_color_union border_color;
1909 bool needs_border_color;
1910
1911 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1912 };
1913
1914 /**
1915 * The pipe->create_sampler_state() driver hook.
1916 *
1917 * We fill out SAMPLER_STATE (except for the border color pointer), and
1918 * store that on the CPU. It doesn't make sense to upload it to a GPU
1919 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1920 * all bound sampler states to be in contiguous memor.
1921 */
1922 static void *
iris_create_sampler_state(struct pipe_context * ctx,const struct pipe_sampler_state * state)1923 iris_create_sampler_state(struct pipe_context *ctx,
1924 const struct pipe_sampler_state *state)
1925 {
1926 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1927
1928 if (!cso)
1929 return NULL;
1930
1931 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1932 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1933
1934 unsigned wrap_s = translate_wrap(state->wrap_s);
1935 unsigned wrap_t = translate_wrap(state->wrap_t);
1936 unsigned wrap_r = translate_wrap(state->wrap_r);
1937
1938 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1939
1940 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1941 wrap_mode_needs_border_color(wrap_t) ||
1942 wrap_mode_needs_border_color(wrap_r);
1943
1944 float min_lod = state->min_lod;
1945 unsigned mag_img_filter = state->mag_img_filter;
1946
1947 // XXX: explain this code ported from ilo...I don't get it at all...
1948 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1949 state->min_lod > 0.0f) {
1950 min_lod = 0.0f;
1951 mag_img_filter = state->min_img_filter;
1952 }
1953
1954 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1955 samp.TCXAddressControlMode = wrap_s;
1956 samp.TCYAddressControlMode = wrap_t;
1957 samp.TCZAddressControlMode = wrap_r;
1958 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1959 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1960 samp.MinModeFilter = state->min_img_filter;
1961 samp.MagModeFilter = mag_img_filter;
1962 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1963 samp.MaximumAnisotropy = RATIO21;
1964
1965 if (state->max_anisotropy >= 2) {
1966 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1967 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1968 samp.AnisotropicAlgorithm = EWAApproximation;
1969 }
1970
1971 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1972 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1973
1974 samp.MaximumAnisotropy =
1975 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1976 }
1977
1978 /* Set address rounding bits if not using nearest filtering. */
1979 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1980 samp.UAddressMinFilterRoundingEnable = true;
1981 samp.VAddressMinFilterRoundingEnable = true;
1982 samp.RAddressMinFilterRoundingEnable = true;
1983 }
1984
1985 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1986 samp.UAddressMagFilterRoundingEnable = true;
1987 samp.VAddressMagFilterRoundingEnable = true;
1988 samp.RAddressMagFilterRoundingEnable = true;
1989 }
1990
1991 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1992 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1993
1994 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1995
1996 samp.LODPreClampMode = CLAMP_MODE_OGL;
1997 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1998 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1999 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
2000
2001 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
2002 }
2003
2004 return cso;
2005 }
2006
2007 /**
2008 * The pipe->bind_sampler_states() driver hook.
2009 */
2010 static void
iris_bind_sampler_states(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start,unsigned count,void ** states)2011 iris_bind_sampler_states(struct pipe_context *ctx,
2012 enum pipe_shader_type p_stage,
2013 unsigned start, unsigned count,
2014 void **states)
2015 {
2016 struct iris_context *ice = (struct iris_context *) ctx;
2017 gl_shader_stage stage = stage_from_pipe(p_stage);
2018 struct iris_shader_state *shs = &ice->state.shaders[stage];
2019
2020 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
2021
2022 bool dirty = false;
2023
2024 for (int i = 0; i < count; i++) {
2025 if (shs->samplers[start + i] != states[i]) {
2026 shs->samplers[start + i] = states[i];
2027 dirty = true;
2028 }
2029 }
2030
2031 if (dirty)
2032 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
2033 }
2034
2035 /**
2036 * Upload the sampler states into a contiguous area of GPU memory, for
2037 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
2038 *
2039 * Also fill out the border color state pointers.
2040 */
2041 static void
iris_upload_sampler_states(struct iris_context * ice,gl_shader_stage stage)2042 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
2043 {
2044 struct iris_shader_state *shs = &ice->state.shaders[stage];
2045 const struct shader_info *info = iris_get_shader_info(ice, stage);
2046
2047 /* We assume gallium frontends will call pipe->bind_sampler_states()
2048 * if the program's number of textures changes.
2049 */
2050 unsigned count = info ? util_last_bit(info->textures_used) : 0;
2051
2052 if (!count)
2053 return;
2054
2055 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
2056 * in the dynamic state memory zone, so we can point to it via the
2057 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
2058 */
2059 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
2060 uint32_t *map =
2061 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
2062 if (unlikely(!map))
2063 return;
2064
2065 struct pipe_resource *res = shs->sampler_table.res;
2066 struct iris_bo *bo = iris_resource_bo(res);
2067
2068 iris_record_state_size(ice->state.sizes,
2069 bo->gtt_offset + shs->sampler_table.offset, size);
2070
2071 shs->sampler_table.offset += iris_bo_offset_from_base_address(bo);
2072
2073 /* Make sure all land in the same BO */
2074 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
2075
2076 ice->state.need_border_colors &= ~(1 << stage);
2077
2078 for (int i = 0; i < count; i++) {
2079 struct iris_sampler_state *state = shs->samplers[i];
2080 struct iris_sampler_view *tex = shs->textures[i];
2081
2082 if (!state) {
2083 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
2084 } else if (!state->needs_border_color) {
2085 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
2086 } else {
2087 ice->state.need_border_colors |= 1 << stage;
2088
2089 /* We may need to swizzle the border color for format faking.
2090 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
2091 * This means we need to move the border color's A channel into
2092 * the R or G channels so that those read swizzles will move it
2093 * back into A.
2094 */
2095 union pipe_color_union *color = &state->border_color;
2096 union pipe_color_union tmp;
2097 if (tex) {
2098 enum pipe_format internal_format = tex->res->internal_format;
2099
2100 if (util_format_is_alpha(internal_format)) {
2101 unsigned char swz[4] = {
2102 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
2103 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2104 };
2105 util_format_apply_color_swizzle(&tmp, color, swz, true);
2106 color = &tmp;
2107 } else if (util_format_is_luminance_alpha(internal_format) &&
2108 internal_format != PIPE_FORMAT_L8A8_SRGB) {
2109 unsigned char swz[4] = {
2110 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
2111 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2112 };
2113 util_format_apply_color_swizzle(&tmp, color, swz, true);
2114 color = &tmp;
2115 }
2116 }
2117
2118 /* Stream out the border color and merge the pointer. */
2119 uint32_t offset = iris_upload_border_color(ice, color);
2120
2121 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
2122 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
2123 dyns.BorderColorPointer = offset;
2124 }
2125
2126 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
2127 map[j] = state->sampler_state[j] | dynamic[j];
2128 }
2129
2130 map += GENX(SAMPLER_STATE_length);
2131 }
2132 }
2133
2134 static enum isl_channel_select
fmt_swizzle(const struct iris_format_info * fmt,enum pipe_swizzle swz)2135 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
2136 {
2137 switch (swz) {
2138 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
2139 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
2140 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
2141 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
2142 case PIPE_SWIZZLE_1: return SCS_ONE;
2143 case PIPE_SWIZZLE_0: return SCS_ZERO;
2144 default: unreachable("invalid swizzle");
2145 }
2146 }
2147
2148 static void
fill_buffer_surface_state(struct isl_device * isl_dev,struct iris_resource * res,void * map,enum isl_format format,struct isl_swizzle swizzle,unsigned offset,unsigned size,isl_surf_usage_flags_t usage)2149 fill_buffer_surface_state(struct isl_device *isl_dev,
2150 struct iris_resource *res,
2151 void *map,
2152 enum isl_format format,
2153 struct isl_swizzle swizzle,
2154 unsigned offset,
2155 unsigned size,
2156 isl_surf_usage_flags_t usage)
2157 {
2158 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2159 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
2160
2161 /* The ARB_texture_buffer_specification says:
2162 *
2163 * "The number of texels in the buffer texture's texel array is given by
2164 *
2165 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
2166 *
2167 * where <buffer_size> is the size of the buffer object, in basic
2168 * machine units and <components> and <base_type> are the element count
2169 * and base data type for elements, as specified in Table X.1. The
2170 * number of texels in the texel array is then clamped to the
2171 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
2172 *
2173 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
2174 * so that when ISL divides by stride to obtain the number of texels, that
2175 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
2176 */
2177 unsigned final_size =
2178 MIN3(size, res->bo->size - res->offset - offset,
2179 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
2180
2181 isl_buffer_fill_state(isl_dev, map,
2182 .address = res->bo->gtt_offset + res->offset + offset,
2183 .size_B = final_size,
2184 .format = format,
2185 .swizzle = swizzle,
2186 .stride_B = cpp,
2187 .mocs = iris_mocs(res->bo, isl_dev, usage));
2188 }
2189
2190 #define SURFACE_STATE_ALIGNMENT 64
2191
2192 /**
2193 * Allocate several contiguous SURFACE_STATE structures, one for each
2194 * supported auxiliary surface mode. This only allocates the CPU-side
2195 * copy, they will need to be uploaded later after they're filled in.
2196 */
2197 static void
alloc_surface_states(struct iris_surface_state * surf_state,unsigned aux_usages)2198 alloc_surface_states(struct iris_surface_state *surf_state,
2199 unsigned aux_usages)
2200 {
2201 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2202
2203 /* If this changes, update this to explicitly align pointers */
2204 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
2205
2206 assert(aux_usages != 0);
2207
2208 /* In case we're re-allocating them... */
2209 free(surf_state->cpu);
2210
2211 surf_state->num_states = util_bitcount(aux_usages);
2212 surf_state->cpu = calloc(surf_state->num_states, surf_size);
2213 surf_state->ref.offset = 0;
2214 pipe_resource_reference(&surf_state->ref.res, NULL);
2215
2216 assert(surf_state->cpu);
2217 }
2218
2219 /**
2220 * Upload the CPU side SURFACE_STATEs into a GPU buffer.
2221 */
2222 static void
upload_surface_states(struct u_upload_mgr * mgr,struct iris_surface_state * surf_state)2223 upload_surface_states(struct u_upload_mgr *mgr,
2224 struct iris_surface_state *surf_state)
2225 {
2226 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2227 const unsigned bytes = surf_state->num_states * surf_size;
2228
2229 void *map =
2230 upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT);
2231
2232 surf_state->ref.offset +=
2233 iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res));
2234
2235 if (map)
2236 memcpy(map, surf_state->cpu, bytes);
2237 }
2238
2239 /**
2240 * Update resource addresses in a set of SURFACE_STATE descriptors,
2241 * and re-upload them if necessary.
2242 */
2243 static bool
update_surface_state_addrs(struct u_upload_mgr * mgr,struct iris_surface_state * surf_state,struct iris_bo * bo)2244 update_surface_state_addrs(struct u_upload_mgr *mgr,
2245 struct iris_surface_state *surf_state,
2246 struct iris_bo *bo)
2247 {
2248 if (surf_state->bo_address == bo->gtt_offset)
2249 return false;
2250
2251 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0);
2252 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64);
2253
2254 uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32];
2255
2256 /* First, update the CPU copies. We assume no other fields exist in
2257 * the QWord containing Surface Base Address.
2258 */
2259 for (unsigned i = 0; i < surf_state->num_states; i++) {
2260 *ss_addr = *ss_addr - surf_state->bo_address + bo->gtt_offset;
2261 ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT;
2262 }
2263
2264 /* Next, upload the updated copies to a GPU buffer. */
2265 upload_surface_states(mgr, surf_state);
2266
2267 surf_state->bo_address = bo->gtt_offset;
2268
2269 return true;
2270 }
2271
2272 #if GEN_GEN == 8
2273 /**
2274 * Return an ISL surface for use with non-coherent render target reads.
2275 *
2276 * In a few complex cases, we can't use the SURFACE_STATE for normal render
2277 * target writes. We need to make a separate one for sampling which refers
2278 * to the single slice of the texture being read.
2279 */
2280 static void
get_rt_read_isl_surf(const struct gen_device_info * devinfo,struct iris_resource * res,enum pipe_texture_target target,struct isl_view * view,uint32_t * offset_to_tile,uint32_t * tile_x_sa,uint32_t * tile_y_sa,struct isl_surf * surf)2281 get_rt_read_isl_surf(const struct gen_device_info *devinfo,
2282 struct iris_resource *res,
2283 enum pipe_texture_target target,
2284 struct isl_view *view,
2285 uint32_t *offset_to_tile,
2286 uint32_t *tile_x_sa,
2287 uint32_t *tile_y_sa,
2288 struct isl_surf *surf)
2289 {
2290 *surf = res->surf;
2291
2292 const enum isl_dim_layout dim_layout =
2293 iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
2294
2295 surf->dim = target_to_isl_surf_dim(target);
2296
2297 if (surf->dim_layout == dim_layout)
2298 return;
2299
2300 /* The layout of the specified texture target is not compatible with the
2301 * actual layout of the miptree structure in memory -- You're entering
2302 * dangerous territory, this can only possibly work if you only intended
2303 * to access a single level and slice of the texture, and the hardware
2304 * supports the tile offset feature in order to allow non-tile-aligned
2305 * base offsets, since we'll have to point the hardware to the first
2306 * texel of the level instead of relying on the usual base level/layer
2307 * controls.
2308 */
2309 assert(view->levels == 1 && view->array_len == 1);
2310 assert(*tile_x_sa == 0 && *tile_y_sa == 0);
2311
2312 *offset_to_tile = iris_resource_get_tile_offsets(res, view->base_level,
2313 view->base_array_layer,
2314 tile_x_sa, tile_y_sa);
2315 const unsigned l = view->base_level;
2316
2317 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
2318 surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
2319 minify(surf->logical_level0_px.height, l);
2320 surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
2321 minify(surf->logical_level0_px.depth, l);
2322
2323 surf->logical_level0_px.array_len = 1;
2324 surf->levels = 1;
2325 surf->dim_layout = dim_layout;
2326
2327 view->base_level = 0;
2328 view->base_array_layer = 0;
2329 }
2330 #endif
2331
2332 static void
fill_surface_state(struct isl_device * isl_dev,void * map,struct iris_resource * res,struct isl_surf * surf,struct isl_view * view,unsigned aux_usage,uint32_t extra_main_offset,uint32_t tile_x_sa,uint32_t tile_y_sa)2333 fill_surface_state(struct isl_device *isl_dev,
2334 void *map,
2335 struct iris_resource *res,
2336 struct isl_surf *surf,
2337 struct isl_view *view,
2338 unsigned aux_usage,
2339 uint32_t extra_main_offset,
2340 uint32_t tile_x_sa,
2341 uint32_t tile_y_sa)
2342 {
2343 struct isl_surf_fill_state_info f = {
2344 .surf = surf,
2345 .view = view,
2346 .mocs = iris_mocs(res->bo, isl_dev, view->usage),
2347 .address = res->bo->gtt_offset + res->offset + extra_main_offset,
2348 .x_offset_sa = tile_x_sa,
2349 .y_offset_sa = tile_y_sa,
2350 };
2351
2352 assert(!iris_resource_unfinished_aux_import(res));
2353
2354 if (aux_usage != ISL_AUX_USAGE_NONE) {
2355 f.aux_surf = &res->aux.surf;
2356 f.aux_usage = aux_usage;
2357 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
2358
2359 struct iris_bo *clear_bo = NULL;
2360 uint64_t clear_offset = 0;
2361 f.clear_color =
2362 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
2363 if (clear_bo) {
2364 f.clear_address = clear_bo->gtt_offset + clear_offset;
2365 f.use_clear_address = isl_dev->info->gen > 9;
2366 }
2367 }
2368
2369 isl_surf_fill_state_s(isl_dev, map, &f);
2370 }
2371
2372 /**
2373 * The pipe->create_sampler_view() driver hook.
2374 */
2375 static struct pipe_sampler_view *
iris_create_sampler_view(struct pipe_context * ctx,struct pipe_resource * tex,const struct pipe_sampler_view * tmpl)2376 iris_create_sampler_view(struct pipe_context *ctx,
2377 struct pipe_resource *tex,
2378 const struct pipe_sampler_view *tmpl)
2379 {
2380 struct iris_context *ice = (struct iris_context *) ctx;
2381 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2382 const struct gen_device_info *devinfo = &screen->devinfo;
2383 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
2384
2385 if (!isv)
2386 return NULL;
2387
2388 /* initialize base object */
2389 isv->base = *tmpl;
2390 isv->base.context = ctx;
2391 isv->base.texture = NULL;
2392 pipe_reference_init(&isv->base.reference, 1);
2393 pipe_resource_reference(&isv->base.texture, tex);
2394
2395 if (util_format_is_depth_or_stencil(tmpl->format)) {
2396 struct iris_resource *zres, *sres;
2397 const struct util_format_description *desc =
2398 util_format_description(tmpl->format);
2399
2400 iris_get_depth_stencil_resources(tex, &zres, &sres);
2401
2402 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
2403 }
2404
2405 isv->res = (struct iris_resource *) tex;
2406
2407 alloc_surface_states(&isv->surface_state, isv->res->aux.sampler_usages);
2408
2409 isv->surface_state.bo_address = isv->res->bo->gtt_offset;
2410
2411 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
2412
2413 if (isv->base.target == PIPE_TEXTURE_CUBE ||
2414 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
2415 usage |= ISL_SURF_USAGE_CUBE_BIT;
2416
2417 const struct iris_format_info fmt =
2418 iris_format_for_usage(devinfo, tmpl->format, usage);
2419
2420 isv->clear_color = isv->res->aux.clear_color;
2421
2422 isv->view = (struct isl_view) {
2423 .format = fmt.fmt,
2424 .swizzle = (struct isl_swizzle) {
2425 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
2426 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
2427 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
2428 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
2429 },
2430 .usage = usage,
2431 };
2432
2433 void *map = isv->surface_state.cpu;
2434
2435 /* Fill out SURFACE_STATE for this view. */
2436 if (tmpl->target != PIPE_BUFFER) {
2437 isv->view.base_level = tmpl->u.tex.first_level;
2438 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
2439 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
2440 isv->view.base_array_layer = tmpl->u.tex.first_layer;
2441 isv->view.array_len =
2442 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2443
2444 if (iris_resource_unfinished_aux_import(isv->res))
2445 iris_resource_finish_aux_import(&screen->base, isv->res);
2446
2447 unsigned aux_modes = isv->res->aux.sampler_usages;
2448 while (aux_modes) {
2449 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2450
2451 /* If we have a multisampled depth buffer, do not create a sampler
2452 * surface state with HiZ.
2453 */
2454 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
2455 &isv->view, aux_usage, 0, 0, 0);
2456
2457 map += SURFACE_STATE_ALIGNMENT;
2458 }
2459 } else {
2460 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
2461 isv->view.format, isv->view.swizzle,
2462 tmpl->u.buf.offset, tmpl->u.buf.size,
2463 ISL_SURF_USAGE_TEXTURE_BIT);
2464 }
2465
2466 upload_surface_states(ice->state.surface_uploader, &isv->surface_state);
2467
2468 return &isv->base;
2469 }
2470
2471 static void
iris_sampler_view_destroy(struct pipe_context * ctx,struct pipe_sampler_view * state)2472 iris_sampler_view_destroy(struct pipe_context *ctx,
2473 struct pipe_sampler_view *state)
2474 {
2475 struct iris_sampler_view *isv = (void *) state;
2476 pipe_resource_reference(&state->texture, NULL);
2477 pipe_resource_reference(&isv->surface_state.ref.res, NULL);
2478 free(isv->surface_state.cpu);
2479 free(isv);
2480 }
2481
2482 /**
2483 * The pipe->create_surface() driver hook.
2484 *
2485 * In Gallium nomenclature, "surfaces" are a view of a resource that
2486 * can be bound as a render target or depth/stencil buffer.
2487 */
2488 static struct pipe_surface *
iris_create_surface(struct pipe_context * ctx,struct pipe_resource * tex,const struct pipe_surface * tmpl)2489 iris_create_surface(struct pipe_context *ctx,
2490 struct pipe_resource *tex,
2491 const struct pipe_surface *tmpl)
2492 {
2493 struct iris_context *ice = (struct iris_context *) ctx;
2494 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2495 const struct gen_device_info *devinfo = &screen->devinfo;
2496
2497 isl_surf_usage_flags_t usage = 0;
2498 if (tmpl->writable)
2499 usage = ISL_SURF_USAGE_STORAGE_BIT;
2500 else if (util_format_is_depth_or_stencil(tmpl->format))
2501 usage = ISL_SURF_USAGE_DEPTH_BIT;
2502 else
2503 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
2504
2505 const struct iris_format_info fmt =
2506 iris_format_for_usage(devinfo, tmpl->format, usage);
2507
2508 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
2509 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
2510 /* Framebuffer validation will reject this invalid case, but it
2511 * hasn't had the opportunity yet. In the meantime, we need to
2512 * avoid hitting ISL asserts about unsupported formats below.
2513 */
2514 return NULL;
2515 }
2516
2517 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
2518 struct pipe_surface *psurf = &surf->base;
2519 struct iris_resource *res = (struct iris_resource *) tex;
2520
2521 if (!surf)
2522 return NULL;
2523
2524 pipe_reference_init(&psurf->reference, 1);
2525 pipe_resource_reference(&psurf->texture, tex);
2526 psurf->context = ctx;
2527 psurf->format = tmpl->format;
2528 psurf->width = tex->width0;
2529 psurf->height = tex->height0;
2530 psurf->texture = tex;
2531 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
2532 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
2533 psurf->u.tex.level = tmpl->u.tex.level;
2534
2535 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2536
2537 struct isl_view *view = &surf->view;
2538 *view = (struct isl_view) {
2539 .format = fmt.fmt,
2540 .base_level = tmpl->u.tex.level,
2541 .levels = 1,
2542 .base_array_layer = tmpl->u.tex.first_layer,
2543 .array_len = array_len,
2544 .swizzle = ISL_SWIZZLE_IDENTITY,
2545 .usage = usage,
2546 };
2547
2548 #if GEN_GEN == 8
2549 enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
2550 array_len == 1) ? PIPE_TEXTURE_2D :
2551 tex->target == PIPE_TEXTURE_1D_ARRAY ?
2552 PIPE_TEXTURE_2D_ARRAY : tex->target;
2553
2554 struct isl_view *read_view = &surf->read_view;
2555 *read_view = (struct isl_view) {
2556 .format = fmt.fmt,
2557 .base_level = tmpl->u.tex.level,
2558 .levels = 1,
2559 .base_array_layer = tmpl->u.tex.first_layer,
2560 .array_len = array_len,
2561 .swizzle = ISL_SWIZZLE_IDENTITY,
2562 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
2563 };
2564 #endif
2565
2566 surf->clear_color = res->aux.clear_color;
2567
2568 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2569 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
2570 ISL_SURF_USAGE_STENCIL_BIT))
2571 return psurf;
2572
2573
2574 alloc_surface_states(&surf->surface_state, res->aux.possible_usages);
2575 surf->surface_state.bo_address = res->bo->gtt_offset;
2576
2577 #if GEN_GEN == 8
2578 alloc_surface_states(&surf->surface_state_read, res->aux.possible_usages);
2579 surf->surface_state_read.bo_address = res->bo->gtt_offset;
2580 #endif
2581
2582 if (!isl_format_is_compressed(res->surf.format)) {
2583 if (iris_resource_unfinished_aux_import(res))
2584 iris_resource_finish_aux_import(&screen->base, res);
2585
2586 void *map = surf->surface_state.cpu;
2587 UNUSED void *map_read = surf->surface_state_read.cpu;
2588
2589 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
2590 * auxiliary surface mode and return the pipe_surface.
2591 */
2592 unsigned aux_modes = res->aux.possible_usages;
2593 while (aux_modes) {
2594 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2595 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2596 view, aux_usage, 0, 0, 0);
2597 map += SURFACE_STATE_ALIGNMENT;
2598
2599 #if GEN_GEN == 8
2600 struct isl_surf surf;
2601 uint32_t offset_to_tile = 0, tile_x_sa = 0, tile_y_sa = 0;
2602 get_rt_read_isl_surf(devinfo, res, target, read_view,
2603 &offset_to_tile, &tile_x_sa, &tile_y_sa, &surf);
2604 fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
2605 aux_usage, offset_to_tile, tile_x_sa, tile_y_sa);
2606 map_read += SURFACE_STATE_ALIGNMENT;
2607 #endif
2608 }
2609
2610 upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
2611
2612 #if GEN_GEN == 8
2613 upload_surface_states(ice->state.surface_uploader,
2614 &surf->surface_state_read);
2615 #endif
2616
2617 return psurf;
2618 }
2619
2620 /* The resource has a compressed format, which is not renderable, but we
2621 * have a renderable view format. We must be attempting to upload blocks
2622 * of compressed data via an uncompressed view.
2623 *
2624 * In this case, we can assume there are no auxiliary buffers, a single
2625 * miplevel, and that the resource is single-sampled. Gallium may try
2626 * and create an uncompressed view with multiple layers, however.
