Searched refs:a_i (Results 1 – 17 of 17) sorted by relevance
52 const int a_i = (int)(0.5 + 256 * gaussian(sigma, 0, i)); in vpx_setup_noise() local53 if (a_i) { in vpx_setup_noise()54 for (j = 0; j < a_i; ++j) { in vpx_setup_noise()
41 <td>absolute value (\f$ |a_i| \f$) </td>55 <td>inverse value (\f$ 1/a_i \f$) </td>68 …<td><a href="https://en.wikipedia.org/wiki/Complex_conjugate">complex conjugate</a> (\f$ \bar{a_i}…85 <td>\f$ e \f$ raised to the given power (\f$ e^{a_i} \f$) </td>98 <td>natural (base \f$ e \f$) logarithm (\f$ \ln({a_i}) \f$)</td>111 <td>natural (base \f$ e \f$) logarithm of 1 plus \n the given number (\f$ \ln({1+a_i}) \f$)</td>122 <td>base 10 logarithm (\f$ \log_{10}({a_i}) \f$)</td>138 …<td>raises a number to the given power (\f$ a_i ^ {b_i} \f$) \n \c a and \c b can be either an arr…152 <td>computes square root (\f$ \sqrt a_i \f$)</td>164 …ikipedia.org/wiki/Fast_inverse_square_root">reciprocal square root</a> (\f$ 1/{\sqrt a_i} \f$)</td>[all …]
83 auto a_i = Coefficient(lower_diagonal_xla, i); in XLA_TEST_P() local93 (a_i * Coefficient(x, i - 1) + b_i * Coefficient(x, i) - d_i) / d_i; in XLA_TEST_P()96 (a_i * Coefficient(x, i - 1) + b_i * Coefficient(x, i) + in XLA_TEST_P()
173 for (m_i, a_i) in zip(modulo_values, a_values):177 x = (x + a_i * M_i * inv) % m
596 a_i = array_ops.gather(a, i)599 return array_ops.where(cond_i, a_i, b_i)616 a_i = array_ops.gather(a, i)619 return array_ops.where_v2(cond_i, a_i, b_i)636 a_i = array_ops.gather(a, i)639 return array_ops.where_v2(cond_i, a_i, b_i)656 a_i = array_ops.gather(a, i)658 return array_ops.where_v2(cond, a_i, b_i)
303 a_i = (ratio_l - m) / (max_ratio - m)304 return a_i, m
1169 auto a_i = EmitExtractImag(lhs_value); in EmitComplexBinaryOp() local1204 b_r_lt_b_i, FDiv(FAdd(FMul(b_r_b_i_ratio, a_r), a_i), b_r_b_i_denom), in EmitComplexBinaryOp()1205 FDiv(FAdd(FMul(b_i_b_r_ratio, a_i), a_r), b_i_b_r_denom)); in EmitComplexBinaryOp()1207 b_r_lt_b_i, FDiv(FSub(FMul(b_r_b_i_ratio, a_i), a_r), b_r_b_i_denom), in EmitComplexBinaryOp()1208 FDiv(FSub(a_i, FMul(b_i_b_r_ratio, a_r)), b_i_b_r_denom)); in EmitComplexBinaryOp()1219 Or(Neg(FCmpONE(a_r, zero)), Neg(FCmpONE(a_i, zero)))); in EmitComplexBinaryOp()1223 op, FMul(inf_with_sign_of_c, a_r), FMul(inf_with_sign_of_c, a_i)); in EmitComplexBinaryOp()1232 auto inf_num_finite_denom = And(Or(FCmpOEQ(a_r, inf), FCmpOEQ(a_i, inf)), in EmitComplexBinaryOp()1240 {Select(FCmpOEQ(a_i, inf), one, zero), a_i}, {type}, b_); in EmitComplexBinaryOp()1253 llvm::Intrinsic::fabs, {a_i}, {type}, b_), in EmitComplexBinaryOp()[all …]
57 computes the coefficients \f$ a_i \f$ of
802 %a_i = getelementptr inbounds i32, i32* %a, i64 %i804 store i32 %x, i32* %a_i, align 4805 store i32 %y, i32* %a_i, align 4849 %a_i = getelementptr inbounds i32, i32* %a, i64 %i854 store i32 %z, i32* %a_i, align 4
834 %a_i = getelementptr inbounds i32, i32* %a, i64 %i836 store i32 %x, i32* %a_i, align 4837 store i32 %y, i32* %a_i, align 4881 %a_i = getelementptr inbounds i32, i32* %a, i64 %i886 store i32 %z, i32* %a_i, align 4
218 $r = -n + \sum_i a_i \, c_i$ with negative220 such that $a_j > 0$. Since $c_j = (n + r - \sum_{i\ne j} a_i \, c_i)/a_j$,411 the equality is of the form $b + \sum_{i \le j} a_i \, x_i = 0$ with430 j && |(left)| -b/a_j & -a_i/a_j & \\801 That is, $r = b(\vec p) + c_j - f$ with $f = -\sum_{i\ne j} a_i c_i \ge 0$.
1441 %a_i = trunc i32 %a to i11442 …e, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true>, i1 %a_i, i32 0
1805 %a_i = trunc i32 %a to i11806 …e, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true>, i1 %a_i, i32 0
5240 %a_i = trunc i32 %a to i15241 …e, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true, i1 true>, i1 %a_i, i32 0
3066 measure of $\bigcup[a_i,b_i]$ . . . . . 540--544
23374 title = "On the complexity of computing the measure of {$\bigcup[a_i,b_i]$}",
META-INF/MANIFEST.MF META-INF/ECLIPSE_.SF META-INF/ECLIPSE_ ...