Searched refs:b_i (Results 1 – 14 of 14) sorted by relevance
84 auto b_i = Coefficient(main_diagonal_xla, i); in XLA_TEST_P() local90 (b_i * Coefficient(x, i) + c_i * Coefficient(x, i + 1) - d_i) / d_i; in XLA_TEST_P()93 (a_i * Coefficient(x, i - 1) + b_i * Coefficient(x, i) - d_i) / d_i; in XLA_TEST_P()96 (a_i * Coefficient(x, i - 1) + b_i * Coefficient(x, i) + in XLA_TEST_P()
95 uint8_t b_i[EVP_MAX_MD_SIZE]; in expand_message_xmd() local105 b_i[j] ^= b_0[j]; in expand_message_xmd()108 OPENSSL_memcpy(b_i, b_0, md_size); in expand_message_xmd()112 !EVP_DigestUpdate(&ctx, b_i, md_size) || in expand_message_xmd()116 !EVP_DigestFinal_ex(&ctx, b_i, NULL)) { in expand_message_xmd()121 OPENSSL_memcpy(out, b_i, todo); in expand_message_xmd()
98 uint8_t b_i[EVP_MAX_MD_SIZE]; in expand_message_xmd() local108 b_i[j] ^= b_0[j]; in expand_message_xmd()111 OPENSSL_memcpy(b_i, b_0, md_size); in expand_message_xmd()115 !EVP_DigestUpdate(&ctx, b_i, md_size) || in expand_message_xmd()120 !EVP_DigestFinal_ex(&ctx, b_i, NULL)) { in expand_message_xmd()125 OPENSSL_memcpy(out, b_i, todo); in expand_message_xmd()
597 b_i = array_ops.gather(b, i)599 return array_ops.where(cond_i, a_i, b_i)617 b_i = array_ops.gather(b, i)619 return array_ops.where_v2(cond_i, a_i, b_i)637 b_i = array_ops.gather(b, i)639 return array_ops.where_v2(cond_i, a_i, b_i)657 b_i = array_ops.gather(b, i)658 return array_ops.where_v2(cond, a_i, b_i)
146 b_i, b_c, b_f, b_o = array_ops.split(b, num_or_size_splits=4)148 b_ifco = array_ops.concat([b_i, b_f, b_c, b_o], axis=0)
579 const T* b_i = b_base_ptr + i * b_slice_size; in Compute() local581 Status s = csr_spmv.Compute(ctx, a_comp, b_i, c_i); in Compute()667 typename TTypes<T>::UnalignedConstMatrix b_i(b.data() + i * b_slice_size, in Compute() local674 Status s = csr_spmmadd.Compute(ctx, a_comp, b_i, c_mat_col_major_i); in Compute()
1171 auto b_i = EmitExtractImag(rhs_value); in EmitComplexBinaryOp() local1194 auto b_r_b_i_ratio = FDiv(b_r, b_i); in EmitComplexBinaryOp()1195 auto b_r_b_i_denom = FAdd(b_i, FMul(b_r_b_i_ratio, b_r)); in EmitComplexBinaryOp()1196 auto b_i_b_r_ratio = FDiv(b_i, b_r); in EmitComplexBinaryOp()1197 auto b_i_b_r_denom = FAdd(b_r, FMul(b_i_b_r_ratio, b_i)); in EmitComplexBinaryOp()1202 llvm::Intrinsic::fabs, {b_i}, {type}, b_)); in EmitComplexBinaryOp()1218 And(And(FCmpOEQ(b_r, zero), FCmpOEQ(b_i, zero)), in EmitComplexBinaryOp()1230 llvm::Intrinsic::fabs, {b_i}, {type}, b_), in EmitComplexBinaryOp()1244 FMul(a_i_inf_with_sign, b_i))), in EmitComplexBinaryOp()1246 FMul(a_r_inf_with_sign, b_i)))); in EmitComplexBinaryOp()[all …]
452 $b_i(\vec p) + \sp {\vec a} {\vec x} \ge 0$,461 context constraints $u \le b_i(\vec p)$.464 $\sp {\vec a} {\vec x} \ge -u \ge -b_i(\vec p)$.465 Conversely, $m = \min_i b_i(\vec p)$ satisfies the constraints476 Note that the replacement of the $b_i(\vec p)$ by $u$ may lose477 information if the parameters that occur in $b_i(\vec p)$ also479 only applied when all the parameters in all of the $b_i(\vec p)$534 for expressions such as $\min_i b_i(\vec p)$ from the offline536 Assume that one of these expressions has $n$ bounds $b_i(\vec p)$.541 $\min_i b_i(\vec p) \ge f_j(\vec p)$, then each of these constraints[all …]
138 …<td>raises a number to the given power (\f$ a_i ^ {b_i} \f$) \n \c a and \c b can be either an arr…512 \n \f$ \zeta(a_i,b_i)=\sum_{k=0}^{\infty}(b_i+k)^{\text{-}a_i} \f$</td>
1294 for (int b_i = 0, in CountBatchMatMulOperations() local1296 b_i < bigger_rank_shape->dim_size() - matrix_rank; ++b_i, ++s_i) { in CountBatchMatMulOperations()1297 int b_dim = bigger_rank_shape->dim(b_i).size(); in CountBatchMatMulOperations()
2444 b_i, b_f, b_c, b_o = array_ops.split(2446 x_i = K.bias_add(x_i, b_i)
3066 measure of $\bigcup[a_i,b_i]$ . . . . . 540--544
23374 title = "On the complexity of computing the measure of {$\bigcup[a_i,b_i]$}",
META-INF/MANIFEST.MF META-INF/ECLIPSE_.SF META-INF/ECLIPSE_ ...