2627 */
2628 assert(!isl_format_is_compressed(fmt.fmt));
2629 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
2630 assert(res->surf.samples == 1);
2631 assert(view->levels == 1);
2632
2633 struct isl_surf isl_surf;
2634 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
2635
2636 if (view->base_level > 0) {
2637 /* We can't rely on the hardware's miplevel selection with such
2638 * a substantial lie about the format, so we select a single image
2639 * using the Tile X/Y Offset fields. In this case, we can't handle
2640 * multiple array slices.
2641 *
2642 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
2643 * hard-coded to align to exactly the block size of the compressed
2644 * texture. This means that, when reinterpreted as a non-compressed
2645 * texture, the tile offsets may be anything and we can't rely on
2646 * X/Y Offset.
2647 *
2648 * Return NULL to force gallium frontends to take fallback paths.
2649 */
2650 if (view->array_len > 1 || GEN_GEN == 8)
2651 return NULL;
2652
2653 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2654 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2655 view->base_level,
2656 is_3d ? 0 : view->base_array_layer,
2657 is_3d ? view->base_array_layer : 0,
2658 &isl_surf,
2659 &offset_B, &tile_x_sa, &tile_y_sa);
2660
2661 /* We use address and tile offsets to access a single level/layer
2662 * as a subimage, so reset level/layer so it doesn't offset again.
2663 */
2664 view->base_array_layer = 0;
2665 view->base_level = 0;
2666 } else {
2667 /* Level 0 doesn't require tile offsets, and the hardware can find
2668 * array slices using QPitch even with the format override, so we
2669 * can allow layers in this case. Copy the original ISL surface.
2670 */
2671 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2672 }
2673
2674 /* Scale down the image dimensions by the block size. */
2675 const struct isl_format_layout *fmtl =
2676 isl_format_get_layout(res->surf.format);
2677 isl_surf.format = fmt.fmt;
2678 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2679 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2680 tile_x_sa /= fmtl->bw;
2681 tile_y_sa /= fmtl->bh;
2682
2683 psurf->width = isl_surf.logical_level0_px.width;
2684 psurf->height = isl_surf.logical_level0_px.height;
2685
2686 struct isl_surf_fill_state_info f = {
2687 .surf = &isl_surf,
2688 .view = view,
2689 .mocs = iris_mocs(res->bo, &screen->isl_dev,
2690 ISL_SURF_USAGE_RENDER_TARGET_BIT),
2691 .address = res->bo->gtt_offset + offset_B,
2692 .x_offset_sa = tile_x_sa,
2693 .y_offset_sa = tile_y_sa,
2694 };
2695
2696 isl_surf_fill_state_s(&screen->isl_dev, surf->surface_state.cpu, &f);
2697
2698 upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
2699
2700 return psurf;
2701 }
2702
2703 #if GEN_GEN < 9
2704 static void
fill_default_image_param(struct brw_image_param * param)2705 fill_default_image_param(struct brw_image_param *param)
2706 {
2707 memset(param, 0, sizeof(*param));
2708 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2709 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2710 * detailed explanation of these parameters.
2711 */
2712 param->swizzling[0] = 0xff;
2713 param->swizzling[1] = 0xff;
2714 }
2715
2716 static void
fill_buffer_image_param(struct brw_image_param * param,enum pipe_format pfmt,unsigned size)2717 fill_buffer_image_param(struct brw_image_param *param,
2718 enum pipe_format pfmt,
2719 unsigned size)
2720 {
2721 const unsigned cpp = util_format_get_blocksize(pfmt);
2722
2723 fill_default_image_param(param);
2724 param->size[0] = size / cpp;
2725 param->stride[0] = cpp;
2726 }
2727 #else
2728 #define isl_surf_fill_image_param(x, ...)
2729 #define fill_default_image_param(x, ...)
2730 #define fill_buffer_image_param(x, ...)
2731 #endif
2732
2733 /**
2734 * The pipe->set_shader_images() driver hook.
2735 */
2736 static void
iris_set_shader_images(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start_slot,unsigned count,const struct pipe_image_view * p_images)2737 iris_set_shader_images(struct pipe_context *ctx,
2738 enum pipe_shader_type p_stage,
2739 unsigned start_slot, unsigned count,
2740 const struct pipe_image_view *p_images)
2741 {
2742 struct iris_context *ice = (struct iris_context *) ctx;
2743 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2744 gl_shader_stage stage = stage_from_pipe(p_stage);
2745 struct iris_shader_state *shs = &ice->state.shaders[stage];
2746 #if GEN_GEN == 8
2747 struct iris_genx_state *genx = ice->state.genx;
2748 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2749 #endif
2750
2751 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2752
2753 for (unsigned i = 0; i < count; i++) {
2754 struct iris_image_view *iv = &shs->image[start_slot + i];
2755
2756 if (p_images && p_images[i].resource) {
2757 const struct pipe_image_view *img = &p_images[i];
2758 struct iris_resource *res = (void *) img->resource;
2759
2760 util_copy_image_view(&iv->base, img);
2761
2762 shs->bound_image_views |= 1 << (start_slot + i);
2763
2764 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2765 res->bind_stages |= 1 << stage;
2766
2767 enum isl_format isl_fmt = iris_image_view_get_format(ice, img);
2768
2769 /* Render compression with images supported on gen12+ only. */
2770 unsigned aux_usages = GEN_GEN >= 12 ? res->aux.possible_usages :
2771 1 << ISL_AUX_USAGE_NONE;
2772
2773 alloc_surface_states(&iv->surface_state, aux_usages);
2774 iv->surface_state.bo_address = res->bo->gtt_offset;
2775
2776 void *map = iv->surface_state.cpu;
2777
2778 if (res->base.target != PIPE_BUFFER) {
2779 struct isl_view view = {
2780 .format = isl_fmt,
2781 .base_level = img->u.tex.level,
2782 .levels = 1,
2783 .base_array_layer = img->u.tex.first_layer,
2784 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2785 .swizzle = ISL_SWIZZLE_IDENTITY,
2786 .usage = ISL_SURF_USAGE_STORAGE_BIT,
2787 };
2788
2789 /* If using untyped fallback. */
2790 if (isl_fmt == ISL_FORMAT_RAW) {
2791 fill_buffer_surface_state(&screen->isl_dev, res, map,
2792 isl_fmt, ISL_SWIZZLE_IDENTITY,
2793 0, res->bo->size,
2794 ISL_SURF_USAGE_STORAGE_BIT);
2795 } else {
2796 unsigned aux_modes = aux_usages;
2797 while (aux_modes) {
2798 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2799
2800 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2801 &view, usage, 0, 0, 0);
2802
2803 map += SURFACE_STATE_ALIGNMENT;
2804 }
2805 }
2806
2807 isl_surf_fill_image_param(&screen->isl_dev,
2808 &image_params[start_slot + i],
2809 &res->surf, &view);
2810 } else {
2811 util_range_add(&res->base, &res->valid_buffer_range, img->u.buf.offset,
2812 img->u.buf.offset + img->u.buf.size);
2813
2814 fill_buffer_surface_state(&screen->isl_dev, res, map,
2815 isl_fmt, ISL_SWIZZLE_IDENTITY,
2816 img->u.buf.offset, img->u.buf.size,
2817 ISL_SURF_USAGE_STORAGE_BIT);
2818 fill_buffer_image_param(&image_params[start_slot + i],
2819 img->format, img->u.buf.size);
2820 }
2821
2822 upload_surface_states(ice->state.surface_uploader, &iv->surface_state);
2823 } else {
2824 pipe_resource_reference(&iv->base.resource, NULL);
2825 pipe_resource_reference(&iv->surface_state.ref.res, NULL);
2826 fill_default_image_param(&image_params[start_slot + i]);
2827 }
2828 }
2829
2830 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
2831 ice->state.dirty |=
2832 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2833 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2834
2835 /* Broadwell also needs brw_image_params re-uploaded */
2836 if (GEN_GEN < 9) {
2837 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
2838 shs->sysvals_need_upload = true;
2839 }
2840 }
2841
2842
2843 /**
2844 * The pipe->set_sampler_views() driver hook.
2845 */
2846 static void
iris_set_sampler_views(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start,unsigned count,struct pipe_sampler_view ** views)2847 iris_set_sampler_views(struct pipe_context *ctx,
2848 enum pipe_shader_type p_stage,
2849 unsigned start, unsigned count,
2850 struct pipe_sampler_view **views)
2851 {
2852 struct iris_context *ice = (struct iris_context *) ctx;
2853 gl_shader_stage stage = stage_from_pipe(p_stage);
2854 struct iris_shader_state *shs = &ice->state.shaders[stage];
2855
2856 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2857
2858 for (unsigned i = 0; i < count; i++) {
2859 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2860 pipe_sampler_view_reference((struct pipe_sampler_view **)
2861 &shs->textures[start + i], pview);
2862 struct iris_sampler_view *view = (void *) pview;
2863 if (view) {
2864 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2865 view->res->bind_stages |= 1 << stage;
2866
2867 shs->bound_sampler_views |= 1 << (start + i);
2868
2869 update_surface_state_addrs(ice->state.surface_uploader,
2870 &view->surface_state, view->res->bo);
2871 }
2872 }
2873
2874 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_BINDINGS_VS << stage);
2875 ice->state.dirty |=
2876 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2877 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2878 }
2879
2880 static void
iris_set_compute_resources(struct pipe_context * ctx,unsigned start,unsigned count,struct pipe_surface ** resources)2881 iris_set_compute_resources(struct pipe_context *ctx,
2882 unsigned start, unsigned count,
2883 struct pipe_surface **resources)
2884 {
2885 assert(count == 0);
2886 }
2887
2888 static void
iris_set_global_binding(struct pipe_context * ctx,unsigned start_slot,unsigned count,struct pipe_resource ** resources,uint32_t ** handles)2889 iris_set_global_binding(struct pipe_context *ctx,
2890 unsigned start_slot, unsigned count,
2891 struct pipe_resource **resources,
2892 uint32_t **handles)
2893 {
2894 struct iris_context *ice = (struct iris_context *) ctx;
2895
2896 assert(start_slot + count <= IRIS_MAX_GLOBAL_BINDINGS);
2897 for (unsigned i = 0; i < count; i++) {
2898 if (resources && resources[i]) {
2899 pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
2900 resources[i]);
2901 struct iris_resource *res = (void *) resources[i];
2902 uint64_t addr = res->bo->gtt_offset;
2903 memcpy(handles[i], &addr, sizeof(addr));
2904 } else {
2905 pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
2906 NULL);
2907 }
2908 }
2909
2910 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_CS;
2911 }
2912
2913 /**
2914 * The pipe->set_tess_state() driver hook.
2915 */
2916 static void
iris_set_tess_state(struct pipe_context * ctx,const float default_outer_level[4],const float default_inner_level[2])2917 iris_set_tess_state(struct pipe_context *ctx,
2918 const float default_outer_level[4],
2919 const float default_inner_level[2])
2920 {
2921 struct iris_context *ice = (struct iris_context *) ctx;
2922 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2923
2924 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2925 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2926
2927 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_TCS;
2928 shs->sysvals_need_upload = true;
2929 }
2930
2931 static void
iris_surface_destroy(struct pipe_context * ctx,struct pipe_surface * p_surf)2932 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2933 {
2934 struct iris_surface *surf = (void *) p_surf;
2935 pipe_resource_reference(&p_surf->texture, NULL);
2936 pipe_resource_reference(&surf->surface_state.ref.res, NULL);
2937 pipe_resource_reference(&surf->surface_state_read.ref.res, NULL);
2938 free(surf->surface_state.cpu);
2939 free(surf);
2940 }
2941
2942 static void
iris_set_clip_state(struct pipe_context * ctx,const struct pipe_clip_state * state)2943 iris_set_clip_state(struct pipe_context *ctx,
2944 const struct pipe_clip_state *state)
2945 {
2946 struct iris_context *ice = (struct iris_context *) ctx;
2947 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2948 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2949 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2950
2951 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2952
2953 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS |
2954 IRIS_STAGE_DIRTY_CONSTANTS_GS |
2955 IRIS_STAGE_DIRTY_CONSTANTS_TES;
2956 shs->sysvals_need_upload = true;
2957 gshs->sysvals_need_upload = true;
2958 tshs->sysvals_need_upload = true;
2959 }
2960
2961 /**
2962 * The pipe->set_polygon_stipple() driver hook.
2963 */
2964 static void
iris_set_polygon_stipple(struct pipe_context * ctx,const struct pipe_poly_stipple * state)2965 iris_set_polygon_stipple(struct pipe_context *ctx,
2966 const struct pipe_poly_stipple *state)
2967 {
2968 struct iris_context *ice = (struct iris_context *) ctx;
2969 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2970 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2971 }
2972
2973 /**
2974 * The pipe->set_sample_mask() driver hook.
2975 */
2976 static void
iris_set_sample_mask(struct pipe_context * ctx,unsigned sample_mask)2977 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2978 {
2979 struct iris_context *ice = (struct iris_context *) ctx;
2980
2981 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2982 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2983 */
2984 ice->state.sample_mask = sample_mask & 0xffff;
2985 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2986 }
2987
2988 /**
2989 * The pipe->set_scissor_states() driver hook.
2990 *
2991 * This corresponds to our SCISSOR_RECT state structures. It's an
2992 * exact match, so we just store them, and memcpy them out later.
2993 */
2994 static void
iris_set_scissor_states(struct pipe_context * ctx,unsigned start_slot,unsigned num_scissors,const struct pipe_scissor_state * rects)2995 iris_set_scissor_states(struct pipe_context *ctx,
2996 unsigned start_slot,
2997 unsigned num_scissors,
2998 const struct pipe_scissor_state *rects)
2999 {
3000 struct iris_context *ice = (struct iris_context *) ctx;
3001
3002 for (unsigned i = 0; i < num_scissors; i++) {
3003 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
3004 /* If the scissor was out of bounds and got clamped to 0 width/height
3005 * at the bounds, the subtraction of 1 from maximums could produce a
3006 * negative number and thus not clip anything. Instead, just provide
3007 * a min > max scissor inside the bounds, which produces the expected
3008 * no rendering.
3009 */
3010 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
3011 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
3012 };
3013 } else {
3014 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
3015 .minx = rects[i].minx, .miny = rects[i].miny,
3016 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
3017 };
3018 }
3019 }
3020
3021 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
3022 }
3023
3024 /**
3025 * The pipe->set_stencil_ref() driver hook.
3026 *
3027 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
3028 */
3029 static void
iris_set_stencil_ref(struct pipe_context * ctx,const struct pipe_stencil_ref * state)3030 iris_set_stencil_ref(struct pipe_context *ctx,
3031 const struct pipe_stencil_ref *state)
3032 {
3033 struct iris_context *ice = (struct iris_context *) ctx;
3034 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
3035 if (GEN_GEN >= 12)
3036 ice->state.dirty |= IRIS_DIRTY_STENCIL_REF;
3037 else if (GEN_GEN >= 9)
3038 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
3039 else
3040 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
3041 }
3042
3043 static float
viewport_extent(const struct pipe_viewport_state * state,int axis,float sign)3044 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
3045 {
3046 return copysignf(state->scale[axis], sign) + state->translate[axis];
3047 }
3048
3049 /**
3050 * The pipe->set_viewport_states() driver hook.
3051 *
3052 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
3053 * the guardband yet, as we need the framebuffer dimensions, but we can
3054 * at least fill out the rest.
3055 */
3056 static void
iris_set_viewport_states(struct pipe_context * ctx,unsigned start_slot,unsigned count,const struct pipe_viewport_state * states)3057 iris_set_viewport_states(struct pipe_context *ctx,
3058 unsigned start_slot,
3059 unsigned count,
3060 const struct pipe_viewport_state *states)
3061 {
3062 struct iris_context *ice = (struct iris_context *) ctx;
3063
3064 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
3065
3066 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
3067
3068 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
3069 !ice->state.cso_rast->depth_clip_far))
3070 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
3071 }
3072
3073 /**
3074 * The pipe->set_framebuffer_state() driver hook.
3075 *
3076 * Sets the current draw FBO, including color render targets, depth,
3077 * and stencil buffers.
3078 */
3079 static void
iris_set_framebuffer_state(struct pipe_context * ctx,const struct pipe_framebuffer_state * state)3080 iris_set_framebuffer_state(struct pipe_context *ctx,
3081 const struct pipe_framebuffer_state *state)
3082 {
3083 struct iris_context *ice = (struct iris_context *) ctx;
3084 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3085 struct isl_device *isl_dev = &screen->isl_dev;
3086 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
3087 struct iris_resource *zres;
3088 struct iris_resource *stencil_res;
3089
3090 unsigned samples = util_framebuffer_get_num_samples(state);
3091 unsigned layers = util_framebuffer_get_num_layers(state);
3092
3093 if (cso->samples != samples) {
3094 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
3095
3096 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
3097 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
3098 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
3099 }
3100
3101 if (cso->nr_cbufs != state->nr_cbufs) {
3102 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
3103 }
3104
3105 if ((cso->layers == 0) != (layers == 0)) {
3106 ice->state.dirty |= IRIS_DIRTY_CLIP;
3107 }
3108
3109 if (cso->width != state->width || cso->height != state->height) {
3110 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
3111 }
3112
3113 if (cso->zsbuf || state->zsbuf) {
3114 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
3115 }
3116
3117 util_copy_framebuffer_state(cso, state);
3118 cso->samples = samples;
3119 cso->layers = layers;
3120
3121 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
3122
3123 struct isl_view view = {
3124 .base_level = 0,
3125 .levels = 1,
3126 .base_array_layer = 0,
3127 .array_len = 1,
3128 .swizzle = ISL_SWIZZLE_IDENTITY,
3129 };
3130
3131 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
3132
3133 if (cso->zsbuf) {
3134 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
3135 &stencil_res);
3136
3137 view.base_level = cso->zsbuf->u.tex.level;
3138 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
3139 view.array_len =
3140 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
3141
3142 if (zres) {
3143 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
3144
3145 info.depth_surf = &zres->surf;
3146 info.depth_address = zres->bo->gtt_offset + zres->offset;
3147 info.mocs = iris_mocs(zres->bo, isl_dev, view.usage);
3148
3149 view.format = zres->surf.format;
3150
3151 if (iris_resource_level_has_hiz(zres, view.base_level)) {
3152 info.hiz_usage = zres->aux.usage;
3153 info.hiz_surf = &zres->aux.surf;
3154 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
3155 }
3156 }
3157
3158 if (stencil_res) {
3159 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
3160 info.stencil_aux_usage = stencil_res->aux.usage;
3161 info.stencil_surf = &stencil_res->surf;
3162 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
3163 if (!zres) {
3164 view.format = stencil_res->surf.format;
3165 info.mocs = iris_mocs(stencil_res->bo, isl_dev, view.usage);
3166 }
3167 }
3168 }
3169
3170 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
3171
3172 /* Make a null surface for unbound buffers */
3173 void *null_surf_map =
3174 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
3175 4 * GENX(RENDER_SURFACE_STATE_length), 64);
3176 isl_null_fill_state(&screen->isl_dev, null_surf_map,
3177 isl_extent3d(MAX2(cso->width, 1),
3178 MAX2(cso->height, 1),
3179 cso->layers ? cso->layers : 1));
3180 ice->state.null_fb.offset +=
3181 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
3182
3183 /* Render target change */
3184 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_FS;
3185
3186 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
3187
3188 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3189
3190 ice->state.stage_dirty |=
3191 ice->state.stage_dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
3192
3193 if (GEN_GEN == 8)
3194 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
3195 }
3196
3197 /**
3198 * The pipe->set_constant_buffer() driver hook.
3199 *
3200 * This uploads any constant data in user buffers, and references
3201 * any UBO resources containing constant data.
3202 */
3203 static void
iris_set_constant_buffer(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned index,const struct pipe_constant_buffer * input)3204 iris_set_constant_buffer(struct pipe_context *ctx,
3205 enum pipe_shader_type p_stage, unsigned index,
3206 const struct pipe_constant_buffer *input)
3207 {
3208 struct iris_context *ice = (struct iris_context *) ctx;
3209 gl_shader_stage stage = stage_from_pipe(p_stage);
3210 struct iris_shader_state *shs = &ice->state.shaders[stage];
3211 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
3212
3213 /* TODO: Only do this if the buffer changes? */
3214 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
3215
3216 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
3217 shs->bound_cbufs |= 1u << index;
3218
3219 if (input->user_buffer) {
3220 void *map = NULL;
3221 pipe_resource_reference(&cbuf->buffer, NULL);
3222 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
3223 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3224
3225 if (!cbuf->buffer) {
3226 /* Allocation was unsuccessful - just unbind */
3227 iris_set_constant_buffer(ctx, p_stage, index, NULL);
3228 return;
3229 }
3230
3231 assert(map);
3232 memcpy(map, input->user_buffer, input->buffer_size);
3233 } else if (input->buffer) {
3234 pipe_resource_reference(&cbuf->buffer, input->buffer);
3235
3236 cbuf->buffer_offset = input->buffer_offset;
3237 }
3238
3239 cbuf->buffer_size =
3240 MIN2(input->buffer_size,
3241 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
3242
3243 struct iris_resource *res = (void *) cbuf->buffer;
3244 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
3245 res->bind_stages |= 1 << stage;
3246 } else {
3247 shs->bound_cbufs &= ~(1u << index);
3248 pipe_resource_reference(&cbuf->buffer, NULL);
3249 }
3250
3251 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
3252 }
3253
3254 static void
upload_sysvals(struct iris_context * ice,gl_shader_stage stage,const struct pipe_grid_info * grid)3255 upload_sysvals(struct iris_context *ice,
3256 gl_shader_stage stage,
3257 const struct pipe_grid_info *grid)
3258 {
3259 UNUSED struct iris_genx_state *genx = ice->state.genx;
3260 struct iris_shader_state *shs = &ice->state.shaders[stage];
3261
3262 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3263 if (!shader || (shader->num_system_values == 0 &&
3264 shader->kernel_input_size == 0))
3265 return;
3266
3267 assert(shader->num_cbufs > 0);
3268
3269 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
3270 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
3271 unsigned system_values_start =
3272 ALIGN(shader->kernel_input_size, sizeof(uint32_t));
3273 unsigned upload_size = system_values_start +
3274 shader->num_system_values * sizeof(uint32_t);
3275 void *map = NULL;
3276
3277 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
3278 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
3279 &cbuf->buffer_offset, &cbuf->buffer, &map);
3280
3281 if (shader->kernel_input_size > 0)
3282 memcpy(map, grid->input, shader->kernel_input_size);
3283
3284 uint32_t *sysval_map = map + system_values_start;
3285 for (int i = 0; i < shader->num_system_values; i++) {
3286 uint32_t sysval = shader->system_values[i];
3287 uint32_t value = 0;
3288
3289 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
3290 #if GEN_GEN == 8
3291 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
3292 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
3293 struct brw_image_param *param =
3294 &genx->shaders[stage].image_param[img];
3295
3296 assert(offset < sizeof(struct brw_image_param));
3297 value = ((uint32_t *) param)[offset];
3298 #endif
3299 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
3300 value = 0;
3301 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
3302 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
3303 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
3304 value = fui(ice->state.clip_planes.ucp[plane][comp]);
3305 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
3306 if (stage == MESA_SHADER_TESS_CTRL) {
3307 value = ice->state.vertices_per_patch;
3308 } else {
3309 assert(stage == MESA_SHADER_TESS_EVAL);
3310 const struct shader_info *tcs_info =
3311 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
3312 if (tcs_info)
3313 value = tcs_info->tess.tcs_vertices_out;
3314 else
3315 value = ice->state.vertices_per_patch;
3316 }
3317 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
3318 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
3319 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
3320 value = fui(ice->state.default_outer_level[i]);
3321 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
3322 value = fui(ice->state.default_inner_level[0]);
3323 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
3324 value = fui(ice->state.default_inner_level[1]);
3325 } else if (sysval >= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X &&
3326 sysval <= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z) {
3327 unsigned i = sysval - BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X;
3328 value = ice->state.last_block[i];
3329 } else if (sysval == BRW_PARAM_BUILTIN_WORK_DIM) {
3330 value = grid->work_dim;
3331 } else {
3332 assert(!"unhandled system value");
3333 }
3334
3335 *sysval_map++ = value;
3336 }
3337
3338 cbuf->buffer_size = upload_size;
3339 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
3340 &shs->constbuf_surf_state[sysval_cbuf_index],
3341 ISL_SURF_USAGE_CONSTANT_BUFFER_BIT);
3342
3343 shs->sysvals_need_upload = false;
3344 }
3345
3346 /**
3347 * The pipe->set_shader_buffers() driver hook.
3348 *
3349 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
3350 * SURFACE_STATE here, as the buffer offset may change each time.
