/external/tensorflow/tensorflow/python/eager/ |
D | backprop_test.py | 25 from tensorflow.python.eager import backprop 75 grad = backprop.gradients_function(fn, [0])(var)[0] 107 grad = backprop.gradients_function(fn, [0])(var)[0] 129 grads_and_vars = backprop.implicit_grad(fn)() 144 with backprop.GradientTape() as t: 166 with backprop.GradientTape() as t: 180 g = backprop.gradients_function(f) 186 with backprop.GradientTape() as t: 207 with backprop.GradientTape() as t: 213 with backprop.GradientTape() as t: [all …]
|
D | function_gradients_test.py | 22 from tensorflow.python.eager import backprop 73 return backprop.implicit_grad(inner)()[0][0] 108 with backprop.GradientTape(persistent=persistent) as tape: 134 with backprop.GradientTape() as tape: 158 with backprop.GradientTape() as tape: 186 with backprop.GradientTape(persistent=True) as tape: 203 with backprop.GradientTape(persistent=True) as tape: 217 with backprop.GradientTape() as t: 220 with backprop.GradientTape() as tt: 266 return backprop.implicit_grad(inner)()[0][0] [all …]
|
D | tape_test.py | 22 from tensorflow.python.eager import backprop 76 da, db = backprop.gradients_function(fn, [0, 1])(a, b) 96 da, = backprop.gradients_function(forward, ['a'])(aa, bb) 110 da, = backprop.gradients_function(forward, [0])(aa, bb) 124 val, (da,) = backprop.val_and_grad_function(forward, ['a'])(aa, bb) 139 da, db = backprop.gradients_function(fn, [0, 1])(a, b) 158 grad, = backprop.gradients_function(fn, [0])(logits, labels) 167 g, = backprop.gradients_function(fn, [0])(t)
|
/external/tensorflow/tensorflow/core/kernels/ |
D | sparse_xent_op.h | 165 typename TTypes<T>::Matrix backprop); 178 typename TTypes<T>::Matrix backprop) { in Compute() 217 To32Bit(backprop).device(d) = in Compute() 222 To32Bit(scratch).device(d) = To32Bit(backprop).exp().sum(along_class); in Compute() 228 sparse_xent_helpers::To32BitConst<T>(backprop), in Compute() 230 backprop.dimension(1) /* max_depth */); in Compute() 232 To32Bit(backprop).generate(sparse_xent_loss_gen).sum(along_class); in Compute() 236 To32Bit(backprop).device(d) = To32Bit(backprop).exp(); in Compute() 238 sparse_xent_helpers::To32BitConst<T>(backprop), in Compute() 240 backprop.dimension(1) /* max_depth */); in Compute() [all …]
|
D | xent_op.h | 45 typename TTypes<T>::Matrix backprop); 61 typename TTypes<T>::Matrix backprop) { in Compute() 100 backprop.device(d) = in Compute() 104 scratch.reshape(batch_only).device(d) = backprop.exp().sum(along_class); in Compute() 114 (scratch.log().eval().broadcast(one_by_class) - backprop)) in Compute() 120 backprop.device(d) = (backprop.exp() / scratch.broadcast(one_by_class)) - in Compute()
|
D | relu_op_gpu.cu.cc | 46 Eigen::half* __restrict__ backprop, in ReluGradHalfKernel() argument 57 half2* p_backprop_h2 = reinterpret_cast<half2*>(backprop) + index; in ReluGradHalfKernel() 93 backprop[count - 1] = backprop_h; in ReluGradHalfKernel() 99 const Eigen::half* __restrict__ feature, Eigen::half* __restrict__ backprop, in ReluGradHalfKernelVector() argument 108 float4* p_backprop_h8 = reinterpret_cast<float4*>(backprop) + index; in ReluGradHalfKernelVector() 153 backprop[half8_count * VectorSizeElements + index] = backprop_h; in ReluGradHalfKernelVector() 168 typename TTypes<Eigen::half>::Tensor backprop) { in operator ()() 174 auto backprop_ptr = reinterpret_cast<uintptr_t>(backprop.data()); in operator ()() 185 gradient.data(), feature.data(), backprop.data(), count)); in operator ()() 192 d.stream(), gradient.data(), feature.data(), backprop.data(), count)); in operator ()()
|
D | xent_op_gpu.cu.cc | 43 typename TTypes<T>::Matrix backprop) { in operator ()() 46 backprop); in operator ()()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_BatchNormWithGlobalNormalizationGrad.pbtxt | 34 name: "backprop" 36 4D backprop Tensor. 42 4D backprop tensor for input. 48 1D backprop tensor for mean. 54 1D backprop tensor for variance. 60 1D backprop tensor for beta. 66 1D backprop tensor for gamma.
|
D | api_def_SparseFillEmptyRowsGrad.pbtxt | 12 1-D. The gradients from backprop. 18 1-D. The backprop into values. 24 0-D. The backprop into default_value.
