/external/tensorflow/tensorflow/lite/micro/kernels/ |
D | split_v.cc | 30 const TfLiteEvalTensor* input, int axis_value) { in SplitImpl() argument 37 TFLITE_DCHECK_LT(axis_value, split_dimensions); in SplitImpl() 44 tflite::micro::GetEvalOutput(context, node, i)->dims->data[axis_value]; in SplitImpl() 46 TFLITE_DCHECK_EQ(split_size, input_dims->data[axis_value]); in SplitImpl() 48 for (int i = 0; i < axis_value; ++i) { in SplitImpl() 53 for (int i = axis_value + 1; i < split_dimensions; ++i) { in SplitImpl() 64 output_tensor->dims->data[axis_value] * base_inner_size; in SplitImpl() 91 int axis_value = tflite::micro::GetTensorData<int32_t>(axis)[0]; in Eval() local 92 if (axis_value < 0) { in Eval() 93 axis_value += input->dims->size; in Eval() [all …]
|
D | split.cc | 29 const TfLiteEvalTensor* input, int axis_value) { in SplitImpl() argument 37 int axis = axis_value < 0 ? axis_value + split_dimensions : axis_value; in SplitImpl() 86 int axis_value = tflite::micro::GetTensorData<int32_t>(axis)[0]; in Eval() local 87 if (axis_value < 0) { in Eval() 88 axis_value += input->dims->size; in Eval() 91 TF_LITE_ENSURE(context, axis_value >= 0); in Eval() 92 TF_LITE_ENSURE(context, axis_value < input->dims->size); in Eval() 96 return SplitImpl<float>(context, node, input, axis_value); in Eval() 99 return SplitImpl<uint8_t>(context, node, input, axis_value); in Eval() 102 return SplitImpl<int8_t>(context, node, input, axis_value); in Eval() [all …]
|
D | split_v_test.cc | 334 int32_t axis_value[] = {0}; in TF_LITE_MICRO_TEST() local 387 axis_value, split_size_shape, split, in TF_LITE_MICRO_TEST() 411 int32_t axis_value[] = {0}; in TF_LITE_MICRO_TEST() local 464 axis_value, split_size_shape, split, in TF_LITE_MICRO_TEST()
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | split.cc | 54 int axis_value = GetTensorData<int>(axis)[0]; in ResizeOutputTensors() local 55 if (axis_value < 0) { in ResizeOutputTensors() 56 axis_value += NumDimensions(input); in ResizeOutputTensors() 59 TF_LITE_ENSURE(context, axis_value >= 0); in ResizeOutputTensors() 60 TF_LITE_ENSURE(context, axis_value < NumDimensions(input)); in ResizeOutputTensors() 62 const int input_size = SizeOfDimension(input, axis_value); in ResizeOutputTensors() 69 output_dims->data[axis_value] = slice_size; in ResizeOutputTensors() 118 int axis_value = GetTensorData<int>(op_context.axis)[0]; in Eval() local 119 if (axis_value < 0) { in Eval() 120 axis_value += NumDimensions(op_context.input); in Eval() [all …]
|
D | expand_dims.cc | 56 const TfLiteTensor& axis, int* axis_value) { in GetAxisValueFromTensor() argument 60 *axis_value = *GetTensorData<int32_t>(&axis); in GetAxisValueFromTensor() 63 *axis_value = *GetTensorData<int64_t>(&axis); in GetAxisValueFromTensor() 83 int axis_value; in Prepare() local 85 GetAxisValueFromTensor(context, *axis, &axis_value)); in Prepare() 86 return ExpandTensorDim(context, *input, axis_value, output); in Prepare() 101 int axis_value; in Eval() local 103 GetAxisValueFromTensor(context, *axis, &axis_value)); in Eval() 105 ExpandTensorDim(context, *input, axis_value, output)); in Eval()
|
D | arg_min_max_test.cc | 33 ArgBaseOpModel(TensorType input_type, int axis_value, TensorType axis_type, in ArgBaseOpModel() argument 35 : axis_value_(axis_value), in ArgBaseOpModel() 42 AddConstInput(axis_type, {static_cast<int64_t>(axis_value)}, {1}); in ArgBaseOpModel() 44 axis_ = AddConstInput(axis_type, {axis_value}, {1}); in ArgBaseOpModel() 85 int axis_value, TensorType axis_type, bool constant_axis, in ArgMaxOpModel() argument 87 : ArgBaseOpModel(input_type, axis_value, axis_type, constant_axis, in ArgMaxOpModel() 100 int axis_value, TensorType axis_type, bool constant_axis, in ArgMinOpModel() argument 102 : ArgBaseOpModel(input_type, axis_value, axis_type, constant_axis, in ArgMinOpModel()
|
D | split_v.cc | 68 int axis_value = GetTensorData<int>(axis)[0]; in ResizeOutputTensors() local 69 if (axis_value < 0) { in ResizeOutputTensors() 70 axis_value += NumDimensions(input); in ResizeOutputTensors() 99 const int input_size = SizeOfDimension(input, axis_value); in ResizeOutputTensors() 117 output_dims->data[axis_value] = size_splits_vector.at(i); in ResizeOutputTensors() 171 int axis_value = GetTensorData<int>(op_context.axis)[0]; in Eval() local 178 op_params.axis = axis_value; \ in Eval()