3351 */
3352 static void
iris_set_shader_buffers(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start_slot,unsigned count,const struct pipe_shader_buffer * buffers,unsigned writable_bitmask)3353 iris_set_shader_buffers(struct pipe_context *ctx,
3354 enum pipe_shader_type p_stage,
3355 unsigned start_slot, unsigned count,
3356 const struct pipe_shader_buffer *buffers,
3357 unsigned writable_bitmask)
3358 {
3359 struct iris_context *ice = (struct iris_context *) ctx;
3360 gl_shader_stage stage = stage_from_pipe(p_stage);
3361 struct iris_shader_state *shs = &ice->state.shaders[stage];
3362
3363 unsigned modified_bits = u_bit_consecutive(start_slot, count);
3364
3365 shs->bound_ssbos &= ~modified_bits;
3366 shs->writable_ssbos &= ~modified_bits;
3367 shs->writable_ssbos |= writable_bitmask << start_slot;
3368
3369 for (unsigned i = 0; i < count; i++) {
3370 if (buffers && buffers[i].buffer) {
3371 struct iris_resource *res = (void *) buffers[i].buffer;
3372 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
3373 struct iris_state_ref *surf_state =
3374 &shs->ssbo_surf_state[start_slot + i];
3375 pipe_resource_reference(&ssbo->buffer, &res->base);
3376 ssbo->buffer_offset = buffers[i].buffer_offset;
3377 ssbo->buffer_size =
3378 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
3379
3380 shs->bound_ssbos |= 1 << (start_slot + i);
3381
3382 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
3383
3384 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, usage);
3385
3386 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
3387 res->bind_stages |= 1 << stage;
3388
3389 util_range_add(&res->base, &res->valid_buffer_range, ssbo->buffer_offset,
3390 ssbo->buffer_offset + ssbo->buffer_size);
3391 } else {
3392 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
3393 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
3394 NULL);
3395 }
3396 }
3397
3398 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
3399 }
3400
3401 static void
iris_delete_state(struct pipe_context * ctx,void * state)3402 iris_delete_state(struct pipe_context *ctx, void *state)
3403 {
3404 free(state);
3405 }
3406
3407 /**
3408 * The pipe->set_vertex_buffers() driver hook.
3409 *
3410 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
3411 */
3412 static void
iris_set_vertex_buffers(struct pipe_context * ctx,unsigned start_slot,unsigned count,const struct pipe_vertex_buffer * buffers)3413 iris_set_vertex_buffers(struct pipe_context *ctx,
3414 unsigned start_slot, unsigned count,
3415 const struct pipe_vertex_buffer *buffers)
3416 {
3417 struct iris_context *ice = (struct iris_context *) ctx;
3418 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3419 struct iris_genx_state *genx = ice->state.genx;
3420
3421 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
3422
3423 for (unsigned i = 0; i < count; i++) {
3424 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
3425 struct iris_vertex_buffer_state *state =
3426 &genx->vertex_buffers[start_slot + i];
3427
3428 if (!buffer) {
3429 pipe_resource_reference(&state->resource, NULL);
3430 continue;
3431 }
3432
3433 /* We may see user buffers that are NULL bindings. */
3434 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
3435
3436 pipe_resource_reference(&state->resource, buffer->buffer.resource);
3437 struct iris_resource *res = (void *) state->resource;
3438
3439 state->offset = (int) buffer->buffer_offset;
3440
3441 if (res) {
3442 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
3443 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
3444 }
3445
3446 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
3447 vb.VertexBufferIndex = start_slot + i;
3448 vb.AddressModifyEnable = true;
3449 vb.BufferPitch = buffer->stride;
3450 if (res) {
3451 vb.BufferSize = res->base.width0 - (int) buffer->buffer_offset;
3452 vb.BufferStartingAddress =
3453 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
3454 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
3455 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
3456 } else {
3457 vb.NullVertexBuffer = true;
3458 }
3459 }
3460 }
3461
3462 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
3463 }
3464
3465 /**
3466 * Gallium CSO for vertex elements.
3467 */
3468 struct iris_vertex_element_state {
3469 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
3470 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
3471 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
3472 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
3473 unsigned count;
3474 };
3475
3476 /**
3477 * The pipe->create_vertex_elements() driver hook.
3478 *
3479 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
3480 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
3481 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
3482 * needed. In these cases we will need information available at draw time.
3483 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
3484 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
3485 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
3486 */
3487 static void *
iris_create_vertex_elements(struct pipe_context * ctx,unsigned count,const struct pipe_vertex_element * state)3488 iris_create_vertex_elements(struct pipe_context *ctx,
3489 unsigned count,
3490 const struct pipe_vertex_element *state)
3491 {
3492 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3493 const struct gen_device_info *devinfo = &screen->devinfo;
3494 struct iris_vertex_element_state *cso =
3495 malloc(sizeof(struct iris_vertex_element_state));
3496
3497 cso->count = count;
3498
3499 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
3500 ve.DWordLength =
3501 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
3502 }
3503
3504 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
3505 uint32_t *vfi_pack_dest = cso->vf_instancing;
3506
3507 if (count == 0) {
3508 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3509 ve.Valid = true;
3510 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
3511 ve.Component0Control = VFCOMP_STORE_0;
3512 ve.Component1Control = VFCOMP_STORE_0;
3513 ve.Component2Control = VFCOMP_STORE_0;
3514 ve.Component3Control = VFCOMP_STORE_1_FP;
3515 }
3516
3517 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3518 }
3519 }
3520
3521 for (int i = 0; i < count; i++) {
3522 const struct iris_format_info fmt =
3523 iris_format_for_usage(devinfo, state[i].src_format, 0);
3524 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
3525 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
3526
3527 switch (isl_format_get_num_channels(fmt.fmt)) {
3528 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
3529 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
3530 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
3531 case 3:
3532 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
3533 : VFCOMP_STORE_1_FP;
3534 break;
3535 }
3536 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3537 ve.EdgeFlagEnable = false;
3538 ve.VertexBufferIndex = state[i].vertex_buffer_index;
3539 ve.Valid = true;
3540 ve.SourceElementOffset = state[i].src_offset;
3541 ve.SourceElementFormat = fmt.fmt;
3542 ve.Component0Control = comp[0];
3543 ve.Component1Control = comp[1];
3544 ve.Component2Control = comp[2];
3545 ve.Component3Control = comp[3];
3546 }
3547
3548 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3549 vi.VertexElementIndex = i;
3550 vi.InstancingEnable = state[i].instance_divisor > 0;
3551 vi.InstanceDataStepRate = state[i].instance_divisor;
3552 }
3553
3554 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
3555 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
3556 }
3557
3558 /* An alternative version of the last VE and VFI is stored so it
3559 * can be used at draw time in case Vertex Shader uses EdgeFlag
3560 */
3561 if (count) {
3562 const unsigned edgeflag_index = count - 1;
3563 const struct iris_format_info fmt =
3564 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
3565 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
3566 ve.EdgeFlagEnable = true ;
3567 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
3568 ve.Valid = true;
3569 ve.SourceElementOffset = state[edgeflag_index].src_offset;
3570 ve.SourceElementFormat = fmt.fmt;
3571 ve.Component0Control = VFCOMP_STORE_SRC;
3572 ve.Component1Control = VFCOMP_STORE_0;
3573 ve.Component2Control = VFCOMP_STORE_0;
3574 ve.Component3Control = VFCOMP_STORE_0;
3575 }
3576 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
3577 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
3578 * at draw time, as it should change if SGVs are emitted.
3579 */
3580 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
3581 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
3582 }
3583 }
3584
3585 return cso;
3586 }
3587
3588 /**
3589 * The pipe->bind_vertex_elements_state() driver hook.
3590 */
3591 static void
iris_bind_vertex_elements_state(struct pipe_context * ctx,void * state)3592 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
3593 {
3594 struct iris_context *ice = (struct iris_context *) ctx;
3595 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
3596 struct iris_vertex_element_state *new_cso = state;
3597
3598 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
3599 * we need to re-emit it to ensure we're overriding the right one.
3600 */
3601 if (new_cso && cso_changed(count))
3602 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
3603
3604 ice->state.cso_vertex_elements = state;
3605 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
3606 }
3607
3608 /**
3609 * The pipe->create_stream_output_target() driver hook.
3610 *
3611 * "Target" here refers to a destination buffer. We translate this into
3612 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
3613 * know which buffer this represents, or whether we ought to zero the
3614 * write-offsets, or append. Those are handled in the set() hook.
3615 */
3616 static struct pipe_stream_output_target *
iris_create_stream_output_target(struct pipe_context * ctx,struct pipe_resource * p_res,unsigned buffer_offset,unsigned buffer_size)3617 iris_create_stream_output_target(struct pipe_context *ctx,
3618 struct pipe_resource *p_res,
3619 unsigned buffer_offset,
3620 unsigned buffer_size)
3621 {
3622 struct iris_resource *res = (void *) p_res;
3623 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
3624 if (!cso)
3625 return NULL;
3626
3627 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
3628
3629 pipe_reference_init(&cso->base.reference, 1);
3630 pipe_resource_reference(&cso->base.buffer, p_res);
3631 cso->base.buffer_offset = buffer_offset;
3632 cso->base.buffer_size = buffer_size;
3633 cso->base.context = ctx;
3634
3635 util_range_add(&res->base, &res->valid_buffer_range, buffer_offset,
3636 buffer_offset + buffer_size);
3637
3638 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
3639
3640 return &cso->base;
3641 }
3642
3643 static void
iris_stream_output_target_destroy(struct pipe_context * ctx,struct pipe_stream_output_target * state)3644 iris_stream_output_target_destroy(struct pipe_context *ctx,
3645 struct pipe_stream_output_target *state)
3646 {
3647 struct iris_stream_output_target *cso = (void *) state;
3648
3649 pipe_resource_reference(&cso->base.buffer, NULL);
3650 pipe_resource_reference(&cso->offset.res, NULL);
3651
3652 free(cso);
3653 }
3654
3655 /**
3656 * The pipe->set_stream_output_targets() driver hook.
3657 *
3658 * At this point, we know which targets are bound to a particular index,
3659 * and also whether we want to append or start over. We can finish the
3660 * 3DSTATE_SO_BUFFER packets we started earlier.
3661 */
3662 static void
iris_set_stream_output_targets(struct pipe_context * ctx,unsigned num_targets,struct pipe_stream_output_target ** targets,const unsigned * offsets)3663 iris_set_stream_output_targets(struct pipe_context *ctx,
3664 unsigned num_targets,
3665 struct pipe_stream_output_target **targets,
3666 const unsigned *offsets)
3667 {
3668 struct iris_context *ice = (struct iris_context *) ctx;
3669 struct iris_genx_state *genx = ice->state.genx;
3670 uint32_t *so_buffers = genx->so_buffers;
3671 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3672
3673 const bool active = num_targets > 0;
3674 if (ice->state.streamout_active != active) {
3675 ice->state.streamout_active = active;
3676 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3677
3678 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3679 * it's a non-pipelined command. If we're switching streamout on, we
3680 * may have missed emitting it earlier, so do so now. (We're already
3681 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3682 */
3683 if (active) {
3684 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3685 } else {
3686 uint32_t flush = 0;
3687 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3688 struct iris_stream_output_target *tgt =
3689 (void *) ice->state.so_target[i];
3690 if (tgt) {
3691 struct iris_resource *res = (void *) tgt->base.buffer;
3692
3693 flush |= iris_flush_bits_for_history(ice, res);
3694 iris_dirty_for_history(ice, res);
3695 }
3696 }
3697 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3698 "make streamout results visible", flush);
3699 }
3700 }
3701
3702 for (int i = 0; i < 4; i++) {
3703 pipe_so_target_reference(&ice->state.so_target[i],
3704 i < num_targets ? targets[i] : NULL);
3705 }
3706
3707 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3708 if (!active)
3709 return;
3710
3711 for (unsigned i = 0; i < 4; i++,
3712 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3713
3714 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3715 unsigned offset = offsets[i];
3716
3717 if (!tgt) {
3718 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3719 #if GEN_GEN < 12
3720 sob.SOBufferIndex = i;
3721 #else
3722 sob._3DCommandOpcode = 0;
3723 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3724 #endif
3725 }
3726 continue;
3727 }
3728
3729 struct iris_resource *res = (void *) tgt->base.buffer;
3730
3731 /* Note that offsets[i] will either be 0, causing us to zero
3732 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3733 * "continue appending at the existing offset."
3734 */
3735 assert(offset == 0 || offset == 0xFFFFFFFF);
3736
3737 /* We might be called by Begin (offset = 0), Pause, then Resume
3738 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3739 * will actually be sent to the GPU). In this case, we don't want
3740 * to append - we still want to do our initial zeroing.
3741 */
3742 if (!tgt->zeroed)
3743 offset = 0;
3744
3745 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3746 #if GEN_GEN < 12
3747 sob.SOBufferIndex = i;
3748 #else
3749 sob._3DCommandOpcode = 0;
3750 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3751 #endif
3752 sob.SurfaceBaseAddress =
3753 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset,
3754 IRIS_DOMAIN_OTHER_WRITE);
3755 sob.SOBufferEnable = true;
3756 sob.StreamOffsetWriteEnable = true;
3757 sob.StreamOutputBufferOffsetAddressEnable = true;
3758 sob.MOCS = iris_mocs(res->bo, &screen->isl_dev, 0);
3759
3760 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3761 sob.StreamOffset = offset;
3762 sob.StreamOutputBufferOffsetAddress =
3763 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3764 tgt->offset.offset, IRIS_DOMAIN_OTHER_WRITE);
3765 }
3766 }
3767
3768 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3769 }
3770
3771 /**
3772 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3773 * 3DSTATE_STREAMOUT packets.
3774 *
3775 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3776 * hardware to record. We can create it entirely based on the shader, with
3777 * no dynamic state dependencies.
3778 *
3779 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3780 * state-based settings. We capture the shader-related ones here, and merge
3781 * the rest in at draw time.
3782 */
3783 static uint32_t *
iris_create_so_decl_list(const struct pipe_stream_output_info * info,const struct brw_vue_map * vue_map)3784 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3785 const struct brw_vue_map *vue_map)
3786 {
3787 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3788 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3789 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3790 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3791 int max_decls = 0;
3792 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3793
3794 memset(so_decl, 0, sizeof(so_decl));
3795
3796 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3797 * command feels strange -- each dword pair contains a SO_DECL per stream.
3798 */
3799 for (unsigned i = 0; i < info->num_outputs; i++) {
3800 const struct pipe_stream_output *output = &info->output[i];
3801 const int buffer = output->output_buffer;
3802 const int varying = output->register_index;
3803 const unsigned stream_id = output->stream;
3804 assert(stream_id < MAX_VERTEX_STREAMS);
3805
3806 buffer_mask[stream_id] |= 1 << buffer;
3807
3808 assert(vue_map->varying_to_slot[varying] >= 0);
3809
3810 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3811 * array. Instead, it simply increments DstOffset for the following
3812 * input by the number of components that should be skipped.
3813 *
3814 * Our hardware is unusual in that it requires us to program SO_DECLs
3815 * for fake "hole" components, rather than simply taking the offset
3816 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3817 * program as many size = 4 holes as we can, then a final hole to
3818 * accommodate the final 1, 2, or 3 remaining.
3819 */
3820 int skip_components = output->dst_offset - next_offset[buffer];
3821
3822 while (skip_components > 0) {
3823 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3824 .HoleFlag = 1,
3825 .OutputBufferSlot = output->output_buffer,
3826 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3827 };
3828 skip_components -= 4;
3829 }
3830
3831 next_offset[buffer] = output->dst_offset + output->num_components;
3832
3833 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3834 .OutputBufferSlot = output->output_buffer,
3835 .RegisterIndex = vue_map->varying_to_slot[varying],
3836 .ComponentMask =
3837 ((1 << output->num_components) - 1) << output->start_component,
3838 };
3839
3840 if (decls[stream_id] > max_decls)
3841 max_decls = decls[stream_id];
3842 }
3843
3844 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3845 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3846 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3847
3848 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3849 int urb_entry_read_offset = 0;
3850 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3851 urb_entry_read_offset;
3852
3853 /* We always read the whole vertex. This could be reduced at some
3854 * point by reading less and offsetting the register index in the
3855 * SO_DECLs.
3856 */
3857 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3858 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3859 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3860 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3861 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3862 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3863 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3864 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3865
3866 /* Set buffer pitches; 0 means unbound. */
3867 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3868 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3869 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3870 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3871 }
3872
3873 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3874 list.DWordLength = 3 + 2 * max_decls - 2;
3875 list.StreamtoBufferSelects0 = buffer_mask[0];
3876 list.StreamtoBufferSelects1 = buffer_mask[1];
3877 list.StreamtoBufferSelects2 = buffer_mask[2];
3878 list.StreamtoBufferSelects3 = buffer_mask[3];
3879 list.NumEntries0 = decls[0];
3880 list.NumEntries1 = decls[1];
3881 list.NumEntries2 = decls[2];
3882 list.NumEntries3 = decls[3];
3883 }
3884
3885 for (int i = 0; i < max_decls; i++) {
3886 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3887 entry.Stream0Decl = so_decl[0][i];
3888 entry.Stream1Decl = so_decl[1][i];
3889 entry.Stream2Decl = so_decl[2][i];
3890 entry.Stream3Decl = so_decl[3][i];
3891 }
3892 }
3893
3894 return map;
3895 }
3896
3897 static void
iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,const struct brw_vue_map * last_vue_map,bool two_sided_color,unsigned * out_offset,unsigned * out_length)3898 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3899 const struct brw_vue_map *last_vue_map,
3900 bool two_sided_color,
3901 unsigned *out_offset,
3902 unsigned *out_length)
3903 {
3904 /* The compiler computes the first URB slot without considering COL/BFC
3905 * swizzling (because it doesn't know whether it's enabled), so we need
3906 * to do that here too. This may result in a smaller offset, which
3907 * should be safe.
3908 */
3909 const unsigned first_slot =
3910 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3911
3912 /* This becomes the URB read offset (counted in pairs of slots). */
3913 assert(first_slot % 2 == 0);
3914 *out_offset = first_slot / 2;
3915
3916 /* We need to adjust the inputs read to account for front/back color
3917 * swizzling, as it can make the URB length longer.
3918 */
3919 for (int c = 0; c <= 1; c++) {
3920 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3921 /* If two sided color is enabled, the fragment shader's gl_Color
3922 * (COL0) input comes from either the gl_FrontColor (COL0) or
3923 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3924 */
3925 if (two_sided_color)
3926 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3927
3928 /* If front color isn't written, we opt to give them back color
3929 * instead of an undefined value. Switch from COL to BFC.
3930 */
3931 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3932 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3933 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3934 }
3935 }
3936 }
3937
3938 /* Compute the minimum URB Read Length necessary for the FS inputs.
3939 *
3940 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3941 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3942 *
3943 * "This field should be set to the minimum length required to read the
3944 * maximum source attribute. The maximum source attribute is indicated
3945 * by the maximum value of the enabled Attribute # Source Attribute if
3946 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3947 * enable is not set.
3948 * read_length = ceiling((max_source_attr + 1) / 2)
3949 *
3950 * [errata] Corruption/Hang possible if length programmed larger than
3951 * recommended"
3952 *
3953 * Similar text exists for Ivy Bridge.
3954 *
3955 * We find the last URB slot that's actually read by the FS.
3956 */
3957 unsigned last_read_slot = last_vue_map->num_slots - 1;
3958 while (last_read_slot > first_slot && !(fs_input_slots &
3959 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3960 --last_read_slot;
3961
3962 /* The URB read length is the difference of the two, counted in pairs. */
3963 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3964 }
3965
3966 static void
iris_emit_sbe_swiz(struct iris_batch * batch,const struct iris_context * ice,unsigned urb_read_offset,unsigned sprite_coord_enables)3967 iris_emit_sbe_swiz(struct iris_batch *batch,
3968 const struct iris_context *ice,
3969 unsigned urb_read_offset,
3970 unsigned sprite_coord_enables)
3971 {
3972 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3973 const struct brw_wm_prog_data *wm_prog_data = (void *)
3974 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3975 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3976 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3977
3978 /* XXX: this should be generated when putting programs in place */
3979
3980 for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
3981 const uint8_t fs_attr = wm_prog_data->urb_setup_attribs[idx];
3982 const int input_index = wm_prog_data->urb_setup[fs_attr];
3983 if (input_index < 0 || input_index >= 16)
3984 continue;
3985
3986 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3987 &attr_overrides[input_index];
3988 int slot = vue_map->varying_to_slot[fs_attr];
3989
3990 /* Viewport and Layer are stored in the VUE header. We need to override
3991 * them to zero if earlier stages didn't write them, as GL requires that
3992 * they read back as zero when not explicitly set.
3993 */
3994 switch (fs_attr) {
3995 case VARYING_SLOT_VIEWPORT:
3996 case VARYING_SLOT_LAYER:
3997 attr->ComponentOverrideX = true;
3998 attr->ComponentOverrideW = true;
3999 attr->ConstantSource = CONST_0000;
4000
4001 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
4002 attr->ComponentOverrideY = true;
4003 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
4004 attr->ComponentOverrideZ = true;
4005 continue;
4006
4007 case VARYING_SLOT_PRIMITIVE_ID:
4008 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
4009 if (slot == -1) {
4010 attr->ComponentOverrideX = true;
4011 attr->ComponentOverrideY = true;
4012 attr->ComponentOverrideZ = true;
4013 attr->ComponentOverrideW = true;
4014 attr->ConstantSource = PRIM_ID;
4015 continue;
4016 }
4017
4018 default:
4019 break;
4020 }
4021
4022 if (sprite_coord_enables & (1 << input_index))
4023 continue;
4024
4025 /* If there was only a back color written but not front, use back
4026 * as the color instead of undefined.
4027 */
4028 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
4029 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
4030 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
4031 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
4032
4033 /* Not written by the previous stage - undefined. */
4034 if (slot == -1) {
4035 attr->ComponentOverrideX = true;
4036 attr->ComponentOverrideY = true;
4037 attr->ComponentOverrideZ = true;
4038 attr->ComponentOverrideW = true;
4039 attr->ConstantSource = CONST_0001_FLOAT;
4040 continue;
4041 }
4042
4043 /* Compute the location of the attribute relative to the read offset,
4044 * which is counted in 256-bit increments (two 128-bit VUE slots).
4045 */
4046 const int source_attr = slot - 2 * urb_read_offset;
4047 assert(source_attr >= 0 && source_attr <= 32);
4048 attr->SourceAttribute = source_attr;
4049
4050 /* If we are doing two-sided color, and the VUE slot following this one
4051 * represents a back-facing color, then we need to instruct the SF unit
4052 * to do back-facing swizzling.
4053 */
4054 if (cso_rast->light_twoside &&
4055 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
4056 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
4057 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
4058 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
4059 attr->SwizzleSelect = INPUTATTR_FACING;
4060 }
4061
4062 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
4063 for (int i = 0; i < 16; i++)
4064 sbes.Attribute[i] = attr_overrides[i];
4065 }
4066 }
4067
4068 static bool
iris_is_drawing_points(const struct iris_context * ice)4069 iris_is_drawing_points(const struct iris_context *ice)
4070 {
4071 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4072
4073 if (cso_rast->fill_mode_point) {
4074 return true;
4075 }
4076
4077 if (ice->shaders.prog[MESA_SHADER_GEOMETRY]) {
4078 const struct brw_gs_prog_data *gs_prog_data =
4079 (void *) ice->shaders.prog[MESA_SHADER_GEOMETRY]->prog_data;
4080 return gs_prog_data->output_topology == _3DPRIM_POINTLIST;
4081 } else if (ice->shaders.prog[MESA_SHADER_TESS_EVAL]) {
4082 const struct brw_tes_prog_data *tes_data =
4083 (void *) ice->shaders.prog[MESA_SHADER_TESS_EVAL]->prog_data;
4084 return tes_data->output_topology == BRW_TESS_OUTPUT_TOPOLOGY_POINT;
4085 } else {
4086 return ice->state.prim_mode == PIPE_PRIM_POINTS;
4087 }
4088 }
4089
4090 static unsigned
iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data * prog_data,const struct iris_rasterizer_state * cso)4091 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
4092 const struct iris_rasterizer_state *cso)
4093 {
4094 unsigned overrides = 0;
4095
4096 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
4097 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
4098
4099 for (int i = 0; i < 8; i++) {
4100 if ((cso->sprite_coord_enable & (1 << i)) &&
4101 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
4102 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
4103 }
4104
4105 return overrides;
4106 }
4107
4108 static void
iris_emit_sbe(struct iris_batch * batch,const struct iris_context * ice)4109 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
4110 {
4111 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4112 const struct brw_wm_prog_data *wm_prog_data = (void *)
4113 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4114 const struct shader_info *fs_info =
4115 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4116
4117 unsigned urb_read_offset, urb_read_length;
4118 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
4119 ice->shaders.last_vue_map,
4120 cso_rast->light_twoside,
4121 &urb_read_offset, &urb_read_length);
4122
4123 unsigned sprite_coord_overrides =
4124 iris_is_drawing_points(ice) ?
4125 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast) : 0;
4126
4127 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
4128 sbe.AttributeSwizzleEnable = true;
4129 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
4130 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
4131 sbe.VertexURBEntryReadOffset = urb_read_offset;
4132 sbe.VertexURBEntryReadLength = urb_read_length;
4133 sbe.ForceVertexURBEntryReadOffset = true;
4134 sbe.ForceVertexURBEntryReadLength = true;
4135 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
4136 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
4137 #if GEN_GEN >= 9
4138 for (int i = 0; i < 32; i++) {
4139 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
4140 }
4141 #endif
4142 }
4143
4144 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
4145 }
4146
4147 /* ------------------------------------------------------------------- */
4148
4149 /**
4150 * Populate VS program key fields based on the current state.