|
D | api_def_CudnnRNNBackprop.pbtxt | 5 Compute the backprop of both data and weights in a RNN. 36 input_backprop: The backprop to input in the forward pass. Has the same shape 38 input_h_backprop: The backprop to input_h in the forward pass. Has the same 40 input_c_backprop: The backprop to input_c in the forward pass. Has the same 42 params_backprop: The backprop to the params buffer in the forward pass. Has the
|
D | api_def_CudnnRNNBackpropV2.pbtxt | 6 Compute the backprop of both data and weights in a RNN. Takes an extra 40 input_backprop: The backprop to input in the forward pass. Has the same shape 42 input_h_backprop: The backprop to input_h in the forward pass. Has the same 44 input_c_backprop: The backprop to input_c in the forward pass. Has the same 46 params_backprop: The backprop to the params buffer in the forward pass. Has the
|
D | api_def_CudnnRNNBackpropV3.pbtxt | 6 Compute the backprop of both data and weights in a RNN. Takes an extra 45 input_backprop: The backprop to input in the forward pass. Has the same shape 47 input_h_backprop: The backprop to input_h in the forward pass. Has the same 49 input_c_backprop: The backprop to input_c in the forward pass. Has the same 51 params_backprop: The backprop to the params buffer in the forward pass. Has the
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | softmax_op.cc | 166 xla::XlaOp backprop = in CrossEntropyWithLogits() local 168 return {loss, backprop}; in CrossEntropyWithLogits() 184 xla::XlaOp loss, backprop; in Compile() local 185 std::tie(loss, backprop) = in Compile() 188 ctx->SetOutput(1, backprop); in Compile() 251 xla::XlaOp loss, backprop; in Compile() local 252 std::tie(loss, backprop) = CrossEntropyWithLogits( in Compile() 255 ctx->SetOutput(1, backprop); in Compile()
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/transforms/ |
D | tpu_space_to_depth_pass.cc | 335 void HandleConv2DBackPropFilter(TF::Conv2DBackpropFilterOp backprop, in HandleConv2DBackPropFilter() argument 339 OpBuilder builder(backprop); in HandleConv2DBackPropFilter() 340 builder.setInsertionPoint(backprop); in HandleConv2DBackPropFilter() 342 auto input = backprop.input(); in HandleConv2DBackPropFilter() 345 backprop.getLoc(), in HandleConv2DBackPropFilter() 351 MLIRContext* context = backprop.getContext(); in HandleConv2DBackPropFilter() 365 auto loc = backprop.getLoc(); in HandleConv2DBackPropFilter() 367 loc, new_result_type, input, new_filter_sizes, backprop.out_backprop(), in HandleConv2DBackPropFilter() 368 strides, backprop.use_cudnn_on_gpu(), backprop.padding(), in HandleConv2DBackPropFilter() 369 backprop.explicit_paddings(), backprop.data_format(), in HandleConv2DBackPropFilter() [all …]
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | depthwise_conv_op_test.py | 469 backprop = nn_ops.depthwise_conv2d_native_backprop_input( 472 backprop = nn_ops.depthwise_conv2d_native_backprop_input( 475 ret = backprop.eval({t1: x1, t2: x2}) 476 self.assertShapeEqual(ret, backprop) 519 backprop = nn_ops.depthwise_conv2d_native_backprop_filter( 529 backprop = nn_ops.depthwise_conv2d_native_backprop_filter( 531 ret = backprop.eval({t0: x0, t2: x2}) 532 self.assertShapeEqual(ret, backprop) 575 backprop = nn_ops.depthwise_conv2d_native_backprop_input( 596 backprop = array_ops.batch_to_space( [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tfr/python/ |
D | test_utils.py | 19 from tensorflow.python.eager import backprop 32 with backprop.GradientTape() as gt: 39 with backprop.GradientTape() as gt:
|
/external/tensorflow/tensorflow/python/keras/tests/ |
D | memory_test.py | 28 from tensorflow.python.eager import backprop 56 with backprop.GradientTape(): 69 with backprop.GradientTape() as tape:
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | custom_training_loop_models_test.py | 31 from tensorflow.python.eager import backprop 79 with backprop.GradientTape() as tape: 104 with backprop.GradientTape() as tape: 142 with backprop.GradientTape() as tape: 167 with backprop.GradientTape() as tape: 199 with backprop.GradientTape() as tape: 243 with backprop.GradientTape() as tape: 297 with backprop.GradientTape() as tape: 314 with backprop.GradientTape() as tape: 352 with backprop.GradientTape() as tape: [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | array_ops_test.py | 21 from tensorflow.python.eager import backprop 40 with backprop.GradientTape() as tape: 44 with backprop.GradientTape() as tape:
|
D | gradient_checker.py | 115 backprop = sess.run( 117 jacobian[:, col] = backprop.ravel().view(jacobian.dtype) 123 backprop = sess.run( 125 if backprop.shape != x_data.shape: 127 (x_data.shape, backprop.shape)) 128 if np.any(backprop):
|
/external/tensorflow/tensorflow/python/distribute/ |
D | custom_training_loop_gradient_test.py | 27 from tensorflow.python.eager import backprop 80 with backprop.GradientTape() as tape: 107 with backprop.GradientTape() as tape: 140 with backprop.GradientTape() as tape:
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | xent_op_test.py | 67 loss, backprop = gen_nn_ops.softmax_cross_entropy_with_logits( 69 tf_loss, tf_backprop = sess.run([loss, backprop], 75 loss, backprop = gen_nn_ops.softmax_cross_entropy_with_logits( 77 tf_loss, tf_backprop = self.evaluate([loss, backprop]) 102 loss, backprop = gen_nn_ops.softmax_cross_entropy_with_logits( 105 tf_loss, tf_backprop = self.evaluate([loss, backprop]) 172 loss, backprop = gen_nn_ops.softmax_cross_entropy_with_logits( 174 tf_loss, tf_backprop = self.evaluate([loss, backprop])
|
D | reduce_benchmark_test.py | 28 from tensorflow.python.eager import backprop 59 backprop.gradients_function(math_ops.reduce_sum, [0])(tensor) 68 backprop.gradients_function(math_ops.reduce_sum, [0])(tensor)
|
/external/tensorflow/tensorflow/python/eager/memory_tests/ |
D | memory_test.py | 27 from tensorflow.python.eager import backprop 80 with backprop.GradientTape() as t1: 82 with backprop.GradientTape() as t2:
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
D | SoftmaxCrossEntropyWithLogits.pbtxt | 16 name: "backprop" 46 name: "backprop"
|