|
D | arg_min_max.cc | 40 int axis_value; in ResizeOutput() local 43 axis_value = static_cast<int>(*GetTensorData<int64_t>(axis)); in ResizeOutput() 45 axis_value = *GetTensorData<int>(axis); in ResizeOutput() 47 if (axis_value < 0) { in ResizeOutput() 48 axis_value += NumDimensions(input); in ResizeOutput() 55 if (i != axis_value) { in ResizeOutput()
|
/external/tensorflow/tensorflow/lite/testing/op_tests/ |
D | expand_dims.py | 55 axis_value = tf.constant( 58 axis_value = tf.compat.v1.placeholder( 60 inputs.append(axis_value) 62 out = tf.expand_dims(input_value, axis=axis_value)
|
/external/tensorflow/tensorflow/lite/delegates/hexagon/builders/ |
D | arg_min_max_builder.cc | 48 int axis_value = axis.data.i32[0]; in PopulateSubGraph() local 49 if (axis_value < 0) { in PopulateSubGraph() 50 axis_value += input_tensor.dims->size; in PopulateSubGraph() 53 kScalarShape, reinterpret_cast<char*>(&axis_value), sizeof(int)); in PopulateSubGraph()
|
D | split_builder.cc | 46 int axis_value = axis.data.i32[0] + (4 - input_tensor.dims->size); in PopulateSubGraph() local 47 if (axis_value < 0) { in PopulateSubGraph() 48 axis_value += input_tensor.dims->size; in PopulateSubGraph() 51 kScalarShape, reinterpret_cast<char*>(&axis_value), sizeof(int)); in PopulateSubGraph()
|
/external/harfbuzz_ng/src/ |
D | hb-ot-stat-table.hh | 268 const AxisValue &axis_value = (this + get_axis_value_offsets ()[axis_value_index]); in get_axis_value_name_id() local 269 return axis_value.get_value_name_id (); in get_axis_value_name_id()
|
/external/tensorflow/tensorflow/lite/delegates/nnapi/ |
D | nnapi_delegate_device_selection_test.cc | 245 int axis_value, TensorType output_type, const NnApi* nnapi, in ArgMaxOpModel() argument 248 Init(input_shape, input_type, axis_value, output_type); in ArgMaxOpModel() 252 int axis_value, TensorType output_type, const NnApi* nnapi, in ArgMaxOpModel() argument 255 Init(input_shape, input_type, axis_value, output_type); in ArgMaxOpModel() 266 int axis_value, TensorType output_type) { in Init() argument 269 axis_ = AddConstInput(TensorType_INT32, {axis_value}, {1}); in Init()
|
/external/tensorflow/tensorflow/compiler/mlir/lite/ir/ |
D | tfl_ops.cc | 1179 int32_t axis_value = op.axis(); in Verify() local 1180 if (axis_value < 0) axis_value += input_type.getRank() + 1; in Verify() 1181 if (axis_value < 0 || axis_value >= input_type.getRank() + 1) in Verify() 1792 int64_t axis_value = op.axis().getInt(); in inferReturnTypes() local 1793 if (axis_value < 0) { in inferReturnTypes() 1794 axis_value += rank; in inferReturnTypes() 1796 if (axis_value < 0 || axis_value >= rank) { in inferReturnTypes() 1802 if (!ShapedType::isDynamic(input_type.getDimSize(axis_value)) && in inferReturnTypes() 1803 input_type.getDimSize(axis_value) != num_value) { in inferReturnTypes() 1808 output_shape.erase(output_shape.begin() + axis_value); in inferReturnTypes()
|
/external/tensorflow/tensorflow/core/ops/ |
D | array_ops.cc | 1006 std::vector<int64> axis_value; in __anondb9326b21402() local 1008 axis_value = AsInt64<int32>(axis_tensor, axis_tensor->NumElements()); in __anondb9326b21402() 1010 axis_value = AsInt64<int64>(axis_tensor, axis_tensor->NumElements()); in __anondb9326b21402() 1013 for (int i = 0; i < axis_value.size(); i++) { in __anondb9326b21402() 1015 axis_value[i] < 0 ? rank + axis_value[i] : axis_value[i]; in __anondb9326b21402() 1017 return errors::InvalidArgument("'axis'[", i, "] = ", axis_value[i], in __anondb9326b21402()
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/transforms/ |
D | lower_tf.cc | 747 auto axis_value = rewriter.create<ConstOp>( in matchAndRewrite() local 766 rewriter.create<ExpandDimsOp>(loc, inferred_ty, input, axis_value)); in matchAndRewrite() 770 axis_value); in matchAndRewrite()
|
/external/tensorflow/tensorflow/python/ops/ |
D | array_ops.py | 1839 axis_value = tensor_util.constant_value(axis) 1840 if axis_value is not None: 1841 axis = axis_value 1855 if axis_value is not None:
|
/external/tensorflow/tensorflow/python/ops/parallel_for/ |
D | pfor.py | 2350 axis_value = tensor_util.constant_value(axis) 2351 if axis_value is not None: 2352 axis = axis_value
|