4151 */
4152 static void
iris_populate_vs_key(const struct iris_context * ice,const struct shader_info * info,gl_shader_stage last_stage,struct iris_vs_prog_key * key)4153 iris_populate_vs_key(const struct iris_context *ice,
4154 const struct shader_info *info,
4155 gl_shader_stage last_stage,
4156 struct iris_vs_prog_key *key)
4157 {
4158 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4159
4160 if (info->clip_distance_array_size == 0 &&
4161 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4162 last_stage == MESA_SHADER_VERTEX)
4163 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4164 }
4165
4166 /**
4167 * Populate TCS program key fields based on the current state.
4168 */
4169 static void
iris_populate_tcs_key(const struct iris_context * ice,struct iris_tcs_prog_key * key)4170 iris_populate_tcs_key(const struct iris_context *ice,
4171 struct iris_tcs_prog_key *key)
4172 {
4173 }
4174
4175 /**
4176 * Populate TES program key fields based on the current state.
4177 */
4178 static void
iris_populate_tes_key(const struct iris_context * ice,const struct shader_info * info,gl_shader_stage last_stage,struct iris_tes_prog_key * key)4179 iris_populate_tes_key(const struct iris_context *ice,
4180 const struct shader_info *info,
4181 gl_shader_stage last_stage,
4182 struct iris_tes_prog_key *key)
4183 {
4184 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4185
4186 if (info->clip_distance_array_size == 0 &&
4187 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4188 last_stage == MESA_SHADER_TESS_EVAL)
4189 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4190 }
4191
4192 /**
4193 * Populate GS program key fields based on the current state.
4194 */
4195 static void
iris_populate_gs_key(const struct iris_context * ice,const struct shader_info * info,gl_shader_stage last_stage,struct iris_gs_prog_key * key)4196 iris_populate_gs_key(const struct iris_context *ice,
4197 const struct shader_info *info,
4198 gl_shader_stage last_stage,
4199 struct iris_gs_prog_key *key)
4200 {
4201 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4202
4203 if (info->clip_distance_array_size == 0 &&
4204 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4205 last_stage == MESA_SHADER_GEOMETRY)
4206 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4207 }
4208
4209 /**
4210 * Populate FS program key fields based on the current state.
4211 */
4212 static void
iris_populate_fs_key(const struct iris_context * ice,const struct shader_info * info,struct iris_fs_prog_key * key)4213 iris_populate_fs_key(const struct iris_context *ice,
4214 const struct shader_info *info,
4215 struct iris_fs_prog_key *key)
4216 {
4217 struct iris_screen *screen = (void *) ice->ctx.screen;
4218 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
4219 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
4220 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
4221 const struct iris_blend_state *blend = ice->state.cso_blend;
4222
4223 key->nr_color_regions = fb->nr_cbufs;
4224
4225 key->clamp_fragment_color = rast->clamp_fragment_color;
4226
4227 key->alpha_to_coverage = blend->alpha_to_coverage;
4228
4229 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
4230
4231 key->flat_shade = rast->flatshade &&
4232 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
4233
4234 key->persample_interp = rast->force_persample_interp;
4235 key->multisample_fbo = rast->multisample && fb->samples > 1;
4236
4237 key->coherent_fb_fetch = GEN_GEN >= 9;
4238
4239 key->force_dual_color_blend =
4240 screen->driconf.dual_color_blend_by_location &&
4241 (blend->blend_enables & 1) && blend->dual_color_blending;
4242
4243 /* TODO: Respect glHint for key->high_quality_derivatives */
4244 }
4245
4246 static void
iris_populate_cs_key(const struct iris_context * ice,struct iris_cs_prog_key * key)4247 iris_populate_cs_key(const struct iris_context *ice,
4248 struct iris_cs_prog_key *key)
4249 {
4250 }
4251
4252 static uint64_t
KSP(const struct iris_compiled_shader * shader)4253 KSP(const struct iris_compiled_shader *shader)
4254 {
4255 struct iris_resource *res = (void *) shader->assembly.res;
4256 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
4257 }
4258
4259 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
4260 pkt.KernelStartPointer = KSP(shader); \
4261 pkt.BindingTableEntryCount = shader->bt.size_bytes / 4; \
4262 pkt.FloatingPointMode = prog_data->use_alt_mode; \
4263 \
4264 pkt.DispatchGRFStartRegisterForURBData = \
4265 prog_data->dispatch_grf_start_reg; \
4266 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
4267 pkt.prefix##URBEntryReadOffset = 0; \
4268 \
4269 pkt.StatisticsEnable = true; \
4270 pkt.Enable = true; \
4271 \
4272 if (prog_data->total_scratch) { \
4273 struct iris_bo *bo = \
4274 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
4275 uint32_t scratch_addr = bo->gtt_offset; \
4276 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
4277 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr, \
4278 IRIS_DOMAIN_NONE); \
4279 }
4280
4281 /**
4282 * Encode most of 3DSTATE_VS based on the compiled shader.
4283 */
4284 static void
iris_store_vs_state(struct iris_context * ice,const struct gen_device_info * devinfo,struct iris_compiled_shader * shader)4285 iris_store_vs_state(struct iris_context *ice,
4286 const struct gen_device_info *devinfo,
4287 struct iris_compiled_shader *shader)
4288 {
4289 struct brw_stage_prog_data *prog_data = shader->prog_data;
4290 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4291
4292 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
4293 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
4294 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
4295 vs.SIMD8DispatchEnable = true;
4296 vs.UserClipDistanceCullTestEnableBitmask =
4297 vue_prog_data->cull_distance_mask;
4298 }
4299 }
4300
4301 /**
4302 * Encode most of 3DSTATE_HS based on the compiled shader.
4303 */
4304 static void
iris_store_tcs_state(struct iris_context * ice,const struct gen_device_info * devinfo,struct iris_compiled_shader * shader)4305 iris_store_tcs_state(struct iris_context *ice,
4306 const struct gen_device_info *devinfo,
4307 struct iris_compiled_shader *shader)
4308 {
4309 struct brw_stage_prog_data *prog_data = shader->prog_data;
4310 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4311 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
4312
4313 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
4314 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
4315
4316 #if GEN_GEN >= 12
4317 /* GEN:BUG:1604578095:
4318 *
4319 * Hang occurs when the number of max threads is less than 2 times
4320 * the number of instance count. The number of max threads must be
4321 * more than 2 times the number of instance count.
4322 */
4323 assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances);
4324 hs.DispatchGRFStartRegisterForURBData = prog_data->dispatch_grf_start_reg & 0x1f;
4325 hs.DispatchGRFStartRegisterForURBData5 = prog_data->dispatch_grf_start_reg >> 5;
4326 #endif
4327
4328 hs.InstanceCount = tcs_prog_data->instances - 1;
4329 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
4330 hs.IncludeVertexHandles = true;
4331
4332 #if GEN_GEN == 12
4333 /* Patch Count threshold specifies the maximum number of patches that
4334 * will be accumulated before a thread dispatch is forced.
4335 */
4336 hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold;
4337 #endif
4338
4339 #if GEN_GEN >= 9
4340 hs.DispatchMode = vue_prog_data->dispatch_mode;
4341 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
4342 #endif
4343 }
4344 }
4345
4346 /**
4347 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
4348 */
4349 static void
iris_store_tes_state(struct iris_context * ice,const struct gen_device_info * devinfo,struct iris_compiled_shader * shader)4350 iris_store_tes_state(struct iris_context *ice,
4351 const struct gen_device_info *devinfo,
4352 struct iris_compiled_shader *shader)
4353 {
4354 struct brw_stage_prog_data *prog_data = shader->prog_data;
4355 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4356 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
4357
4358 uint32_t *te_state = (void *) shader->derived_data;
4359 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
4360
4361 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
4362 te.Partitioning = tes_prog_data->partitioning;
4363 te.OutputTopology = tes_prog_data->output_topology;
4364 te.TEDomain = tes_prog_data->domain;
4365 te.TEEnable = true;
4366 te.MaximumTessellationFactorOdd = 63.0;
4367 te.MaximumTessellationFactorNotOdd = 64.0;
4368 }
4369
4370 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
4371 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
4372
4373 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
4374 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
4375 ds.ComputeWCoordinateEnable =
4376 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
4377
4378 ds.UserClipDistanceCullTestEnableBitmask =
4379 vue_prog_data->cull_distance_mask;
4380 }
4381
4382 }
4383
4384 /**
4385 * Encode most of 3DSTATE_GS based on the compiled shader.
4386 */
4387 static void
iris_store_gs_state(struct iris_context * ice,const struct gen_device_info * devinfo,struct iris_compiled_shader * shader)4388 iris_store_gs_state(struct iris_context *ice,
4389 const struct gen_device_info *devinfo,
4390 struct iris_compiled_shader *shader)
4391 {
4392 struct brw_stage_prog_data *prog_data = shader->prog_data;
4393 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4394 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
4395
4396 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
4397 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
4398
4399 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
4400 gs.OutputTopology = gs_prog_data->output_topology;
4401 gs.ControlDataHeaderSize =
4402 gs_prog_data->control_data_header_size_hwords;
4403 gs.InstanceControl = gs_prog_data->invocations - 1;
4404 gs.DispatchMode = DISPATCH_MODE_SIMD8;
4405 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
4406 gs.ControlDataFormat = gs_prog_data->control_data_format;
4407 gs.ReorderMode = TRAILING;
4408 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
4409 gs.MaximumNumberofThreads =
4410 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
4411 : (devinfo->max_gs_threads - 1);
4412
4413 if (gs_prog_data->static_vertex_count != -1) {
4414 gs.StaticOutput = true;
4415 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
4416 }
4417 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
4418
4419 gs.UserClipDistanceCullTestEnableBitmask =
4420 vue_prog_data->cull_distance_mask;
4421
4422 const int urb_entry_write_offset = 1;
4423 const uint32_t urb_entry_output_length =
4424 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
4425 urb_entry_write_offset;
4426
4427 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
4428 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
4429 }
4430 }
4431
4432 /**
4433 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
4434 */
4435 static void
iris_store_fs_state(struct iris_context * ice,const struct gen_device_info * devinfo,struct iris_compiled_shader * shader)4436 iris_store_fs_state(struct iris_context *ice,
4437 const struct gen_device_info *devinfo,
4438 struct iris_compiled_shader *shader)
4439 {
4440 struct brw_stage_prog_data *prog_data = shader->prog_data;
4441 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
4442
4443 uint32_t *ps_state = (void *) shader->derived_data;
4444 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
4445
4446 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4447 ps.VectorMaskEnable = true;
4448 ps.BindingTableEntryCount = shader->bt.size_bytes / 4;
4449 ps.FloatingPointMode = prog_data->use_alt_mode;
4450 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
4451
4452 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
4453
4454 /* From the documentation for this packet:
4455 * "If the PS kernel does not need the Position XY Offsets to
4456 * compute a Position Value, then this field should be programmed
4457 * to POSOFFSET_NONE."
4458 *
4459 * "SW Recommendation: If the PS kernel needs the Position Offsets
4460 * to compute a Position XY value, this field should match Position
4461 * ZW Interpolation Mode to ensure a consistent position.xyzw
4462 * computation."
4463 *
4464 * We only require XY sample offsets. So, this recommendation doesn't
4465 * look useful at the moment. We might need this in future.
4466 */
4467 ps.PositionXYOffsetSelect =
4468 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
4469
4470 if (prog_data->total_scratch) {
4471 struct iris_bo *bo =
4472 iris_get_scratch_space(ice, prog_data->total_scratch,
4473 MESA_SHADER_FRAGMENT);
4474 uint32_t scratch_addr = bo->gtt_offset;
4475 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4476 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr,
4477 IRIS_DOMAIN_NONE);
4478 }
4479 }
4480
4481 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
4482 psx.PixelShaderValid = true;
4483 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
4484 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
4485 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
4486 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
4487 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
4488 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
4489 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
4490
4491 #if GEN_GEN >= 9
4492 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
4493 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
4494 #endif
4495 }
4496 }
4497
4498 /**
4499 * Compute the size of the derived data (shader command packets).
4500 *
4501 * This must match the data written by the iris_store_xs_state() functions.
4502 */
4503 static void
iris_store_cs_state(struct iris_context * ice,const struct gen_device_info * devinfo,struct iris_compiled_shader * shader)4504 iris_store_cs_state(struct iris_context *ice,
4505 const struct gen_device_info *devinfo,
4506 struct iris_compiled_shader *shader)
4507 {
4508 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
4509 void *map = shader->derived_data;
4510
4511 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
4512 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
4513 desc.BarrierEnable = cs_prog_data->uses_barrier;
4514 desc.CrossThreadConstantDataReadLength =
4515 cs_prog_data->push.cross_thread.regs;
4516 #if GEN_GEN >= 12
4517 /* TODO: Check if we are missing workarounds and enable mid-thread
4518 * preemption.
4519 *
4520 * We still have issues with mid-thread preemption (it was already
4521 * disabled by the kernel on gen11, due to missing workarounds). It's
4522 * possible that we are just missing some workarounds, and could enable
4523 * it later, but for now let's disable it to fix a GPU in compute in Car
4524 * Chase (and possibly more).
4525 */
4526 desc.ThreadPreemptionDisable = true;
4527 #endif
4528 }
4529 }
4530
4531 static unsigned
iris_derived_program_state_size(enum iris_program_cache_id cache_id)4532 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
4533 {
4534 assert(cache_id <= IRIS_CACHE_BLORP);
4535
4536 static const unsigned dwords[] = {
4537 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
4538 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
4539 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
4540 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
4541 [IRIS_CACHE_FS] =
4542 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
4543 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
4544 [IRIS_CACHE_BLORP] = 0,
4545 };
4546
4547 return sizeof(uint32_t) * dwords[cache_id];
4548 }
4549
4550 /**
4551 * Create any state packets corresponding to the given shader stage
4552 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
4553 * This means that we can look up a program in the in-memory cache and
4554 * get most of the state packet without having to reconstruct it.
4555 */
4556 static void
iris_store_derived_program_state(struct iris_context * ice,enum iris_program_cache_id cache_id,struct iris_compiled_shader * shader)4557 iris_store_derived_program_state(struct iris_context *ice,
4558 enum iris_program_cache_id cache_id,
4559 struct iris_compiled_shader *shader)
4560 {
4561 struct iris_screen *screen = (void *) ice->ctx.screen;
4562 const struct gen_device_info *devinfo = &screen->devinfo;
4563
4564 switch (cache_id) {
4565 case IRIS_CACHE_VS:
4566 iris_store_vs_state(ice, devinfo, shader);
4567 break;
4568 case IRIS_CACHE_TCS:
4569 iris_store_tcs_state(ice, devinfo, shader);
4570 break;
4571 case IRIS_CACHE_TES:
4572 iris_store_tes_state(ice, devinfo, shader);
4573 break;
4574 case IRIS_CACHE_GS:
4575 iris_store_gs_state(ice, devinfo, shader);
4576 break;
4577 case IRIS_CACHE_FS:
4578 iris_store_fs_state(ice, devinfo, shader);
4579 break;
4580 case IRIS_CACHE_CS:
4581 iris_store_cs_state(ice, devinfo, shader);
4582 case IRIS_CACHE_BLORP:
4583 break;
4584 default:
4585 break;
4586 }
4587 }
4588
4589 /* ------------------------------------------------------------------- */
4590
4591 static const uint32_t push_constant_opcodes[] = {
4592 [MESA_SHADER_VERTEX] = 21,
4593 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
4594 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
4595 [MESA_SHADER_GEOMETRY] = 22,
4596 [MESA_SHADER_FRAGMENT] = 23,
4597 [MESA_SHADER_COMPUTE] = 0,
4598 };
4599
4600 static uint32_t
use_null_surface(struct iris_batch * batch,struct iris_context * ice)4601 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
4602 {
4603 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
4604
4605 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
4606
4607 return ice->state.unbound_tex.offset;
4608 }
4609
4610 static uint32_t
use_null_fb_surface(struct iris_batch * batch,struct iris_context * ice)4611 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
4612 {
4613 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
4614 if (!ice->state.null_fb.res)
4615 return use_null_surface(batch, ice);
4616
4617 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
4618
4619 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
4620
4621 return ice->state.null_fb.offset;
4622 }
4623
4624 static uint32_t
surf_state_offset_for_aux(struct iris_resource * res,unsigned aux_modes,enum isl_aux_usage aux_usage)4625 surf_state_offset_for_aux(struct iris_resource *res,
4626 unsigned aux_modes,
4627 enum isl_aux_usage aux_usage)
4628 {
4629 assert(aux_modes & (1 << aux_usage));
4630 return SURFACE_STATE_ALIGNMENT *
4631 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
4632 }
4633
4634 #if GEN_GEN == 9
4635 static void
surf_state_update_clear_value(struct iris_batch * batch,struct iris_resource * res,struct iris_state_ref * state,unsigned aux_modes,enum isl_aux_usage aux_usage)4636 surf_state_update_clear_value(struct iris_batch *batch,
4637 struct iris_resource *res,
4638 struct iris_state_ref *state,
4639 unsigned aux_modes,
4640 enum isl_aux_usage aux_usage)
4641 {
4642 struct isl_device *isl_dev = &batch->screen->isl_dev;
4643 struct iris_bo *state_bo = iris_resource_bo(state->res);
4644 uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
4645 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
4646 uint32_t clear_offset = offset_into_bo +
4647 isl_dev->ss.clear_value_offset +
4648 surf_state_offset_for_aux(res, aux_modes, aux_usage);
4649 uint32_t *color = res->aux.clear_color.u32;
4650
4651 assert(isl_dev->ss.clear_value_size == 16);
4652
4653 if (aux_usage == ISL_AUX_USAGE_HIZ) {
4654 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
4655 PIPE_CONTROL_WRITE_IMMEDIATE,
4656 state_bo, clear_offset, color[0]);
4657 } else {
4658 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
4659 PIPE_CONTROL_WRITE_IMMEDIATE,
4660 state_bo, clear_offset,
4661 (uint64_t) color[0] |
4662 (uint64_t) color[1] << 32);
4663 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
4664 PIPE_CONTROL_WRITE_IMMEDIATE,
4665 state_bo, clear_offset + 8,
4666 (uint64_t) color[2] |
4667 (uint64_t) color[3] << 32);
4668 }
4669
4670 iris_emit_pipe_control_flush(batch,
4671 "update fast clear: state cache invalidate",
4672 PIPE_CONTROL_FLUSH_ENABLE |
4673 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
4674 }
4675 #endif
4676
4677 static void
update_clear_value(struct iris_context * ice,struct iris_batch * batch,struct iris_resource * res,struct iris_surface_state * surf_state,unsigned all_aux_modes,struct isl_view * view)4678 update_clear_value(struct iris_context *ice,
4679 struct iris_batch *batch,
4680 struct iris_resource *res,
4681 struct iris_surface_state *surf_state,
4682 unsigned all_aux_modes,
4683 struct isl_view *view)
4684 {
4685 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
4686 UNUSED unsigned aux_modes = all_aux_modes;
4687
4688 /* We only need to update the clear color in the surface state for gen8 and
4689 * gen9. Newer gens can read it directly from the clear color state buffer.
4690 */
4691 #if GEN_GEN == 9
4692 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
4693 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
4694
4695 while (aux_modes) {
4696 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4697
4698 surf_state_update_clear_value(batch, res, &surf_state->ref,
4699 all_aux_modes, aux_usage);
4700 }
4701 #elif GEN_GEN == 8
4702 /* TODO: Could update rather than re-filling */
4703 alloc_surface_states(surf_state, all_aux_modes);
4704
4705 void *map = surf_state->cpu;
4706
4707 while (aux_modes) {
4708 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4709 fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage,
4710 0, 0, 0);
4711 map += SURFACE_STATE_ALIGNMENT;
4712 }
4713
4714 upload_surface_states(ice->state.surface_uploader, surf_state);
4715 #endif
4716 }
4717
4718 /**
4719 * Add a surface to the validation list, as well as the buffer containing
4720 * the corresponding SURFACE_STATE.
4721 *
4722 * Returns the binding table entry (offset to SURFACE_STATE).
4723 */
4724 static uint32_t
use_surface(struct iris_context * ice,struct iris_batch * batch,struct pipe_surface * p_surf,bool writeable,enum isl_aux_usage aux_usage,bool is_read_surface,enum iris_domain access)4725 use_surface(struct iris_context *ice,
4726 struct iris_batch *batch,
4727 struct pipe_surface *p_surf,
4728 bool writeable,
4729 enum isl_aux_usage aux_usage,
4730 bool is_read_surface,
4731 enum iris_domain access)
4732 {
4733 struct iris_surface *surf = (void *) p_surf;
4734 struct iris_resource *res = (void *) p_surf->texture;
4735 uint32_t offset = 0;
4736
4737 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture),
4738 writeable, access);
4739 if (GEN_GEN == 8 && is_read_surface) {
4740 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.ref.res), false,
4741 IRIS_DOMAIN_NONE);
4742 } else {
4743 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.ref.res), false,
4744 IRIS_DOMAIN_NONE);
4745 }
4746
4747 if (res->aux.bo) {
4748 iris_use_pinned_bo(batch, res->aux.bo, writeable, access);
4749 if (res->aux.clear_color_bo)
4750 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false, access);
4751
4752 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4753 sizeof(surf->clear_color)) != 0) {
4754 update_clear_value(ice, batch, res, &surf->surface_state,
4755 res->aux.possible_usages, &surf->view);
4756 if (GEN_GEN == 8) {
4757 update_clear_value(ice, batch, res, &surf->surface_state_read,
4758 res->aux.possible_usages, &surf->read_view);
4759 }
4760 surf->clear_color = res->aux.clear_color;
4761 }
4762 }
4763
4764 offset = (GEN_GEN == 8 && is_read_surface)
4765 ? surf->surface_state_read.ref.offset
4766 : surf->surface_state.ref.offset;
4767
4768 return offset +
4769 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4770 }
4771
4772 static uint32_t
use_sampler_view(struct iris_context * ice,struct iris_batch * batch,struct iris_sampler_view * isv)4773 use_sampler_view(struct iris_context *ice,
4774 struct iris_batch *batch,
4775 struct iris_sampler_view *isv)
4776 {
4777 enum isl_aux_usage aux_usage =
4778 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format);
4779
4780 iris_use_pinned_bo(batch, isv->res->bo, false, IRIS_DOMAIN_OTHER_READ);
4781 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.ref.res), false,
4782 IRIS_DOMAIN_NONE);
4783
4784 if (isv->res->aux.bo) {
4785 iris_use_pinned_bo(batch, isv->res->aux.bo,
4786 false, IRIS_DOMAIN_OTHER_READ);
4787 if (isv->res->aux.clear_color_bo)
4788 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo,
4789 false, IRIS_DOMAIN_OTHER_READ);
4790 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4791 sizeof(isv->clear_color)) != 0) {
4792 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4793 isv->res->aux.sampler_usages, &isv->view);
4794 isv->clear_color = isv->res->aux.clear_color;
4795 }
4796 }
4797
4798 return isv->surface_state.ref.offset +
4799 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4800 aux_usage);
4801 }
4802
4803 static uint32_t
use_ubo_ssbo(struct iris_batch * batch,struct iris_context * ice,struct pipe_shader_buffer * buf,struct iris_state_ref * surf_state,bool writable,enum iris_domain access)4804 use_ubo_ssbo(struct iris_batch *batch,
4805 struct iris_context *ice,
4806 struct pipe_shader_buffer *buf,
4807 struct iris_state_ref *surf_state,
4808 bool writable, enum iris_domain access)
4809 {
4810 if (!buf->buffer || !surf_state->res)
4811 return use_null_surface(batch, ice);
4812
4813 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable, access);
4814 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false,
4815 IRIS_DOMAIN_NONE);
4816
4817 return surf_state->offset;
4818 }
4819
4820 static uint32_t
use_image(struct iris_batch * batch,struct iris_context * ice,struct iris_shader_state * shs,const struct shader_info * info,int i)4821 use_image(struct iris_batch *batch, struct iris_context *ice,
4822 struct iris_shader_state *shs, const struct shader_info *info,
4823 int i)
4824 {
4825 struct iris_image_view *iv = &shs->image[i];
4826 struct iris_resource *res = (void *) iv->base.resource;
4827
4828 if (!res)
4829 return use_null_surface(batch, ice);
4830
4831 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4832
4833 iris_use_pinned_bo(batch, res->bo, write, IRIS_DOMAIN_NONE);
4834 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.ref.res),
4835 false, IRIS_DOMAIN_NONE);
4836
4837 if (res->aux.bo)
4838 iris_use_pinned_bo(batch, res->aux.bo, write, IRIS_DOMAIN_NONE);
4839
4840 enum isl_aux_usage aux_usage =
4841 iris_image_view_aux_usage(ice, &iv->base, info);
4842
4843 return iv->surface_state.ref.offset +
4844 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4845 }
4846
4847 #define push_bt_entry(addr) \
4848 assert(addr >= binder_addr); \
4849 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4850 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4851
4852 #define bt_assert(section) \
4853 if (!pin_only && shader->bt.used_mask[section] != 0) \
4854 assert(shader->bt.offsets[section] == s);
4855
4856 /**
4857 * Populate the binding table for a given shader stage.
4858 *
4859 * This fills out the table of pointers to surfaces required by the shader,
4860 * and also adds those buffers to the validation list so the kernel can make
4861 * resident before running our batch.
4862 */
4863 static void
iris_populate_binding_table(struct iris_context * ice,struct iris_batch * batch,gl_shader_stage stage,bool pin_only)4864 iris_populate_binding_table(struct iris_context *ice,
4865 struct iris_batch *batch,
4866 gl_shader_stage stage,
4867 bool pin_only)
4868 {
4869 const struct iris_binder *binder = &ice->state.binder;
4870 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4871 if (!shader)
4872 return;
4873
4874 struct iris_binding_table *bt = &shader->bt;
4875 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4876 struct iris_shader_state *shs = &ice->state.shaders[stage];
4877 uint32_t binder_addr = binder->bo->gtt_offset;
4878
4879 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4880 int s = 0;
4881
4882 const struct shader_info *info = iris_get_shader_info(ice, stage);
4883 if (!info) {
4884 /* TCS passthrough doesn't need a binding table. */
4885 assert(stage == MESA_SHADER_TESS_CTRL);
4886 return;
4887 }
4888
4889 if (stage == MESA_SHADER_COMPUTE &&
4890 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4891 /* surface for gl_NumWorkGroups */
4892 struct iris_state_ref *grid_data = &ice->state.grid_size;
4893 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4894 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false,
4895 IRIS_DOMAIN_OTHER_READ);
4896 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false,
4897 IRIS_DOMAIN_NONE);
4898 push_bt_entry(grid_state->offset);
4899 }
4900
4901 if (stage == MESA_SHADER_FRAGMENT) {
4902 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4903 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4904 if (cso_fb->nr_cbufs) {
4905 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4906 uint32_t addr;
4907 if (cso_fb->cbufs[i]) {
4908 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4909 ice->state.draw_aux_usage[i], false,
4910 IRIS_DOMAIN_RENDER_WRITE);
4911 } else {
4912 addr = use_null_fb_surface(batch, ice);
4913 }
4914 push_bt_entry(addr);
4915 }
4916 } else if (GEN_GEN < 11) {
4917 uint32_t addr = use_null_fb_surface(batch, ice);
4918 push_bt_entry(addr);
4919 }
4920 }
4921
4922 #define foreach_surface_used(index, group) \
4923 bt_assert(group); \
4924 for (int index = 0; index < bt->sizes[group]; index++) \
4925 if (iris_group_index_to_bti(bt, group, index) != \
4926 IRIS_SURFACE_NOT_USED)
4927
4928 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
4929 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4930 uint32_t addr;
4931 if (cso_fb->cbufs[i]) {
4932 addr = use_surface(ice, batch, cso_fb->cbufs[i],
4933 false, ice->state.draw_aux_usage[i], true,
4934 IRIS_DOMAIN_OTHER_READ);
4935 push_bt_entry(addr);
4936 }
4937 }
4938
4939 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4940 struct iris_sampler_view *view = shs->textures[i];
4941 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4942 : use_null_surface(batch, ice);
4943 push_bt_entry(addr);
4944 }
4945
4946 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4947 uint32_t addr = use_image(batch, ice, shs, info, i);
4948 push_bt_entry(addr);
4949 }
4950
4951 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4952 uint32_t addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4953 &shs->constbuf_surf_state[i], false,
4954 IRIS_DOMAIN_OTHER_READ);
4955 push_bt_entry(addr);
4956 }
4957
4958 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4959 uint32_t addr =
4960 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4961 shs->writable_ssbos & (1u << i), IRIS_DOMAIN_NONE);
4962 push_bt_entry(addr);
4963 }
4964
4965 #if 0
4966 /* XXX: YUV surfaces not implemented yet */
4967 bt_assert(plane_start[1], ...);
4968 bt_assert(plane_start[2], ...);
4969 #endif
4970 }
4971
4972 static void
iris_use_optional_res(struct iris_batch * batch,struct pipe_resource * res,bool writeable,enum iris_domain access)4973 iris_use_optional_res(struct iris_batch *batch,
4974 struct pipe_resource *res,
4975 bool writeable,
4976 enum iris_domain access)
4977 {
4978 if (res) {
4979 struct iris_bo *bo = iris_resource_bo(res);
4980 iris_use_pinned_bo(batch, bo, writeable, access);
4981 }
4982 }
4983
4984 static void
pin_depth_and_stencil_buffers(struct iris_batch * batch,struct pipe_surface * zsbuf,struct iris_depth_stencil_alpha_state * cso_zsa)4985 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4986 struct pipe_surface *zsbuf,
4987 struct iris_depth_stencil_alpha_state *cso_zsa)
4988 {
4989 if (!zsbuf)
4990 return;
4991
4992 struct iris_resource *zres, *sres;
4993 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4994
4995 if (zres) {
4996 const enum iris_domain access = cso_zsa->depth_writes_enabled ?
4997 IRIS_DOMAIN_DEPTH_WRITE : IRIS_DOMAIN_OTHER_READ;
4998 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled,
4999 access);
5000 if (zres->aux.bo) {
5001 iris_use_pinned_bo(batch, zres->aux.bo,
5002 cso_zsa->depth_writes_enabled, access);
5003 }
5004 }
5005
5006 if (sres) {
5007 const enum iris_domain access = cso_zsa->stencil_writes_enabled ?
5008 IRIS_DOMAIN_DEPTH_WRITE : IRIS_DOMAIN_OTHER_READ;
5009 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled,
5010 access);
5011 }
5012 }
5013
5014 /* ------------------------------------------------------------------- */
5015
5016 /**
5017 * Pin any BOs which were installed by a previous batch, and restored
5018 * via the hardware logical context mechanism.
5019 *
5020 * We don't need to re-emit all state every batch - the hardware context
5021 * mechanism will save and restore it for us. This includes pointers to
5022 * various BOs...which won't exist unless we ask the kernel to pin them
5023 * by adding them to the validation list.
5024 *
5025 * We can skip buffers if we've re-emitted those packets, as we're
5026 * overwriting those stale pointers with new ones, and don't actually
5027 * refer to the old BOs.
5028 */
5029 static void
iris_restore_render_saved_bos(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw)5030 iris_restore_render_saved_bos(struct iris_context *ice,
5031 struct iris_batch *batch,
5032 const struct pipe_draw_info *draw)
5033 {
5034 struct iris_genx_state *genx = ice->state.genx;
5035
5036 const uint64_t clean = ~ice->state.dirty;
5037 const uint64_t stage_clean = ~ice->state.stage_dirty;
5038
5039 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
5040 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false,
5041 IRIS_DOMAIN_NONE);
5042 }
5043
5044 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
5045 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false,
5046 IRIS_DOMAIN_NONE);
5047 }
5048
5049 if (clean & IRIS_DIRTY_BLEND_STATE) {
5050 iris_use_optional_res(batch, ice->state.last_res.blend, false,
5051 IRIS_DOMAIN_NONE);
5052 }
5053
5054 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
5055 iris_use_optional_res(batch, ice->state.last_res.color_calc, false,
5056 IRIS_DOMAIN_NONE);
5057 }
5058
5059 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
5060 iris_use_optional_res(batch, ice->state.last_res.scissor, false,
5061 IRIS_DOMAIN_NONE);
5062 }
5063
5064 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
5065 for (int i = 0; i < 4; i++) {
5066 struct iris_stream_output_target *tgt =
5067 (void *) ice->state.so_target[i];
5068 if (tgt) {
5069 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5070 true, IRIS_DOMAIN_OTHER_WRITE);
5071 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5072 true, IRIS_DOMAIN_OTHER_WRITE);
5073 }
5074 }
5075 }
5076
5077 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5078 if (!(stage_clean & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)))
5079 continue;
5080
5081 struct iris_shader_state *shs = &ice->state.shaders[stage];
5082 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5083
5084 if (!shader)
5085 continue;
5086
5087 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5088
5089 for (int i = 0; i < 4; i++) {
5090 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
5091
5092 if (range->length == 0)
5093 continue;
5094
5095 /* Range block is a binding table index, map back to UBO index. */
5096 unsigned block_index = iris_bti_to_group_index(
5097 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
5098 assert(block_index != IRIS_SURFACE_NOT_USED);
5099
5100 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
5101 struct iris_resource *res = (void *) cbuf->buffer;
5102
5103 if (res)
5104 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
5105 else
5106 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false,
5107 IRIS_DOMAIN_OTHER_READ);
5108 }
5109 }
5110
5111 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5112 if (stage_clean & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
5113 /* Re-pin any buffers referred to by the binding table. */
5114 iris_populate_binding_table(ice, batch, stage, true);
5115 }
5116 }
5117
5118 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5119 struct iris_shader_state *shs = &ice->state.shaders[stage];
5120 struct pipe_resource *res = shs->sampler_table.res;
5121 if (res)
5122 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
5123 IRIS_DOMAIN_NONE);
5124 }
5125
5126 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5127 if (stage_clean & (IRIS_STAGE_DIRTY_VS << stage)) {
5128 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5129
5130 if (shader) {
5131 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
5132 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
5133
5134 struct brw_stage_prog_data *prog_data = shader->prog_data;
5135
5136 if (prog_data->total_scratch > 0) {
5137 struct iris_bo *bo =
5138 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5139 iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
5140 }
5141 }
5142 }
5143 }
5144
5145 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
5146 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5147 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5148 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5149 }
5150
5151 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false,
5152 IRIS_DOMAIN_OTHER_READ);
5153
5154 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
5155 uint64_t bound = ice->state.bound_vertex_buffers;
5156 while (bound) {
5157 const int i = u_bit_scan64(&bound);
5158 struct pipe_resource *res = genx->vertex_buffers[i].resource;
5159 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
5160 IRIS_DOMAIN_OTHER_READ);
5161 }
5162 }
5163 }
5164
5165 static void
iris_restore_compute_saved_bos(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)5166 iris_restore_compute_saved_bos(struct iris_context *ice,
5167 struct iris_batch *batch,
5168 const struct pipe_grid_info *grid)
5169 {
5170 const uint64_t stage_clean = ~ice->state.stage_dirty;
5171
5172 const int stage = MESA_SHADER_COMPUTE;
5173 struct iris_shader_state *shs = &ice->state.shaders[stage];
5174
5175 if (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) {
5176 /* Re-pin any buffers referred to by the binding table. */
5177 iris_populate_binding_table(ice, batch, stage, true);
5178 }
5179
5180 struct pipe_resource *sampler_res = shs->sampler_table.res;
5181 if (sampler_res)
5182 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false,
5183 IRIS_DOMAIN_NONE);
5184
5185 if ((stage_clean & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS) &&
5186 (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) &&
5187 (stage_clean & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
5188 (stage_clean & IRIS_STAGE_DIRTY_CS)) {
5189 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false,
5190 IRIS_DOMAIN_NONE);
5191 }
5192
5193 if (stage_clean & IRIS_STAGE_DIRTY_CS) {
5194 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5195
5196 if (shader) {
5197 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
5198 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
5199
5200 struct iris_bo *curbe_bo =
5201 iris_resource_bo(ice->state.last_res.cs_thread_ids);
5202 iris_use_pinned_bo(batch, curbe_bo, false, IRIS_DOMAIN_NONE);
5203
5204 struct brw_stage_prog_data *prog_data = shader->prog_data;
5205
5206 if (prog_data->total_scratch > 0) {
5207 struct iris_bo *bo =
5208 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5209 iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
5210 }
5211 }
5212 }
5213 }
5214
5215 /**
5216 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
5217 */
5218 static void
iris_update_surface_base_address(struct iris_batch * batch,struct iris_binder * binder)5219 iris_update_surface_base_address(struct iris_batch *batch,
5220 struct iris_binder *binder)
5221 {
5222 if (batch->last_surface_base_address == binder->bo->gtt_offset)
5223 return;
5224
5225 struct isl_device *isl_dev = &batch->screen->isl_dev;
5226 uint32_t mocs = isl_mocs(isl_dev, 0);
5227
5228 iris_batch_sync_region_start(batch);
5229
5230 flush_before_state_base_change(batch);
5231
5232 #if GEN_GEN == 12
5233 /* GEN:BUG:1607854226:
5234 *
5235 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
5236 * mode by putting the pipeline temporarily in 3D mode..
5237 */
5238 if (batch->name == IRIS_BATCH_COMPUTE)
5239 emit_pipeline_select(batch, _3D);
5240 #endif
5241
5242 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
5243 sba.SurfaceStateBaseAddressModifyEnable = true;
5244 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
5245
5246 /* The hardware appears to pay attention to the MOCS fields even
5247 * if you don't set the "Address Modify Enable" bit for the base.
5248 */
5249 sba.GeneralStateMOCS = mocs;
5250 sba.StatelessDataPortAccessMOCS = mocs;
5251 sba.DynamicStateMOCS = mocs;
5252 sba.IndirectObjectMOCS = mocs;
5253 sba.InstructionMOCS = mocs;
5254 sba.SurfaceStateMOCS = mocs;
5255 #if GEN_GEN >= 9
5256 sba.BindlessSurfaceStateMOCS = mocs;
5257 #endif
5258 }
5259
5260 #if GEN_GEN == 12
5261 /* GEN:BUG:1607854226:
5262 *
5263 * Put the pipeline back into compute mode.
5264 */
5265 if (batch->name == IRIS_BATCH_COMPUTE)
5266 emit_pipeline_select(batch, GPGPU);
5267 #endif
5268
5269 flush_after_state_base_change(batch);
5270 iris_batch_sync_region_end(batch);
5271
5272 batch->last_surface_base_address = binder->bo->gtt_offset;
5273 }
5274
5275 static inline void
iris_viewport_zmin_zmax(const struct pipe_viewport_state * vp,bool halfz,bool window_space_position,float * zmin,float * zmax)5276 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
5277 bool window_space_position, float *zmin, float *zmax)
5278 {
5279 if (window_space_position) {
5280 *zmin = 0.f;
5281 *zmax = 1.f;
5282 return;
5283 }
5284 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
5285 }
5286
5287 #if GEN_GEN >= 12
5288 void
genX(invalidate_aux_map_state)5289 genX(invalidate_aux_map_state)(struct iris_batch *batch)
5290 {
5291 struct iris_screen *screen = batch->screen;
5292 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
5293 if (!aux_map_ctx)
5294 return;
5295 uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
5296 if (batch->last_aux_map_state != aux_map_state_num) {
5297 /* HSD 1209978178: docs say that before programming the aux table:
5298 *
5299 * "Driver must ensure that the engine is IDLE but ensure it doesn't
5300 * add extra flushes in the case it knows that the engine is already
5301 * IDLE."
5302 *
5303 * An end of pipe sync is needed here, otherwise we see GPU hangs in
5304 * dEQP-GLES31.functional.copy_image.* tests.
5305 */
5306 iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
5307 PIPE_CONTROL_CS_STALL);
5308
5309 /* If the aux-map state number increased, then we need to rewrite the
5310 * register. Rewriting the register is used to both set the aux-map
5311 * translation table address, and also to invalidate any previously
5312 * cached translations.
5313 */
5314 iris_load_register_imm32(batch, GENX(GFX_CCS_AUX_INV_num), 1);
5315 batch->last_aux_map_state = aux_map_state_num;
5316 }
5317 }
5318
5319 static void
init_aux_map_state(struct iris_batch * batch)5320 init_aux_map_state(struct iris_batch *batch)
5321 {
5322 struct iris_screen *screen = batch->screen;
5323 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
5324 if (!aux_map_ctx)
5325 return;
5326
5327 uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
5328 assert(base_addr != 0 && align64(base_addr, 32 * 1024) == base_addr);
5329 iris_load_register_imm64(batch, GENX(GFX_AUX_TABLE_BASE_ADDR_num),
5330 base_addr);
5331 }
5332 #endif
5333
5334 struct push_bos {
5335 struct {
5336 struct iris_address addr;
5337 uint32_t length;
5338 } buffers[4];
5339 int buffer_count;
5340 uint32_t max_length;
5341 };
5342
5343 static void
setup_constant_buffers(struct iris_context * ice,struct iris_batch * batch,int stage,struct push_bos * push_bos)5344 setup_constant_buffers(struct iris_context *ice,
5345 struct iris_batch *batch,
5346 int stage,
5347 struct push_bos *push_bos)
5348 {
5349 struct iris_shader_state *shs = &ice->state.shaders[stage];
5350 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5351 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5352
5353 uint32_t push_range_sum = 0;
5354
5355 int n = 0;
5356 for (int i = 0; i < 4; i++) {
5357 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
5358
5359 if (range->length == 0)
5360 continue;
5361
5362 push_range_sum += range->length;
5363
5364 if (range->length > push_bos->max_length)
5365 push_bos->max_length = range->length;
5366
5367 /* Range block is a binding table index, map back to UBO index. */
5368 unsigned block_index = iris_bti_to_group_index(
5369 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
5370 assert(block_index != IRIS_SURFACE_NOT_USED);
5371
5372 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
5373 struct iris_resource *res = (void *) cbuf->buffer;
5374
5375 assert(cbuf->buffer_offset % 32 == 0);
5376
5377 push_bos->buffers[n].length = range->length;
5378 push_bos->buffers[n].addr =
5379 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
5380 : batch->screen->workaround_address;
5381 n++;
5382 }
5383
5384 /* From the 3DSTATE_CONSTANT_XS and 3DSTATE_CONSTANT_ALL programming notes:
5385 *
5386 * "The sum of all four read length fields must be less than or
5387 * equal to the size of 64."
5388 */
5389 assert(push_range_sum <= 64);
5390
5391 push_bos->buffer_count = n;
5392 }
5393
5394 static void
emit_push_constant_packets(struct iris_context * ice,struct iris_batch * batch,int stage,const struct push_bos * push_bos)5395 emit_push_constant_packets(struct iris_context *ice,
5396 struct iris_batch *batch,
5397 int stage,
5398 const struct push_bos *push_bos)
5399 {
5400 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
5401 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5402 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5403
5404 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
5405 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
5406 #if GEN_GEN >= 12
5407 pkt.MOCS = isl_mocs(isl_dev, 0);
5408 #endif
5409 if (prog_data) {
5410 /* The Skylake PRM contains the following restriction:
5411 *
5412 * "The driver must ensure The following case does not occur
5413 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
5414 * buffer 3 read length equal to zero committed followed by a
5415 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
5416 * zero committed."
5417 *
5418 * To avoid this, we program the buffers in the highest slots.
5419 * This way, slot 0 is only used if slot 3 is also used.
5420 */
5421 int n = push_bos->buffer_count;
5422 assert(n <= 4);
5423 const unsigned shift = 4 - n;
5424 for (int i = 0; i < n; i++) {
5425 pkt.ConstantBody.ReadLength[i + shift] =
5426 push_bos->buffers[i].length;
5427 pkt.ConstantBody.Buffer[i + shift] = push_bos->buffers[i].addr;
5428 }
5429 }
5430 }
5431 }
5432
5433 #if GEN_GEN >= 12
5434 static void
emit_push_constant_packet_all(struct iris_context * ice,struct iris_batch * batch,uint32_t shader_mask,const struct push_bos * push_bos)5435 emit_push_constant_packet_all(struct iris_context *ice,
5436 struct iris_batch *batch,
5437 uint32_t shader_mask,
5438 const struct push_bos *push_bos)
5439 {
5440 struct isl_device *isl_dev = &batch->screen->isl_dev;
5441
5442 if (!push_bos) {
5443 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), pc) {
5444 pc.ShaderUpdateEnable = shader_mask;
5445 }
5446 return;
5447 }
5448
5449 const uint32_t n = push_bos->buffer_count;
5450 const uint32_t max_pointers = 4;
5451 const uint32_t num_dwords = 2 + 2 * n;
5452 uint32_t const_all[2 + 2 * max_pointers];
5453 uint32_t *dw = &const_all[0];
5454
5455 assert(n <= max_pointers);
5456 iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
5457 all.DWordLength = num_dwords - 2;
5458 all.MOCS = isl_mocs(isl_dev, 0);
5459 all.ShaderUpdateEnable = shader_mask;
5460 all.PointerBufferMask = (1 << n) - 1;
5461 }
5462 dw += 2;
5463
5464 for (int i = 0; i < n; i++) {
5465 _iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA),
5466 dw + i * 2, data) {
5467 data.PointerToConstantBuffer = push_bos->buffers[i].addr;
5468 data.ConstantBufferReadLength = push_bos->buffers[i].length;
5469 }
5470 }
5471 iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
5472 }
5473 #endif
5474
5475 static void
iris_upload_dirty_render_state(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw)5476 iris_upload_dirty_render_state(struct iris_context *ice,
5477 struct iris_batch *batch,
5478 const struct pipe_draw_info *draw)
5479 {
5480 const uint64_t dirty = ice->state.dirty;
5481 const uint64_t stage_dirty = ice->state.stage_dirty;
5482
5483 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER) &&
5484 !(stage_dirty & IRIS_ALL_STAGE_DIRTY_FOR_RENDER))
5485 return;
5486
5487 struct iris_genx_state *genx = ice->state.genx;
5488 struct iris_binder *binder = &ice->state.binder;
5489 struct brw_wm_prog_data *wm_prog_data = (void *)
5490 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
5491
5492 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
5493 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5494 uint32_t cc_vp_address;
5495
5496 /* XXX: could avoid streaming for depth_clip [0,1] case. */
5497 uint32_t *cc_vp_map =
5498 stream_state(batch, ice->state.dynamic_uploader,
5499 &ice->state.last_res.cc_vp,
5500 4 * ice->state.num_viewports *
5501 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
5502 for (int i = 0; i < ice->state.num_viewports; i++) {
5503 float zmin, zmax;
5504 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
5505 ice->state.window_space_position,
5506 &zmin, &zmax);
5507 if (cso_rast->depth_clip_near)
5508 zmin = 0.0;
5509 if (cso_rast->depth_clip_far)
5510 zmax = 1.0;
5511
5512 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
5513 ccv.MinimumDepth = zmin;
5514 ccv.MaximumDepth = zmax;
5515 }
5516
5517 cc_vp_map += GENX(CC_VIEWPORT_length);
5518 }
5519
5520 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
5521 ptr.CCViewportPointer = cc_vp_address;
5522 }
5523 }
5524
5525 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
5526 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5527 uint32_t sf_cl_vp_address;
5528 uint32_t *vp_map =
5529 stream_state(batch, ice->state.dynamic_uploader,
5530 &ice->state.last_res.sf_cl_vp,
5531 4 * ice->state.num_viewports *
5532 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
5533
5534 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
5535 const struct pipe_viewport_state *state = &ice->state.viewports[i];
5536 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
5537
5538 float vp_xmin = viewport_extent(state, 0, -1.0f);
5539 float vp_xmax = viewport_extent(state, 0, 1.0f);
5540 float vp_ymin = viewport_extent(state, 1, -1.0f);
5541 float vp_ymax = viewport_extent(state, 1, 1.0f);
5542
5543 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
5544 state->scale[0], state->scale[1],
5545 state->translate[0], state->translate[1],
5546 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
5547
5548 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
5549 vp.ViewportMatrixElementm00 = state->scale[0];
5550 vp.ViewportMatrixElementm11 = state->scale[1];
5551 vp.ViewportMatrixElementm22 = state->scale[2];
5552 vp.ViewportMatrixElementm30 = state->translate[0];
5553 vp.ViewportMatrixElementm31 = state->translate[1];
5554 vp.ViewportMatrixElementm32 = state->translate[2];
5555 vp.XMinClipGuardband = gb_xmin;
5556 vp.XMaxClipGuardband = gb_xmax;
5557 vp.YMinClipGuardband = gb_ymin;
5558 vp.YMaxClipGuardband = gb_ymax;
5559 vp.XMinViewPort = MAX2(vp_xmin, 0);
5560 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
5561 vp.YMinViewPort = MAX2(vp_ymin, 0);
5562 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
5563 }
5564
5565 vp_map += GENX(SF_CLIP_VIEWPORT_length);
5566 }
5567
5568 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
5569 ptr.SFClipViewportPointer = sf_cl_vp_address;
5570 }
5571 }
5572
5573 if (dirty & IRIS_DIRTY_URB) {
5574 unsigned size[4];
5575
5576 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5577 if (!ice->shaders.prog[i]) {
5578 size[i] = 1;
5579 } else {
5580 struct brw_vue_prog_data *vue_prog_data =
5581 (void *) ice->shaders.prog[i]->prog_data;
5582 size[i] = vue_prog_data->urb_entry_size;
5583 }
5584 assert(size[i] != 0);
5585 }
5586
5587 unsigned entries[4], start[4];
5588 gen_get_urb_config(&batch->screen->devinfo,
5589 batch->screen->l3_config_3d,
5590 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
5591 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
5592 size, entries, start,
5593 &ice->state.urb_deref_block_size);
5594
5595 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5596 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
5597 urb._3DCommandSubOpcode += i;
5598 urb.VSURBStartingAddress = start[i];
5599 urb.VSURBEntryAllocationSize = size[i] - 1;
5600 urb.VSNumberofURBEntries = entries[i];
5601 }
5602 }
5603 }
5604
5605 if (dirty & IRIS_DIRTY_BLEND_STATE) {
5606 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5607 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5608 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5609 const int header_dwords = GENX(BLEND_STATE_length);
5610
5611 /* Always write at least one BLEND_STATE - the final RT message will
5612 * reference BLEND_STATE[0] even if there aren't color writes. There
5613 * may still be alpha testing, computed depth, and so on.
5614 */
5615 const int rt_dwords =
5616 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
5617
5618 uint32_t blend_offset;
5619 uint32_t *blend_map =
5620 stream_state(batch, ice->state.dynamic_uploader,
5621 &ice->state.last_res.blend,
5622 4 * (header_dwords + rt_dwords), 64, &blend_offset);
5623
5624 uint32_t blend_state_header;
5625 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
5626 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
5627 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
5628 }
5629
5630 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
5631 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
5632
5633 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
5634 ptr.BlendStatePointer = blend_offset;
5635 ptr.BlendStatePointerValid = true;
5636 }
5637 }
5638
5639 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
5640 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5641 #if GEN_GEN == 8
5642 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5643 #endif
5644 uint32_t cc_offset;
5645 void *cc_map =
5646 stream_state(batch, ice->state.dynamic_uploader,
5647 &ice->state.last_res.color_calc,
5648 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
5649 64, &cc_offset);
5650 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
5651 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
5652 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
5653 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
5654 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
5655 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
5656 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
5657 #if GEN_GEN == 8
5658 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
5659 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5660 #endif
5661 }
5662 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
5663 ptr.ColorCalcStatePointer = cc_offset;
5664 ptr.ColorCalcStatePointerValid = true;
5665 }
5666 }
5667
5668 /* GEN:BUG:1604061319
5669 *
5670 * 3DSTATE_CONSTANT_* needs to be programmed before BTP_*
5671 *
5672 * Testing shows that all the 3DSTATE_CONSTANT_XS need to be emitted if
5673 * any stage has a dirty binding table.
5674 */
5675 const bool emit_const_wa = GEN_GEN >= 11 &&
5676 ((dirty & IRIS_DIRTY_RENDER_BUFFER) ||
5677 (stage_dirty & IRIS_ALL_STAGE_DIRTY_BINDINGS));
5678
5679 #if GEN_GEN >= 12
5680 uint32_t nobuffer_stages = 0;
5681 #endif
5682
5683 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5684 if (!(stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)) &&
5685 !emit_const_wa)
5686 continue;
5687
5688 struct iris_shader_state *shs = &ice->state.shaders[stage];
5689 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5690
5691 if (!shader)
5692 continue;
5693
5694 if (shs->sysvals_need_upload)
5695 upload_sysvals(ice, stage, NULL);
5696
5697 struct push_bos push_bos = {};
5698 setup_constant_buffers(ice, batch, stage, &push_bos);
5699
5700 #if GEN_GEN >= 12
5701 /* If this stage doesn't have any push constants, emit it later in a
5702 * single CONSTANT_ALL packet with all the other stages.
5703 */
5704 if (push_bos.buffer_count == 0) {
5705 nobuffer_stages |= 1 << stage;
5706 continue;
5707 }
5708
5709 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
5710 * contains only 5 bits, so we can only use it for buffers smaller than
5711 * 32.
5712 */
5713 if (push_bos.max_length < 32) {
5714 emit_push_constant_packet_all(ice, batch, 1 << stage, &push_bos);
5715 continue;
5716 }
5717 #endif
5718 emit_push_constant_packets(ice, batch, stage, &push_bos);
5719 }
5720
5721 #if GEN_GEN >= 12
5722 if (nobuffer_stages)
5723 emit_push_constant_packet_all(ice, batch, nobuffer_stages, NULL);
5724 #endif
5725
5726 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5727 /* Gen9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
5728 * in order to commit constants. TODO: Investigate "Disable Gather
5729 * at Set Shader" to go back to legacy mode...
5730 */
5731 if (stage_dirty & ((IRIS_STAGE_DIRTY_BINDINGS_VS |
5732 (GEN_GEN == 9 ? IRIS_STAGE_DIRTY_CONSTANTS_VS : 0))
5733 << stage)) {
5734 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
5735 ptr._3DCommandSubOpcode = 38 + stage;
5736 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
5737 }
5738 }
5739 }
5740
5741 if (GEN_GEN >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
5742 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
5743 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
5744
5745 /* The PIPE_CONTROL command description says:
5746 *
5747 * "Whenever a Binding Table Index (BTI) used by a Render Target
5748 * Message points to a different RENDER_SURFACE_STATE, SW must issue a
5749 * Render Target Cache Flush by enabling this bit. When render target
5750 * flush is set due to new association of BTI, PS Scoreboard Stall bit
5751 * must be set in this packet."
5752 */
5753 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
5754 iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
5755 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5756 PIPE_CONTROL_STALL_AT_SCOREBOARD);
5757 }
5758
5759 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5760 if (stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
5761 iris_populate_binding_table(ice, batch, stage, false);
5762 }
5763 }
5764
5765 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5766 if (!(stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage)) ||
5767 !ice->shaders.prog[stage])
5768 continue;
5769
5770 iris_upload_sampler_states(ice, stage);
5771
5772 struct iris_shader_state *shs = &ice->state.shaders[stage];
5773 struct pipe_resource *res = shs->sampler_table.res;
5774 if (res)
5775 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
5776 IRIS_DOMAIN_NONE);
5777
5778 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
5779 ptr._3DCommandSubOpcode = 43 + stage;
5780 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
5781 }
5782 }
5783
5784 if (ice->state.need_border_colors)
5785 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false,
5786 IRIS_DOMAIN_NONE);
5787
5788 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
5789 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
5790 ms.PixelLocation =
5791 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
5792 if (ice->state.framebuffer.samples > 0)
5793 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
5794 }
5795 }
5796
5797 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
5798 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
5799 ms.SampleMask = ice->state.sample_mask;
5800 }
5801 }
5802
5803 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5804 if (!(stage_dirty & (IRIS_STAGE_DIRTY_VS << stage)))
5805 continue;
5806
5807 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5808
5809 if (shader) {
5810 struct brw_stage_prog_data *prog_data = shader->prog_data;
5811 struct iris_resource *cache = (void *) shader->assembly.res;
5812 iris_use_pinned_bo(batch, cache->bo, false, IRIS_DOMAIN_NONE);
5813
5814 if (prog_data->total_scratch > 0) {
5815 struct iris_bo *bo =
5816 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5817 iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
5818 }
5819
5820 if (stage == MESA_SHADER_FRAGMENT) {
5821 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
5822 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5823
5824 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
5825 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
5826 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
5827 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
5828 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
5829
5830 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
5831 *
5832 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
5833 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
5834 * mode."
5835 *
5836 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
5837 */
5838 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
5839 !wm_prog_data->persample_dispatch) {
5840 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
5841 ps._32PixelDispatchEnable = false;
5842 }
5843
5844 ps.DispatchGRFStartRegisterForConstantSetupData0 =
5845 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
5846 ps.DispatchGRFStartRegisterForConstantSetupData1 =
5847 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
5848 ps.DispatchGRFStartRegisterForConstantSetupData2 =
5849 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
5850
5851 ps.KernelStartPointer0 = KSP(shader) +
5852 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
5853 ps.KernelStartPointer1 = KSP(shader) +
5854 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
5855 ps.KernelStartPointer2 = KSP(shader) +
5856 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
5857 }
5858
5859 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
5860 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5861 #if GEN_GEN >= 9
5862 if (!wm_prog_data->uses_sample_mask)
5863 psx.InputCoverageMaskState = ICMS_NONE;
5864 else if (wm_prog_data->post_depth_coverage)
5865 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
5866 else if (wm_prog_data->inner_coverage &&
5867 cso->conservative_rasterization)
5868 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
5869 else
5870 psx.InputCoverageMaskState = ICMS_NORMAL;
5871 #else
5872 psx.PixelShaderUsesInputCoverageMask =
5873 wm_prog_data->uses_sample_mask;
5874 #endif
5875 }
5876
5877 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
5878 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
5879 iris_emit_merge(batch, shader_ps, ps_state,
5880 GENX(3DSTATE_PS_length));
5881 iris_emit_merge(batch, shader_psx, psx_state,
5882 GENX(3DSTATE_PS_EXTRA_length));
5883 } else {
5884 iris_batch_emit(batch, shader->derived_data,
5885 iris_derived_program_state_size(stage));
5886 }
5887 } else {
5888 if (stage == MESA_SHADER_TESS_EVAL) {
5889 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
5890 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
5891 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
5892 } else if (stage == MESA_SHADER_GEOMETRY) {
5893 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
5894 }
5895 }
5896 }
5897
5898 if (ice->state.streamout_active) {
5899 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
5900 iris_batch_emit(batch, genx->so_buffers,
5901 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
5902 for (int i = 0; i < 4; i++) {
5903 struct iris_stream_output_target *tgt =
5904 (void *) ice->state.so_target[i];
5905 if (tgt) {
5906 tgt->zeroed = true;
5907 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5908 true, IRIS_DOMAIN_OTHER_WRITE);
5909 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5910 true, IRIS_DOMAIN_OTHER_WRITE);
5911 }
5912 }
5913 }
5914
5915 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
5916 uint32_t *decl_list =
5917 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
5918 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
5919 }
5920
5921 if (dirty & IRIS_DIRTY_STREAMOUT) {
5922 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5923
5924 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
5925 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
5926 sol.SOFunctionEnable = true;
5927 sol.SOStatisticsEnable = true;
5928
5929 sol.RenderingDisable = cso_rast->rasterizer_discard &&
5930 !ice->state.prims_generated_query_active;
5931 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
5932 }
5933
5934 assert(ice->state.streamout);
5935
5936 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
5937 GENX(3DSTATE_STREAMOUT_length));
5938 }
5939 } else {
5940 if (dirty & IRIS_DIRTY_STREAMOUT) {
5941 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
5942 }
5943 }
5944
5945 if (dirty & IRIS_DIRTY_CLIP) {
5946 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5947 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5948
5949 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
5950 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
5951 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
5952 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
5953 : ice->state.prim_is_points_or_lines);
5954
5955 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
5956 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
5957 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
5958 if (cso_rast->rasterizer_discard)
5959 cl.ClipMode = CLIPMODE_REJECT_ALL;
5960 else if (ice->state.window_space_position)
5961 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
5962 else
5963 cl.ClipMode = CLIPMODE_NORMAL;
5964
5965 cl.PerspectiveDivideDisable = ice->state.window_space_position;
5966 cl.ViewportXYClipTestEnable = !points_or_lines;
5967
5968 if (wm_prog_data->barycentric_interp_modes &
5969 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
5970 cl.NonPerspectiveBarycentricEnable = true;
5971
5972 cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1;
5973 cl.MaximumVPIndex = ice->state.num_viewports - 1;
5974 }
5975 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
5976 ARRAY_SIZE(cso_rast->clip));
5977 }
5978
5979 if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_URB)) {
5980 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5981 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
5982
5983 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
5984 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
5985 sf.ViewportTransformEnable = !ice->state.window_space_position;
5986
5987 #if GEN_GEN >= 12
5988 sf.DerefBlockSize = ice->state.urb_deref_block_size;
5989 #endif
5990 }
5991 iris_emit_merge(batch, cso->sf, dynamic_sf,
5992 ARRAY_SIZE(dynamic_sf));
5993 }
5994
5995 if (dirty & IRIS_DIRTY_WM) {
5996 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5997 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
5998
5999 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
6000 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
6001
6002 wm.BarycentricInterpolationMode =
6003 wm_prog_data->barycentric_interp_modes;
6004
6005 if (wm_prog_data->early_fragment_tests)
6006 wm.EarlyDepthStencilControl = EDSC_PREPS;
6007 else if (wm_prog_data->has_side_effects)
6008 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
6009
6010 /* We could skip this bit if color writes are enabled. */
6011 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
6012 wm.ForceThreadDispatchEnable = ForceON;
6013 }
6014 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
6015 }
6016
6017 if (dirty & IRIS_DIRTY_SBE) {
6018 iris_emit_sbe(batch, ice);
6019 }
6020
6021 if (dirty & IRIS_DIRTY_PS_BLEND) {
6022 struct iris_blend_state *cso_blend = ice->state.cso_blend;
6023 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
6024 const struct shader_info *fs_info =
6025 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
6026
6027 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
6028 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
6029 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
6030 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
6031
6032 /* The dual source blending docs caution against using SRC1 factors
6033 * when the shader doesn't use a dual source render target write.
6034 * Empirically, this can lead to GPU hangs, and the results are
6035 * undefined anyway, so simply disable blending to avoid the hang.
6036 */
6037 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
6038 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
6039 }
6040
6041 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
6042 ARRAY_SIZE(cso_blend->ps_blend));
6043 }
6044
6045 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
6046 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
6047 #if GEN_GEN >= 9 && GEN_GEN < 12
6048 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
6049 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
6050 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
6051 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
6052 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
6053 }
6054 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
6055 #else
6056 /* Use modify disable fields which allow us to emit packets
6057 * directly instead of merging them later.
6058 */
6059 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
6060 #endif
6061
6062 #if GEN_GEN >= 12
6063 iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
6064 #endif
6065 }
6066
6067 if (dirty & IRIS_DIRTY_STENCIL_REF) {
6068 #if GEN_GEN >= 12
6069 /* Use modify disable fields which allow us to emit packets
6070 * directly instead of merging them later.
6071 */
6072 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
6073 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
6074 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
6075 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
6076 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
6077 wmds.StencilTestMaskModifyDisable = true;
6078 wmds.StencilWriteMaskModifyDisable = true;
6079 wmds.StencilStateModifyDisable = true;
6080 wmds.DepthStateModifyDisable = true;
6081 }
6082 iris_batch_emit(batch, stencil_refs, sizeof(stencil_refs));
6083 #endif
6084 }
6085
6086 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
6087 /* GEN:BUG:1409725701:
6088 * "The viewport-specific state used by the SF unit (SCISSOR_RECT) is
6089 * stored as an array of up to 16 elements. The location of first
6090 * element of the array, as specified by Pointer to SCISSOR_RECT,
6091 * should be aligned to a 64-byte boundary.
6092 */
6093 uint32_t alignment = 64;
6094 uint32_t scissor_offset =
6095 emit_state(batch, ice->state.dynamic_uploader,
6096 &ice->state.last_res.scissor,
6097 ice->state.scissors,
6098 sizeof(struct pipe_scissor_state) *
6099 ice->state.num_viewports, alignment);
6100
6101 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
6102 ptr.ScissorRectPointer = scissor_offset;
6103 }
6104 }
6105
6106 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
6107 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
6108
6109 /* Do not emit the clear params yets. We need to update the clear value
6110 * first.
6111 */
6112 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
6113 uint32_t cso_z_size = batch->screen->isl_dev.ds.size - clear_length;;
6114
6115 #if GEN_GEN == 12
6116 /* GEN:BUG:14010455700
6117 *
6118 * ISL will change some CHICKEN registers depending on the depth surface
6119 * format, along with emitting the depth and stencil packets. In that
6120 * case, we want to do a depth flush and stall, so the pipeline is not
6121 * using these settings while we change the registers.
6122 */
6123 iris_emit_end_of_pipe_sync(batch,
6124 "Workaround: Stop pipeline for 14010455700",
6125 PIPE_CONTROL_DEPTH_STALL |
6126 PIPE_CONTROL_DEPTH_CACHE_FLUSH);
6127 #endif
6128
6129 iris_batch_emit(batch, cso_z->packets, cso_z_size);
6130 if (GEN_GEN >= 12) {
6131 /* GEN:BUG:1408224581
6132 *
6133 * Workaround: Gen12LP Astep only An additional pipe control with
6134 * post-sync = store dword operation would be required.( w/a is to
6135 * have an additional pipe control after the stencil state whenever
6136 * the surface state bits of this state is changing).
6137 */
6138 iris_emit_pipe_control_write(batch, "WA for stencil state",
6139 PIPE_CONTROL_WRITE_IMMEDIATE,
6140 batch->screen->workaround_address.bo,
6141 batch->screen->workaround_address.offset, 0);
6142 }
6143
6144 union isl_color_value clear_value = { .f32 = { 0, } };
6145
6146 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
6147 if (cso_fb->zsbuf) {
6148 struct iris_resource *zres, *sres;
6149 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
6150 &zres, &sres);
6151 if (zres && zres->aux.bo)
6152 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
6153 }
6154
6155 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
6156 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
6157 clear.DepthClearValueValid = true;
6158 clear.DepthClearValue = clear_value.f32[0];
6159 }
6160 iris_batch_emit(batch, clear_params, clear_length);
6161 }
6162
6163 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
6164 /* Listen for buffer changes, and also write enable changes. */
6165 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
6166 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
6167 }
6168
6169 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
6170 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
6171 for (int i = 0; i < 32; i++) {
6172 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
6173 }
6174 }
6175 }
6176
6177 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
6178 struct iris_rasterizer_state *cso = ice->state.cso_rast;
6179 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
6180 }
6181
6182 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
6183 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
6184 topo.PrimitiveTopologyType =
6185 translate_prim_type(draw->mode, draw->vertices_per_patch);
6186 }
6187 }
6188
6189 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
6190 int count = util_bitcount64(ice->state.bound_vertex_buffers);
6191 uint64_t dynamic_bound = ice->state.bound_vertex_buffers;
6192
6193 if (ice->state.vs_uses_draw_params) {
6194 assert(ice->draw.draw_params.res);
6195
6196 struct iris_vertex_buffer_state *state =
6197 &(ice->state.genx->vertex_buffers[count]);
6198 pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
6199 struct iris_resource *res = (void *) state->resource;
6200
6201 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
6202 vb.VertexBufferIndex = count;
6203 vb.AddressModifyEnable = true;
6204 vb.BufferPitch = 0;
6205 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
6206 vb.BufferStartingAddress =
6207 ro_bo(NULL, res->bo->gtt_offset +
6208 (int) ice->draw.draw_params.offset);
6209 vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev,
6210 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
6211 }
6212 dynamic_bound |= 1ull << count;
6213 count++;
6214 }
6215
6216 if (ice->state.vs_uses_derived_draw_params) {
6217 struct iris_vertex_buffer_state *state =
6218 &(ice->state.genx->vertex_buffers[count]);
6219 pipe_resource_reference(&state->resource,
6220 ice->draw.derived_draw_params.res);
6221 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
6222
6223 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
6224 vb.VertexBufferIndex = count;
6225 vb.AddressModifyEnable = true;
6226 vb.BufferPitch = 0;
6227 vb.BufferSize =
6228 res->bo->size - ice->draw.derived_draw_params.offset;
6229 vb.BufferStartingAddress =
6230 ro_bo(NULL, res->bo->gtt_offset +
6231 (int) ice->draw.derived_draw_params.offset);
6232 vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev,
6233 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
6234 }
6235 dynamic_bound |= 1ull << count;
6236 count++;
6237 }
6238
6239 if (count) {
6240 #if GEN_GEN >= 11
6241 /* Gen11+ doesn't need the cache workaround below */
6242 uint64_t bound = dynamic_bound;
6243 while (bound) {
6244 const int i = u_bit_scan64(&bound);
6245 iris_use_optional_res(batch, genx->vertex_buffers[i].resource,
6246 false, IRIS_DOMAIN_OTHER_READ);
6247 }
6248 #else
6249 /* The VF cache designers cut corners, and made the cache key's
6250 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
6251 * 32 bits of the address. If you have two vertex buffers which get
6252 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
6253 * you can get collisions (even within a single batch).
6254 *
6255 * So, we need to do a VF cache invalidate if the buffer for a VB
6256 * slot slot changes [48:32] address bits from the previous time.
6257 */
6258 unsigned flush_flags = 0;
6259
6260 uint64_t bound = dynamic_bound;
6261 while (bound) {
6262 const int i = u_bit_scan64(&bound);
6263 uint16_t high_bits = 0;
6264
6265 struct iris_resource *res =
6266 (void *) genx->vertex_buffers[i].resource;
6267 if (res) {
6268 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
6269
6270 high_bits = res->bo->gtt_offset >> 32ull;
6271 if (high_bits != ice->state.last_vbo_high_bits[i]) {
6272 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
6273 PIPE_CONTROL_CS_STALL;
6274 ice->state.last_vbo_high_bits[i] = high_bits;
6275 }
6276 }
6277 }
6278
6279 if (flush_flags) {
6280 iris_emit_pipe_control_flush(batch,
6281 "workaround: VF cache 32-bit key [VB]",
6282 flush_flags);
6283 }
6284 #endif
6285
6286 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
6287
6288 uint32_t *map =
6289 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
6290 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
6291 vb.DWordLength = (vb_dwords * count + 1) - 2;
6292 }
6293 map += 1;
6294
6295 bound = dynamic_bound;
6296 while (bound) {
6297 const int i = u_bit_scan64(&bound);
6298 memcpy(map, genx->vertex_buffers[i].state,
6299 sizeof(uint32_t) * vb_dwords);
6300 map += vb_dwords;
6301 }
6302 }
6303 }
6304
6305 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
6306 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
6307 const unsigned entries = MAX2(cso->count, 1);
6308 if (!(ice->state.vs_needs_sgvs_element ||
6309 ice->state.vs_uses_derived_draw_params ||
6310 ice->state.vs_needs_edge_flag)) {
6311 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
6312 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
6313 } else {
6314 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
6315 const unsigned dyn_count = cso->count +
6316 ice->state.vs_needs_sgvs_element +
6317 ice->state.vs_uses_derived_draw_params;
6318
6319 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
6320 &dynamic_ves, ve) {
6321 ve.DWordLength =
6322 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
6323 }
6324 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
6325 (cso->count - ice->state.vs_needs_edge_flag) *
6326 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
6327 uint32_t *ve_pack_dest =
6328 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
6329 GENX(VERTEX_ELEMENT_STATE_length)];
6330
6331 if (ice->state.vs_needs_sgvs_element) {
6332 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
6333 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
6334 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
6335 ve.Valid = true;
6336 ve.VertexBufferIndex =
6337 util_bitcount64(ice->state.bound_vertex_buffers);
6338 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
6339 ve.Component0Control = base_ctrl;
6340 ve.Component1Control = base_ctrl;
6341 ve.Component2Control = VFCOMP_STORE_0;
6342 ve.Component3Control = VFCOMP_STORE_0;
6343 }
6344 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
6345 }
6346 if (ice->state.vs_uses_derived_draw_params) {
6347 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
6348 ve.Valid = true;
6349 ve.VertexBufferIndex =
6350 util_bitcount64(ice->state.bound_vertex_buffers) +
6351 ice->state.vs_uses_draw_params;
6352 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
6353 ve.Component0Control = VFCOMP_STORE_SRC;
6354 ve.Component1Control = VFCOMP_STORE_SRC;
6355 ve.Component2Control = VFCOMP_STORE_0;
6356 ve.Component3Control = VFCOMP_STORE_0;
6357 }
6358 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
6359 }
6360 if (ice->state.vs_needs_edge_flag) {
6361 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
6362 ve_pack_dest[i] = cso->edgeflag_ve[i];
6363 }
6364
6365 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
6366 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
6367 }
6368
6369 if (!ice->state.vs_needs_edge_flag) {
6370 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
6371 entries * GENX(3DSTATE_VF_INSTANCING_length));
6372 } else {
6373 assert(cso->count > 0);
6374 const unsigned edgeflag_index = cso->count - 1;
6375 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
6376 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
6377 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
6378
6379 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
6380 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
6381 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
6382 vi.VertexElementIndex = edgeflag_index +
6383 ice->state.vs_needs_sgvs_element +
6384 ice->state.vs_uses_derived_draw_params;
6385 }
6386 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
6387 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
6388
6389 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
6390 entries * GENX(3DSTATE_VF_INSTANCING_length));
6391 }
6392 }
6393
6394 if (dirty & IRIS_DIRTY_VF_SGVS) {
6395 const struct brw_vs_prog_data *vs_prog_data = (void *)
6396 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
6397 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
6398
6399 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
6400 if (vs_prog_data->uses_vertexid) {
6401 sgv.VertexIDEnable = true;
6402 sgv.VertexIDComponentNumber = 2;
6403 sgv.VertexIDElementOffset =
6404 cso->count - ice->state.vs_needs_edge_flag;
6405 }
6406
6407 if (vs_prog_data->uses_instanceid) {
6408 sgv.InstanceIDEnable = true;
6409 sgv.InstanceIDComponentNumber = 3;
6410 sgv.InstanceIDElementOffset =
6411 cso->count - ice->state.vs_needs_edge_flag;
6412 }
6413 }
6414 }
6415
6416 if (dirty & IRIS_DIRTY_VF) {
6417 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
6418 if (draw->primitive_restart) {
6419 vf.IndexedDrawCutIndexEnable = true;
6420 vf.CutIndex = draw->restart_index;
6421 }
6422 }
6423 }
6424
6425 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
6426 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
6427 vf.StatisticsEnable = true;
6428 }
6429 }
6430
6431 #if GEN_GEN == 8
6432 if (dirty & IRIS_DIRTY_PMA_FIX) {
6433 bool enable = want_pma_fix(ice);
6434 genX(update_pma_fix)(ice, batch, enable);
6435 }
6436 #endif
6437
6438 if (ice->state.current_hash_scale != 1)
6439 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
6440
6441 #if GEN_GEN >= 12
6442 genX(invalidate_aux_map_state)(batch);
6443 #endif
6444 }
6445
6446 static void
iris_upload_render_state(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw)6447 iris_upload_render_state(struct iris_context *ice,
6448 struct iris_batch *batch,
6449 const struct pipe_draw_info *draw)
6450 {
6451 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
6452
6453 iris_batch_sync_region_start(batch);
6454
6455 /* Always pin the binder. If we're emitting new binding table pointers,
6456 * we need it. If not, we're probably inheriting old tables via the
6457 * context, and need it anyway. Since true zero-bindings cases are
6458 * practically non-existent, just pin it and avoid last_res tracking.
6459 */
6460 iris_use_pinned_bo(batch, ice->state.binder.bo, false,
6461 IRIS_DOMAIN_NONE);
6462
6463 if (!batch->contains_draw_with_next_seqno) {
6464 iris_restore_render_saved_bos(ice, batch, draw);
6465 batch->contains_draw_with_next_seqno = batch->contains_draw = true;
6466 }
6467
6468 iris_upload_dirty_render_state(ice, batch, draw);
6469
6470 if (draw->index_size > 0) {
6471 unsigned offset;
6472
6473 if (draw->has_user_indices) {
6474 u_upload_data(ice->ctx.stream_uploader, 0,
6475 draw->count * draw->index_size, 4, draw->index.user,
6476 &offset, &ice->state.last_res.index_buffer);
6477 } else {
6478 struct iris_resource *res = (void *) draw->index.resource;
6479 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
6480
6481 pipe_resource_reference(&ice->state.last_res.index_buffer,
6482 draw->index.resource);
6483 offset = 0;
6484 }
6485
6486 struct iris_genx_state *genx = ice->state.genx;
6487 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
6488
6489 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
6490 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
6491 ib.IndexFormat = draw->index_size >> 1;
6492 ib.MOCS = iris_mocs(bo, &batch->screen->isl_dev,
6493 ISL_SURF_USAGE_INDEX_BUFFER_BIT);
6494 ib.BufferSize = bo->size - offset;
6495 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
6496 }
6497
6498 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
6499 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
6500 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
6501 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_OTHER_READ);
6502 }
6503
6504 #if GEN_GEN < 11
6505 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
6506 uint16_t high_bits = bo->gtt_offset >> 32ull;
6507 if (high_bits != ice->state.last_index_bo_high_bits) {
6508 iris_emit_pipe_control_flush(batch,
6509 "workaround: VF cache 32-bit key [IB]",
6510 PIPE_CONTROL_VF_CACHE_INVALIDATE |
6511 PIPE_CONTROL_CS_STALL);
6512 ice->state.last_index_bo_high_bits = high_bits;
6513 }
6514 #endif
6515 }
6516
6517 #define _3DPRIM_END_OFFSET 0x2420
6518 #define _3DPRIM_START_VERTEX 0x2430
6519 #define _3DPRIM_VERTEX_COUNT 0x2434
6520 #define _3DPRIM_INSTANCE_COUNT 0x2438
6521 #define _3DPRIM_START_INSTANCE 0x243C
6522 #define _3DPRIM_BASE_VERTEX 0x2440
6523
6524 if (draw->indirect) {
6525 if (draw->indirect->indirect_draw_count) {
6526 use_predicate = true;
6527
6528 struct iris_bo *draw_count_bo =
6529 iris_resource_bo(draw->indirect->indirect_draw_count);
6530 unsigned draw_count_offset =
6531 draw->indirect->indirect_draw_count_offset;
6532
6533 iris_emit_pipe_control_flush(batch,
6534 "ensure indirect draw buffer is flushed",
6535 PIPE_CONTROL_FLUSH_ENABLE);
6536
6537 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
6538 struct gen_mi_builder b;
6539 gen_mi_builder_init(&b, batch);
6540
6541 /* comparison = draw id < draw count */
6542 struct gen_mi_value comparison =
6543 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
6544 gen_mi_mem32(ro_bo(draw_count_bo,
6545 draw_count_offset)));
6546
6547 /* predicate = comparison & conditional rendering predicate */
6548 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
6549 gen_mi_iand(&b, comparison,
6550 gen_mi_reg32(CS_GPR(15))));
6551 } else {
6552 uint32_t mi_predicate;
6553
6554 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
6555 iris_load_register_imm64(batch, MI_PREDICATE_SRC1, draw->drawid);
6556 /* Upload the current draw count from the draw parameters buffer
6557 * to MI_PREDICATE_SRC0.
6558 */
6559 iris_load_register_mem32(batch, MI_PREDICATE_SRC0,
6560 draw_count_bo, draw_count_offset);
6561 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
6562 iris_load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
6563
6564 if (draw->drawid == 0) {
6565 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
6566 MI_PREDICATE_COMBINEOP_SET |
6567 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6568 } else {
6569 /* While draw_index < draw_count the predicate's result will be
6570 * (draw_index == draw_count) ^ TRUE = TRUE
6571 * When draw_index == draw_count the result is
6572 * (TRUE) ^ TRUE = FALSE
6573 * After this all results will be:
6574 * (FALSE) ^ FALSE = FALSE
6575 */
6576 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
6577 MI_PREDICATE_COMBINEOP_XOR |
6578 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6579 }
6580 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
6581 }
6582 }
6583 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
6584 assert(bo);
6585
6586 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6587 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
6588 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
6589 }
6590 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6591 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
6592 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
6593 }
6594 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6595 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
6596 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
6597 }
6598 if (draw->index_size) {
6599 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6600 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
6601 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6602 }
6603 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6604 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6605 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
6606 }
6607 } else {
6608 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6609 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6610 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6611 }
6612 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
6613 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
6614 lri.DataDWord = 0;
6615 }
6616 }
6617 } else if (draw->count_from_stream_output) {
6618 struct iris_stream_output_target *so =
6619 (void *) draw->count_from_stream_output;
6620
6621 /* XXX: Replace with actual cache tracking */
6622 iris_emit_pipe_control_flush(batch,
6623 "draw count from stream output stall",
6624 PIPE_CONTROL_CS_STALL);
6625
6626 struct gen_mi_builder b;
6627 gen_mi_builder_init(&b, batch);
6628
6629 struct iris_address addr =
6630 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
6631 struct gen_mi_value offset =
6632 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
6633
6634 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
6635 gen_mi_udiv32_imm(&b, offset, so->stride));
6636
6637 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
6638 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
6639 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
6640 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
6641 }
6642
6643 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
6644 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
6645 prim.PredicateEnable = use_predicate;
6646
6647 if (draw->indirect || draw->count_from_stream_output) {
6648 prim.IndirectParameterEnable = true;
6649 } else {
6650 prim.StartInstanceLocation = draw->start_instance;
6651 prim.InstanceCount = draw->instance_count;
6652 prim.VertexCountPerInstance = draw->count;
6653
6654 prim.StartVertexLocation = draw->start;
6655
6656 if (draw->index_size) {
6657 prim.BaseVertexLocation += draw->index_bias;
6658 } else {
6659 prim.StartVertexLocation += draw->index_bias;
6660 }
6661 }
6662 }
6663
6664 iris_batch_sync_region_end(batch);
6665 }
6666
6667 static void
iris_load_indirect_location(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)6668 iris_load_indirect_location(struct iris_context *ice,
6669 struct iris_batch *batch,
6670 const struct pipe_grid_info *grid)
6671 {
6672 #define GPGPU_DISPATCHDIMX 0x2500
6673 #define GPGPU_DISPATCHDIMY 0x2504
6674 #define GPGPU_DISPATCHDIMZ 0x2508
6675
6676 assert(grid->indirect);
6677
6678 struct iris_state_ref *grid_size = &ice->state.grid_size;
6679 struct iris_bo *bo = iris_resource_bo(grid_size->res);
6680 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6681 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
6682 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
6683 }
6684 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6685 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
6686 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
6687 }
6688 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6689 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
6690 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
6691 }
6692 }
6693
6694 static void
iris_upload_gpgpu_walker(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)6695 iris_upload_gpgpu_walker(struct iris_context *ice,
6696 struct iris_batch *batch,
6697 const struct pipe_grid_info *grid)
6698 {
6699 const uint64_t stage_dirty = ice->state.stage_dirty;
6700 struct iris_screen *screen = batch->screen;
6701 const struct gen_device_info *devinfo = &screen->devinfo;
6702 struct iris_binder *binder = &ice->state.binder;
6703 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
6704 struct iris_uncompiled_shader *ish =
6705 ice->shaders.uncompiled[MESA_SHADER_COMPUTE];
6706 struct iris_compiled_shader *shader =
6707 ice->shaders.prog[MESA_SHADER_COMPUTE];
6708 struct brw_stage_prog_data *prog_data = shader->prog_data;
6709 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
6710 const uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
6711 const unsigned simd_size =
6712 brw_cs_simd_size_for_group_size(devinfo, cs_prog_data, group_size);
6713 const unsigned threads = DIV_ROUND_UP(group_size, simd_size);
6714
6715
6716 if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
6717 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
6718 *
6719 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
6720 * the only bits that are changed are scoreboard related: Scoreboard
6721 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
6722 * these scoreboard related states, a MEDIA_STATE_FLUSH is
6723 * sufficient."
6724 */
6725 iris_emit_pipe_control_flush(batch,
6726 "workaround: stall before MEDIA_VFE_STATE",
6727 PIPE_CONTROL_CS_STALL);
6728
6729 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
6730 if (prog_data->total_scratch) {
6731 struct iris_bo *bo =
6732 iris_get_scratch_space(ice, prog_data->total_scratch,
6733 MESA_SHADER_COMPUTE);
6734 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
6735 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0, IRIS_DOMAIN_NONE);
6736 }
6737
6738 vfe.MaximumNumberofThreads =
6739 devinfo->max_cs_threads * screen->subslice_total - 1;
6740 #if GEN_GEN < 11
6741 vfe.ResetGatewayTimer =
6742 Resettingrelativetimerandlatchingtheglobaltimestamp;
6743 #endif
6744 #if GEN_GEN == 8
6745 vfe.BypassGatewayControl = true;
6746 #endif
6747 vfe.NumberofURBEntries = 2;
6748 vfe.URBEntryAllocationSize = 2;
6749
6750 vfe.CURBEAllocationSize =
6751 ALIGN(cs_prog_data->push.per_thread.regs * threads +
6752 cs_prog_data->push.cross_thread.regs, 2);
6753 }
6754 }
6755
6756 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
6757 if ((stage_dirty & IRIS_STAGE_DIRTY_CS) ||
6758 cs_prog_data->local_size[0] == 0 /* Variable local group size */) {
6759 uint32_t curbe_data_offset = 0;
6760 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
6761 cs_prog_data->push.per_thread.dwords == 1 &&
6762 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
6763 const unsigned push_const_size =
6764 brw_cs_push_const_total_size(cs_prog_data, threads);
6765 uint32_t *curbe_data_map =
6766 stream_state(batch, ice->state.dynamic_uploader,
6767 &ice->state.last_res.cs_thread_ids,
6768 ALIGN(push_const_size, 64), 64,
6769 &curbe_data_offset);
6770 assert(curbe_data_map);
6771 memset(curbe_data_map, 0x5a, ALIGN(push_const_size, 64));
6772 iris_fill_cs_push_const_buffer(cs_prog_data, threads, curbe_data_map);
6773
6774 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
6775 curbe.CURBETotalDataLength = ALIGN(push_const_size, 64);
6776 curbe.CURBEDataStartAddress = curbe_data_offset;
6777 }
6778 }
6779
6780 for (unsigned i = 0; i < IRIS_MAX_GLOBAL_BINDINGS; i++) {
6781 struct pipe_resource *res = ice->state.global_bindings[i];
6782 if (!res)
6783 continue;
6784
6785 iris_use_pinned_bo(batch, iris_resource_bo(res),
6786 true, IRIS_DOMAIN_NONE);
6787 }
6788
6789 if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_CS |
6790 IRIS_STAGE_DIRTY_BINDINGS_CS |
6791 IRIS_STAGE_DIRTY_CONSTANTS_CS |
6792 IRIS_STAGE_DIRTY_CS)) {
6793 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
6794
6795 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
6796 idd.SharedLocalMemorySize =
6797 encode_slm_size(GEN_GEN, ish->kernel_shared_size);
6798 idd.KernelStartPointer =
6799 KSP(shader) + brw_cs_prog_data_prog_offset(cs_prog_data, simd_size);
6800 idd.SamplerStatePointer = shs->sampler_table.offset;
6801 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
6802 idd.NumberofThreadsinGPGPUThreadGroup = threads;
6803 }
6804
6805 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
6806 desc[i] |= ((uint32_t *) shader->derived_data)[i];
6807
6808 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
6809 load.InterfaceDescriptorTotalLength =
6810 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
6811 load.InterfaceDescriptorDataStartAddress =
6812 emit_state(batch, ice->state.dynamic_uploader,
6813 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
6814 }
6815 }
6816
6817 if (grid->indirect)
6818 iris_load_indirect_location(ice, batch, grid);
6819
6820 const uint32_t right_mask = brw_cs_right_mask(group_size, simd_size);
6821
6822 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
6823 ggw.IndirectParameterEnable = grid->indirect != NULL;
6824 ggw.SIMDSize = simd_size / 16;
6825 ggw.ThreadDepthCounterMaximum = 0;
6826 ggw.ThreadHeightCounterMaximum = 0;
6827 ggw.ThreadWidthCounterMaximum = threads - 1;
6828 ggw.ThreadGroupIDXDimension = grid->grid[0];
6829 ggw.ThreadGroupIDYDimension = grid->grid[1];
6830 ggw.ThreadGroupIDZDimension = grid->grid[2];
6831 ggw.RightExecutionMask = right_mask;
6832 ggw.BottomExecutionMask = 0xffffffff;
6833 }
6834
6835 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
6836 }
6837
6838 static void
iris_upload_compute_state(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)6839 iris_upload_compute_state(struct iris_context *ice,
6840 struct iris_batch *batch,
6841 const struct pipe_grid_info *grid)
6842 {
6843 const uint64_t stage_dirty = ice->state.stage_dirty;
6844 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
6845 struct iris_compiled_shader *shader =
6846 ice->shaders.prog[MESA_SHADER_COMPUTE];
6847
6848 iris_batch_sync_region_start(batch);
6849
6850 /* Always pin the binder. If we're emitting new binding table pointers,
6851 * we need it. If not, we're probably inheriting old tables via the
6852 * context, and need it anyway. Since true zero-bindings cases are
6853 * practically non-existent, just pin it and avoid last_res tracking.
6854 */
6855 iris_use_pinned_bo(batch, ice->state.binder.bo, false, IRIS_DOMAIN_NONE);
6856
6857 if (((stage_dirty & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
6858 shs->sysvals_need_upload) ||
6859 shader->kernel_input_size > 0)
6860 upload_sysvals(ice, MESA_SHADER_COMPUTE, grid);
6861
6862 if (stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_CS)
6863 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
6864
6865 if (stage_dirty & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS)
6866 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
6867
6868 iris_use_optional_res(batch, shs->sampler_table.res, false,
6869 IRIS_DOMAIN_NONE);
6870 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false,
6871 IRIS_DOMAIN_NONE);
6872
6873 if (ice->state.need_border_colors)
6874 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false,
6875 IRIS_DOMAIN_NONE);
6876
6877 #if GEN_GEN >= 12
6878 genX(invalidate_aux_map_state)(batch);
6879 #endif
6880
6881 iris_upload_gpgpu_walker(ice, batch, grid);
6882
6883 if (!batch->contains_draw_with_next_seqno) {
6884 iris_restore_compute_saved_bos(ice, batch, grid);
6885 batch->contains_draw_with_next_seqno = batch->contains_draw = true;
6886 }
6887
6888 iris_batch_sync_region_end(batch);
6889 }
6890
6891 /**
6892 * State module teardown.
6893 */
6894 static void
iris_destroy_state(struct iris_context * ice)6895 iris_destroy_state(struct iris_context *ice)
6896 {
6897 struct iris_genx_state *genx = ice->state.genx;
6898
6899 pipe_resource_reference(&ice->draw.draw_params.res, NULL);
6900 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
6901
6902 /* Loop over all VBOs, including ones for draw parameters */
6903 for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
6904 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
6905 }
6906
6907 free(ice->state.genx);
6908
6909 for (int i = 0; i < 4; i++) {
6910 pipe_so_target_reference(&ice->state.so_target[i], NULL);
6911 }
6912
6913 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
6914 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
6915 }
6916 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
6917
6918 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
6919 struct iris_shader_state *shs = &ice->state.shaders[stage];
6920 pipe_resource_reference(&shs->sampler_table.res, NULL);
6921 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
6922 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
6923 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
6924 }
6925 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
6926 pipe_resource_reference(&shs->image[i].base.resource, NULL);
6927 pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL);
6928 free(shs->image[i].surface_state.cpu);
6929 }
6930 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
6931 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
6932 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
6933 }
6934 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
6935 pipe_sampler_view_reference((struct pipe_sampler_view **)
6936 &shs->textures[i], NULL);
6937 }
6938 }
6939
6940 pipe_resource_reference(&ice->state.grid_size.res, NULL);
6941 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
6942
6943 pipe_resource_reference(&ice->state.null_fb.res, NULL);
6944 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
6945
6946 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
6947 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
6948 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
6949 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
6950 pipe_resource_reference(&ice->state.last_res.blend, NULL);
6951 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
6952 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
6953 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
6954 }
6955
6956 /* ------------------------------------------------------------------- */
6957
6958 static void
iris_rebind_buffer(struct iris_context * ice,struct iris_resource * res)6959 iris_rebind_buffer(struct iris_context *ice,
6960 struct iris_resource *res)
6961 {
6962 struct pipe_context *ctx = &ice->ctx;
6963 struct iris_genx_state *genx = ice->state.genx;
6964
6965 assert(res->base.target == PIPE_BUFFER);
6966
6967 /* Buffers can't be framebuffer attachments, nor display related,
6968 * and we don't have upstream Clover support.
6969 */
6970 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
6971 PIPE_BIND_RENDER_TARGET |
6972 PIPE_BIND_BLENDABLE |
6973 PIPE_BIND_DISPLAY_TARGET |
6974 PIPE_BIND_CURSOR |
6975 PIPE_BIND_COMPUTE_RESOURCE |
6976 PIPE_BIND_GLOBAL)));
6977
6978 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
6979 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
6980 while (bound_vbs) {
6981 const int i = u_bit_scan64(&bound_vbs);
6982 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
6983
6984 /* Update the CPU struct */
6985 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
6986 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
6987 uint64_t *addr = (uint64_t *) &state->state[1];
6988 struct iris_bo *bo = iris_resource_bo(state->resource);
6989
6990 if (*addr != bo->gtt_offset + state->offset) {
6991 *addr = bo->gtt_offset + state->offset;
6992 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
6993 }
6994 }
6995 }
6996
6997 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
6998 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
6999 *
7000 * There is also no need to handle these:
7001 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
7002 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
7003 */
7004
7005 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
7006 /* XXX: be careful about resetting vs appending... */
7007 assert(false);
7008 }
7009
7010 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
7011 struct iris_shader_state *shs = &ice->state.shaders[s];
7012 enum pipe_shader_type p_stage = stage_to_pipe(s);
7013
7014 if (!(res->bind_stages & (1 << s)))
7015 continue;
7016
7017 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
7018 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
7019 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
7020 while (bound_cbufs) {
7021 const int i = u_bit_scan(&bound_cbufs);
7022 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
7023 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
7024
7025 if (res->bo == iris_resource_bo(cbuf->buffer)) {
7026 pipe_resource_reference(&surf_state->res, NULL);
7027 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << s;
7028 }
7029 }
7030 }
7031
7032 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
7033 uint32_t bound_ssbos = shs->bound_ssbos;
7034 while (bound_ssbos) {
7035 const int i = u_bit_scan(&bound_ssbos);
7036 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
7037
7038 if (res->bo == iris_resource_bo(ssbo->buffer)) {
7039 struct pipe_shader_buffer buf = {
7040 .buffer = &res->base,
7041 .buffer_offset = ssbo->buffer_offset,
7042 .buffer_size = ssbo->buffer_size,
7043 };
7044 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
7045 (shs->writable_ssbos >> i) & 1);
7046 }
7047 }
7048 }
7049
7050 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
7051 uint32_t bound_sampler_views = shs->bound_sampler_views;
7052 while (bound_sampler_views) {
7053 const int i = u_bit_scan(&bound_sampler_views);
7054 struct iris_sampler_view *isv = shs->textures[i];
7055 struct iris_bo *bo = isv->res->bo;
7056
7057 if (update_surface_state_addrs(ice->state.surface_uploader,
7058 &isv->surface_state, bo)) {
7059 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
7060 }
7061 }
7062 }
7063
7064 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
7065 uint32_t bound_image_views = shs->bound_image_views;
7066 while (bound_image_views) {
7067 const int i = u_bit_scan(&bound_image_views);
7068 struct iris_image_view *iv = &shs->image[i];
7069 struct iris_bo *bo = iris_resource_bo(iv->base.resource);
7070
7071 if (update_surface_state_addrs(ice->state.surface_uploader,
7072 &iv->surface_state, bo)) {
7073 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
7074 }
7075 }
7076 }
7077 }
7078 }
7079
7080 /* ------------------------------------------------------------------- */
7081
7082 /**
7083 * Introduce a batch synchronization boundary, and update its cache coherency
7084 * status to reflect the execution of a PIPE_CONTROL command with the
7085 * specified flags.
7086 */
7087 static void
batch_mark_sync_for_pipe_control(struct iris_batch * batch,uint32_t flags)7088 batch_mark_sync_for_pipe_control(struct iris_batch *batch, uint32_t flags)
7089 {
7090 iris_batch_sync_boundary(batch);
7091
7092 if ((flags & PIPE_CONTROL_CS_STALL)) {
7093 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
7094 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
7095
7096 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
7097 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
7098
7099 if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
7100 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
7101
7102 if ((flags & (PIPE_CONTROL_CACHE_FLUSH_BITS |
7103 PIPE_CONTROL_STALL_AT_SCOREBOARD)))
7104 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_READ);
7105 }
7106
7107 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
7108 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
7109
7110 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
7111 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
7112
7113 if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
7114 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
7115
7116 if ((flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) &&
7117 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE))
7118 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_READ);
7119 }
7120
7121 static unsigned
flags_to_post_sync_op(uint32_t flags)7122 flags_to_post_sync_op(uint32_t flags)
7123 {
7124 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
7125 return WriteImmediateData;
7126
7127 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
7128 return WritePSDepthCount;
7129
7130 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
7131 return WriteTimestamp;
7132
7133 return 0;
7134 }
7135
7136 /**
7137 * Do the given flags have a Post Sync or LRI Post Sync operation?
7138 */
7139 static enum pipe_control_flags
get_post_sync_flags(enum pipe_control_flags flags)7140 get_post_sync_flags(enum pipe_control_flags flags)
7141 {
7142 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
7143 PIPE_CONTROL_WRITE_DEPTH_COUNT |
7144 PIPE_CONTROL_WRITE_TIMESTAMP |
7145 PIPE_CONTROL_LRI_POST_SYNC_OP;
7146
7147 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
7148 * "LRI Post Sync Operation". So more than one bit set would be illegal.
7149 */
7150 assert(util_bitcount(flags) <= 1);
7151
7152 return flags;
7153 }
7154
7155 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
7156
7157 /**
7158 * Emit a series of PIPE_CONTROL commands, taking into account any
7159 * workarounds necessary to actually accomplish the caller's request.
7160 *
7161 * Unless otherwise noted, spec quotations in this function come from:
7162 *
7163 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
7164 * Restrictions for PIPE_CONTROL.
7165 *
7166 * You should not use this function directly. Use the helpers in
7167 * iris_pipe_control.c instead, which may split the pipe control further.
7168 */
7169 static void
iris_emit_raw_pipe_control(struct iris_batch * batch,const char * reason,uint32_t flags,struct iris_bo * bo,uint32_t offset,uint64_t imm)7170 iris_emit_raw_pipe_control(struct iris_batch *batch,
7171 const char *reason,
7172 uint32_t flags,
7173 struct iris_bo *bo,
7174 uint32_t offset,
7175 uint64_t imm)
7176 {
7177 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
7178 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
7179 enum pipe_control_flags non_lri_post_sync_flags =
7180 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
7181
7182 /* Recursive PIPE_CONTROL workarounds --------------------------------
7183 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
7184 *
7185 * We do these first because we want to look at the original operation,
7186 * rather than any workarounds we set.
7187 */
7188 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
7189 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
7190 * lists several workarounds:
7191 *
7192 * "Project: SKL, KBL, BXT
7193 *
7194 * If the VF Cache Invalidation Enable is set to a 1 in a
7195 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
7196 * sets to 0, with the VF Cache Invalidation Enable set to 0
7197 * needs to be sent prior to the PIPE_CONTROL with VF Cache
7198 * Invalidation Enable set to a 1."
7199 */
7200 iris_emit_raw_pipe_control(batch,
7201 "workaround: recursive VF cache invalidate",
7202 0, NULL, 0, 0);
7203 }
7204
7205 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
7206 * invalidates the instruction cache
7207 */
7208 if (GEN_GEN == 12 && (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE)) {
7209 iris_emit_raw_pipe_control(batch,
7210 "workaround: CS stall before instruction "
7211 "cache invalidate",
7212 PIPE_CONTROL_CS_STALL |
7213 PIPE_CONTROL_STALL_AT_SCOREBOARD, bo, offset,
7214 imm);
7215 }
7216
7217 if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0*/)) &&
7218 IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
7219 /* Project: SKL / Argument: LRI Post Sync Operation [23]
7220 *
7221 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
7222 * programmed prior to programming a PIPECONTROL command with "LRI
7223 * Post Sync Operation" in GPGPU mode of operation (i.e when
7224 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
7225 *
7226 * The same text exists a few rows below for Post Sync Op.
7227 *
7228 * On Gen12 this is GEN:BUG:1607156449.
7229 */
7230 iris_emit_raw_pipe_control(batch,
7231 "workaround: CS stall before gpgpu post-sync",
7232 PIPE_CONTROL_CS_STALL, bo, offset, imm);
7233 }
7234
7235 /* "Flush Types" workarounds ---------------------------------------------
7236 * We do these now because they may add post-sync operations or CS stalls.
7237 */
7238
7239 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
7240 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
7241 *
7242 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
7243 * 'Write PS Depth Count' or 'Write Timestamp'."
7244 */
7245 if (!bo) {
7246 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
7247 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
7248 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
7249 bo = batch->screen->workaround_address.bo;
7250 offset = batch->screen->workaround_address.offset;
7251 }
7252 }
7253
7254 if (flags & PIPE_CONTROL_DEPTH_STALL) {
7255 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
7256 *
7257 * "This bit must be DISABLED for operations other than writing
7258 * PS_DEPTH_COUNT."
7259 *
7260 * This seems like nonsense. An Ivybridge workaround requires us to
7261 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
7262 * operation. Gen8+ requires us to emit depth stalls and depth cache
7263 * flushes together. So, it's hard to imagine this means anything other
7264 * than "we originally intended this to be used for PS_DEPTH_COUNT".
7265 *
7266 * We ignore the supposed restriction and do nothing.
7267 */
7268 }
7269
7270 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
7271 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
7272 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
7273 *
7274 * "This bit must be DISABLED for End-of-pipe (Read) fences,
7275 * PS_DEPTH_COUNT or TIMESTAMP queries."
7276 *
7277 * TODO: Implement end-of-pipe checking.
7278 */
7279 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
7280 PIPE_CONTROL_WRITE_TIMESTAMP)));
7281 }
7282
7283 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
7284 /* From the PIPE_CONTROL instruction table, bit 1:
7285 *
7286 * "This bit is ignored if Depth Stall Enable is set.
7287 * Further, the render cache is not flushed even if Write Cache
7288 * Flush Enable bit is set."
7289 *
7290 * We assert that the caller doesn't do this combination, to try and
7291 * prevent mistakes. It shouldn't hurt the GPU, though.
7292 *
7293 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
7294 * and "Render Target Flush" combo is explicitly required for BTI
7295 * update workarounds.
7296 */
7297 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
7298 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
7299 }
7300
7301 /* PIPE_CONTROL page workarounds ------------------------------------- */
7302
7303 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
7304 /* From the PIPE_CONTROL page itself:
7305 *
7306 * "IVB, HSW, BDW
7307 * Restriction: Pipe_control with CS-stall bit set must be issued
7308 * before a pipe-control command that has the State Cache
7309 * Invalidate bit set."
7310 */
7311 flags |= PIPE_CONTROL_CS_STALL;
7312 }
7313
7314 if (flags & PIPE_CONTROL_FLUSH_LLC) {
7315 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
7316 *
7317 * "Project: ALL
7318 * SW must always program Post-Sync Operation to "Write Immediate
7319 * Data" when Flush LLC is set."
7320 *
7321 * For now, we just require the caller to do it.
7322 */
7323 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
7324 }
7325
7326 /* "Post-Sync Operation" workarounds -------------------------------- */
7327
7328 /* Project: All / Argument: Global Snapshot Count Reset [19]
7329 *
7330 * "This bit must not be exercised on any product.
7331 * Requires stall bit ([20] of DW1) set."
7332 *
7333 * We don't use this, so we just assert that it isn't used. The
7334 * PIPE_CONTROL instruction page indicates that they intended this
7335 * as a debug feature and don't think it is useful in production,
7336 * but it may actually be usable, should we ever want to.
7337 */
7338 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
7339
7340 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
7341 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
7342 /* Project: All / Arguments:
7343 *
7344 * - Generic Media State Clear [16]
7345 * - Indirect State Pointers Disable [16]
7346 *
7347 * "Requires stall bit ([20] of DW1) set."
7348 *
7349 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
7350 * State Clear) says:
7351 *
7352 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
7353 * programmed prior to programming a PIPECONTROL command with "Media
7354 * State Clear" set in GPGPU mode of operation"
7355 *
7356 * This is a subset of the earlier rule, so there's nothing to do.
7357 */
7358 flags |= PIPE_CONTROL_CS_STALL;
7359 }
7360
7361 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
7362 /* Project: All / Argument: Store Data Index
7363 *
7364 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
7365 * than '0'."
7366 *
7367 * For now, we just assert that the caller does this. We might want to
7368 * automatically add a write to the workaround BO...
7369 */
7370 assert(non_lri_post_sync_flags != 0);
7371 }
7372
7373 if (flags & PIPE_CONTROL_SYNC_GFDT) {
7374 /* Project: All / Argument: Sync GFDT
7375 *
7376 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
7377 * than '0' or 0x2520[13] must be set."
7378 *
7379 * For now, we just assert that the caller does this.
7380 */
7381 assert(non_lri_post_sync_flags != 0);
7382 }
7383
7384 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
7385 /* Project: IVB+ / Argument: TLB inv
7386 *
7387 * "Requires stall bit ([20] of DW1) set."
7388 *
7389 * Also, from the PIPE_CONTROL instruction table:
7390 *
7391 * "Project: SKL+
7392 * Post Sync Operation or CS stall must be set to ensure a TLB
7393 * invalidation occurs. Otherwise no cycle will occur to the TLB
7394 * cache to invalidate."
7395 *
7396 * This is not a subset of the earlier rule, so there's nothing to do.
7397 */
7398 flags |= PIPE_CONTROL_CS_STALL;
7399 }
7400
7401 if (GEN_GEN >= 12 && ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ||
7402 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))) {
7403 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
7404 * Enable):
7405 *
7406 * Unified Cache (Tile Cache Disabled):
7407 *
7408 * When the Color and Depth (Z) streams are enabled to be cached in
7409 * the DC space of L2, Software must use "Render Target Cache Flush
7410 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
7411 * Flush" for getting the color and depth (Z) write data to be
7412 * globally observable. In this mode of operation it is not required
7413 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
7414 */
7415 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
7416 }
7417
7418 if (GEN_GEN == 9 && devinfo->gt == 4) {
7419 /* TODO: The big Skylake GT4 post sync op workaround */
7420 }
7421
7422 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
7423
7424 if (IS_COMPUTE_PIPELINE(batch)) {
7425 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
7426 /* Project: SKL+ / Argument: Tex Invalidate
7427 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
7428 */
7429 flags |= PIPE_CONTROL_CS_STALL;
7430 }
7431
7432 if (GEN_GEN == 8 && (post_sync_flags ||
7433 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
7434 PIPE_CONTROL_DEPTH_STALL |
7435 PIPE_CONTROL_RENDER_TARGET_FLUSH |
7436 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
7437 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
7438 /* Project: BDW / Arguments:
7439 *
7440 * - LRI Post Sync Operation [23]
7441 * - Post Sync Op [15:14]
7442 * - Notify En [8]
7443 * - Depth Stall [13]
7444 * - Render Target Cache Flush [12]
7445 * - Depth Cache Flush [0]
7446 * - DC Flush Enable [5]
7447 *
7448 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
7449 * Workloads."
7450 */
7451 flags |= PIPE_CONTROL_CS_STALL;
7452
7453 /* Also, from the PIPE_CONTROL instruction table, bit 20:
7454 *
7455 * "Project: BDW
7456 * This bit must be always set when PIPE_CONTROL command is
7457 * programmed by GPGPU and MEDIA workloads, except for the cases
7458 * when only Read Only Cache Invalidation bits are set (State
7459 * Cache Invalidation Enable, Instruction cache Invalidation
7460 * Enable, Texture Cache Invalidation Enable, Constant Cache
7461 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
7462 * need not implemented when FF_DOP_CG is disable via "Fixed
7463 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
7464 *
7465 * It sounds like we could avoid CS stalls in some cases, but we
7466 * don't currently bother. This list isn't exactly the list above,
7467 * either...
7468 */
7469 }
7470 }
7471
7472 /* "Stall" workarounds ----------------------------------------------
7473 * These have to come after the earlier ones because we may have added
7474 * some additional CS stalls above.
7475 */
7476
7477 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
7478 /* Project: PRE-SKL, VLV, CHV
7479 *
7480 * "[All Stepping][All SKUs]:
7481 *
7482 * One of the following must also be set:
7483 *
7484 * - Render Target Cache Flush Enable ([12] of DW1)
7485 * - Depth Cache Flush Enable ([0] of DW1)
7486 * - Stall at Pixel Scoreboard ([1] of DW1)
7487 * - Depth Stall ([13] of DW1)
7488 * - Post-Sync Operation ([13] of DW1)
7489 * - DC Flush Enable ([5] of DW1)"
7490 *
7491 * If we don't already have one of those bits set, we choose to add
7492 * "Stall at Pixel Scoreboard". Some of the other bits require a
7493 * CS stall as a workaround (see above), which would send us into
7494 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
7495 * appears to be safe, so we choose that.
7496 */
7497 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
7498 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
7499 PIPE_CONTROL_WRITE_IMMEDIATE |
7500 PIPE_CONTROL_WRITE_DEPTH_COUNT |
7501 PIPE_CONTROL_WRITE_TIMESTAMP |
7502 PIPE_CONTROL_STALL_AT_SCOREBOARD |
7503 PIPE_CONTROL_DEPTH_STALL |
7504 PIPE_CONTROL_DATA_CACHE_FLUSH;
7505 if (!(flags & wa_bits))
7506 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
7507 }
7508
7509 if (GEN_GEN >= 12 && (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) {
7510 /* GEN:BUG:1409600907:
7511 *
7512 * "PIPE_CONTROL with Depth Stall Enable bit must be set
7513 * with any PIPE_CONTROL with Depth Flush Enable bit set.
7514 */
7515 flags |= PIPE_CONTROL_DEPTH_STALL;
7516 }
7517
7518 /* Emit --------------------------------------------------------------- */
7519
7520 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
7521 fprintf(stderr,
7522 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
7523 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
7524 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
7525 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
7526 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
7527 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
7528 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
7529 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
7530 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
7531 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
7532 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
7533 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
7534 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
7535 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
7536 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
7537 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
7538 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
7539 "SnapRes" : "",
7540 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
7541 "ISPDis" : "",
7542 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
7543 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
7544 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
7545 (flags & PIPE_CONTROL_FLUSH_HDC) ? "HDC " : "",
7546 imm, reason);
7547 }
7548
7549 batch_mark_sync_for_pipe_control(batch, flags);
7550 iris_batch_sync_region_start(batch);
7551
7552 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
7553 #if GEN_GEN >= 12
7554 pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
7555 #endif
7556 #if GEN_GEN >= 11
7557 pc.HDCPipelineFlushEnable = flags & PIPE_CONTROL_FLUSH_HDC;
7558 #endif
7559 pc.LRIPostSyncOperation = NoLRIOperation;
7560 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
7561 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
7562 pc.StoreDataIndex = 0;
7563 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
7564 pc.GlobalSnapshotCountReset =
7565 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
7566 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
7567 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
7568 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
7569 pc.RenderTargetCacheFlushEnable =
7570 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
7571 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
7572 pc.StateCacheInvalidationEnable =
7573 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
7574 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
7575 pc.ConstantCacheInvalidationEnable =
7576 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
7577 pc.PostSyncOperation = flags_to_post_sync_op(flags);
7578 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
7579 pc.InstructionCacheInvalidateEnable =
7580 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
7581 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
7582 pc.IndirectStatePointersDisable =
7583 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
7584 pc.TextureCacheInvalidationEnable =
7585 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
7586 pc.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
7587 pc.ImmediateData = imm;
7588 }
7589
7590 iris_batch_sync_region_end(batch);
7591 }
7592
7593 #if GEN_GEN == 9
7594 /**
7595 * Preemption on Gen9 has to be enabled or disabled in various cases.
7596 *
7597 * See these workarounds for preemption:
7598 * - WaDisableMidObjectPreemptionForGSLineStripAdj
7599 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
7600 * - WaDisableMidObjectPreemptionForLineLoop
7601 * - WA#0798
7602 *
7603 * We don't put this in the vtable because it's only used on Gen9.
7604 */
7605 void
gen9_toggle_preemption(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw)7606 gen9_toggle_preemption(struct iris_context *ice,
7607 struct iris_batch *batch,
7608 const struct pipe_draw_info *draw)
7609 {
7610 struct iris_genx_state *genx = ice->state.genx;
7611 bool object_preemption = true;
7612
7613 /* WaDisableMidObjectPreemptionForGSLineStripAdj
7614 *
7615 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
7616 * and GS is enabled."
7617 */
7618 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
7619 ice->shaders.prog[MESA_SHADER_GEOMETRY])
7620 object_preemption = false;
7621
7622 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
7623 *
7624 * "TriFan miscompare in Execlist Preemption test. Cut index that is
7625 * on a previous context. End the previous, the resume another context
7626 * with a tri-fan or polygon, and the vertex count is corrupted. If we
7627 * prempt again we will cause corruption.
7628 *
7629 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
7630 */
7631 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
7632 object_preemption = false;
7633
7634 /* WaDisableMidObjectPreemptionForLineLoop
7635 *
7636 * "VF Stats Counters Missing a vertex when preemption enabled.
7637 *
7638 * WA: Disable mid-draw preemption when the draw uses a lineloop
7639 * topology."
7640 */
7641 if (draw->mode == PIPE_PRIM_LINE_LOOP)
7642 object_preemption = false;
7643
7644 /* WA#0798
7645 *
7646 * "VF is corrupting GAFS data when preempted on an instance boundary
7647 * and replayed with instancing enabled.
7648 *
7649 * WA: Disable preemption when using instanceing."
7650 */
7651 if (draw->instance_count > 1)
7652 object_preemption = false;
7653
7654 if (genx->object_preemption != object_preemption) {
7655 iris_enable_obj_preemption(batch, object_preemption);
7656 genx->object_preemption = object_preemption;
7657 }
7658 }
7659 #endif
7660
7661 static void
iris_lost_genx_state(struct iris_context * ice,struct iris_batch * batch)7662 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
7663 {
7664 struct iris_genx_state *genx = ice->state.genx;
7665
7666 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
7667 }
7668
7669 static void
iris_emit_mi_report_perf_count(struct iris_batch * batch,struct iris_bo * bo,uint32_t offset_in_bytes,uint32_t report_id)7670 iris_emit_mi_report_perf_count(struct iris_batch *batch,
7671 struct iris_bo *bo,
7672 uint32_t offset_in_bytes,
7673 uint32_t report_id)
7674 {
7675 iris_batch_sync_region_start(batch);
7676 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
7677 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes,
7678 IRIS_DOMAIN_OTHER_WRITE);
7679 mi_rpc.ReportID = report_id;
7680 }
7681 iris_batch_sync_region_end(batch);
7682 }
7683
7684 /**
7685 * Update the pixel hashing modes that determine the balancing of PS threads
7686 * across subslices and slices.
7687 *
7688 * \param width Width bound of the rendering area (already scaled down if \p
7689 * scale is greater than 1).
7690 * \param height Height bound of the rendering area (already scaled down if \p
7691 * scale is greater than 1).
7692 * \param scale The number of framebuffer samples that could potentially be
7693 * affected by an individual channel of the PS thread. This is
7694 * typically one for single-sampled rendering, but for operations
7695 * like CCS resolves and fast clears a single PS invocation may
7696 * update a huge number of pixels, in which case a finer
7697 * balancing is desirable in order to maximally utilize the
7698 * bandwidth available. UINT_MAX can be used as shorthand for
7699 * "finest hashing mode available".
7700 */
7701 void
genX(emit_hashing_mode)7702 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
7703 unsigned width, unsigned height, unsigned scale)
7704 {
7705 #if GEN_GEN == 9
7706 const struct gen_device_info *devinfo = &batch->screen->devinfo;
7707 const unsigned slice_hashing[] = {
7708 /* Because all Gen9 platforms with more than one slice require
7709 * three-way subslice hashing, a single "normal" 16x16 slice hashing
7710 * block is guaranteed to suffer from substantial imbalance, with one
7711 * subslice receiving twice as much work as the other two in the
7712 * slice.
7713 *
7714 * The performance impact of that would be particularly severe when
7715 * three-way hashing is also in use for slice balancing (which is the
7716 * case for all Gen9 GT4 platforms), because one of the slices
7717 * receives one every three 16x16 blocks in either direction, which
7718 * is roughly the periodicity of the underlying subslice imbalance
7719 * pattern ("roughly" because in reality the hardware's
7720 * implementation of three-way hashing doesn't do exact modulo 3
7721 * arithmetic, which somewhat decreases the magnitude of this effect
7722 * in practice). This leads to a systematic subslice imbalance
7723 * within that slice regardless of the size of the primitive. The
7724 * 32x32 hashing mode guarantees that the subslice imbalance within a
7725 * single slice hashing block is minimal, largely eliminating this
7726 * effect.
7727 */
7728 _32x32,
7729 /* Finest slice hashing mode available. */
7730 NORMAL
7731 };
7732 const unsigned subslice_hashing[] = {
7733 /* 16x16 would provide a slight cache locality benefit especially
7734 * visible in the sampler L1 cache efficiency of low-bandwidth
7735 * non-LLC platforms, but it comes at the cost of greater subslice
7736 * imbalance for primitives of dimensions approximately intermediate
7737 * between 16x4 and 16x16.
7738 */
7739 _16x4,
7740 /* Finest subslice hashing mode available. */
7741 _8x4
7742 };
7743 /* Dimensions of the smallest hashing block of a given hashing mode. If
7744 * the rendering area is smaller than this there can't possibly be any
7745 * benefit from switching to this mode, so we optimize out the
7746 * transition.
7747 */
7748 const unsigned min_size[][2] = {
7749 { 16, 4 },
7750 { 8, 4 }
7751 };
7752 const unsigned idx = scale > 1;
7753
7754 if (width > min_size[idx][0] || height > min_size[idx][1]) {
7755 uint32_t gt_mode;
7756
7757 iris_pack_state(GENX(GT_MODE), >_mode, reg) {
7758 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
7759 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
7760 reg.SubsliceHashing = subslice_hashing[idx];
7761 reg.SubsliceHashingMask = -1;
7762 };
7763
7764 iris_emit_raw_pipe_control(batch,
7765 "workaround: CS stall before GT_MODE LRI",
7766 PIPE_CONTROL_STALL_AT_SCOREBOARD |
7767 PIPE_CONTROL_CS_STALL,
7768 NULL, 0, 0);
7769
7770 iris_emit_lri(batch, GT_MODE, gt_mode);
7771
7772 ice->state.current_hash_scale = scale;
7773 }
7774 #endif
7775 }
7776
7777 static void
iris_set_frontend_noop(struct pipe_context * ctx,bool enable)7778 iris_set_frontend_noop(struct pipe_context *ctx, bool enable)
7779 {
7780 struct iris_context *ice = (struct iris_context *) ctx;
7781
7782 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_RENDER], enable)) {
7783 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_RENDER;
7784 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_RENDER;
7785 }
7786
7787 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_COMPUTE], enable)) {
7788 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_COMPUTE;
7789 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_COMPUTE;
7790 }
7791 }
7792
7793 void
genX(init_screen_state)7794 genX(init_screen_state)(struct iris_screen *screen)
7795 {
7796 screen->vtbl.destroy_state = iris_destroy_state;
7797 screen->vtbl.init_render_context = iris_init_render_context;
7798 screen->vtbl.init_compute_context = iris_init_compute_context;
7799 screen->vtbl.upload_render_state = iris_upload_render_state;
7800 screen->vtbl.update_surface_base_address = iris_update_surface_base_address;
7801 screen->vtbl.upload_compute_state = iris_upload_compute_state;
7802 screen->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
7803 screen->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
7804 screen->vtbl.rebind_buffer = iris_rebind_buffer;
7805 screen->vtbl.load_register_reg32 = iris_load_register_reg32;
7806 screen->vtbl.load_register_reg64 = iris_load_register_reg64;
7807 screen->vtbl.load_register_imm32 = iris_load_register_imm32;
7808 screen->vtbl.load_register_imm64 = iris_load_register_imm64;
7809 screen->vtbl.load_register_mem32 = iris_load_register_mem32;
7810 screen->vtbl.load_register_mem64 = iris_load_register_mem64;
7811 screen->vtbl.store_register_mem32 = iris_store_register_mem32;
7812 screen->vtbl.store_register_mem64 = iris_store_register_mem64;
7813 screen->vtbl.store_data_imm32 = iris_store_data_imm32;
7814 screen->vtbl.store_data_imm64 = iris_store_data_imm64;
7815 screen->vtbl.copy_mem_mem = iris_copy_mem_mem;
7816 screen->vtbl.derived_program_state_size = iris_derived_program_state_size;
7817 screen->vtbl.store_derived_program_state = iris_store_derived_program_state;
7818 screen->vtbl.create_so_decl_list = iris_create_so_decl_list;
7819 screen->vtbl.populate_vs_key = iris_populate_vs_key;
7820 screen->vtbl.populate_tcs_key = iris_populate_tcs_key;
7821 screen->vtbl.populate_tes_key = iris_populate_tes_key;
7822 screen->vtbl.populate_gs_key = iris_populate_gs_key;
7823 screen->vtbl.populate_fs_key = iris_populate_fs_key;
7824 screen->vtbl.populate_cs_key = iris_populate_cs_key;
7825 screen->vtbl.lost_genx_state = iris_lost_genx_state;
7826 }
7827
7828 void
genX(init_state)7829 genX(init_state)(struct iris_context *ice)
7830 {
7831 struct pipe_context *ctx = &ice->ctx;
7832 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
7833
7834 ctx->create_blend_state = iris_create_blend_state;
7835 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
7836 ctx->create_rasterizer_state = iris_create_rasterizer_state;
7837 ctx->create_sampler_state = iris_create_sampler_state;
7838 ctx->create_sampler_view = iris_create_sampler_view;
7839 ctx->create_surface = iris_create_surface;
7840 ctx->create_vertex_elements_state = iris_create_vertex_elements;
7841 ctx->bind_blend_state = iris_bind_blend_state;
7842 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
7843 ctx->bind_sampler_states = iris_bind_sampler_states;
7844 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
7845 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
7846 ctx->delete_blend_state = iris_delete_state;
7847 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
7848 ctx->delete_rasterizer_state = iris_delete_state;
7849 ctx->delete_sampler_state = iris_delete_state;
7850 ctx->delete_vertex_elements_state = iris_delete_state;
7851 ctx->set_blend_color = iris_set_blend_color;
7852 ctx->set_clip_state = iris_set_clip_state;
7853 ctx->set_constant_buffer = iris_set_constant_buffer;
7854 ctx->set_shader_buffers = iris_set_shader_buffers;
7855 ctx->set_shader_images = iris_set_shader_images;
7856 ctx->set_sampler_views = iris_set_sampler_views;
7857 ctx->set_compute_resources = iris_set_compute_resources;
7858 ctx->set_global_binding = iris_set_global_binding;
7859 ctx->set_tess_state = iris_set_tess_state;
7860 ctx->set_framebuffer_state = iris_set_framebuffer_state;
7861 ctx->set_polygon_stipple = iris_set_polygon_stipple;
7862 ctx->set_sample_mask = iris_set_sample_mask;
7863 ctx->set_scissor_states = iris_set_scissor_states;
7864 ctx->set_stencil_ref = iris_set_stencil_ref;
7865 ctx->set_vertex_buffers = iris_set_vertex_buffers;
7866 ctx->set_viewport_states = iris_set_viewport_states;
7867 ctx->sampler_view_destroy = iris_sampler_view_destroy;
7868 ctx->surface_destroy = iris_surface_destroy;
7869 ctx->draw_vbo = iris_draw_vbo;
7870 ctx->launch_grid = iris_launch_grid;
7871 ctx->create_stream_output_target = iris_create_stream_output_target;
7872 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
7873 ctx->set_stream_output_targets = iris_set_stream_output_targets;
7874 ctx->set_frontend_noop = iris_set_frontend_noop;
7875
7876 ice->state.dirty = ~0ull;
7877 ice->state.stage_dirty = ~0ull;
7878
7879 ice->state.statistics_counters_enabled = true;
7880
7881 ice->state.sample_mask = 0xffff;
7882 ice->state.num_viewports = 1;
7883 ice->state.prim_mode = PIPE_PRIM_MAX;
7884 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
7885 ice->draw.derived_params.drawid = -1;
7886
7887 /* Make a 1x1x1 null surface for unbound textures */
7888 void *null_surf_map =
7889 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
7890 4 * GENX(RENDER_SURFACE_STATE_length), 64);
7891 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
7892 ice->state.unbound_tex.offset +=
7893 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
7894
7895 /* Default all scissor rectangles to be empty regions. */
7896 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
7897 ice->state.scissors[i] = (struct pipe_scissor_state) {
7898 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
7899 };
7900 }
7901 }
7902