1 //===-- RenderScriptRuntime.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "RenderScriptRuntime.h"
10 #include "RenderScriptScriptGroup.h"
11
12 #include "lldb/Breakpoint/StoppointCallbackContext.h"
13 #include "lldb/Core/Debugger.h"
14 #include "lldb/Core/DumpDataExtractor.h"
15 #include "lldb/Core/PluginManager.h"
16 #include "lldb/Core/ValueObjectVariable.h"
17 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
18 #include "lldb/Expression/UserExpression.h"
19 #include "lldb/Host/OptionParser.h"
20 #include "lldb/Host/StringConvert.h"
21 #include "lldb/Interpreter/CommandInterpreter.h"
22 #include "lldb/Interpreter/CommandObjectMultiword.h"
23 #include "lldb/Interpreter/CommandReturnObject.h"
24 #include "lldb/Interpreter/Options.h"
25 #include "lldb/Symbol/Function.h"
26 #include "lldb/Symbol/Symbol.h"
27 #include "lldb/Symbol/Type.h"
28 #include "lldb/Symbol/VariableList.h"
29 #include "lldb/Target/Process.h"
30 #include "lldb/Target/RegisterContext.h"
31 #include "lldb/Target/SectionLoadList.h"
32 #include "lldb/Target/Target.h"
33 #include "lldb/Target/Thread.h"
34 #include "lldb/Utility/Args.h"
35 #include "lldb/Utility/ConstString.h"
36 #include "lldb/Utility/Log.h"
37 #include "lldb/Utility/RegisterValue.h"
38 #include "lldb/Utility/RegularExpression.h"
39 #include "lldb/Utility/Status.h"
40
41 #include "llvm/ADT/StringSwitch.h"
42
43 #include <memory>
44
45 using namespace lldb;
46 using namespace lldb_private;
47 using namespace lldb_renderscript;
48
49 LLDB_PLUGIN_DEFINE(RenderScriptRuntime)
50
51 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")"
52
53 char RenderScriptRuntime::ID = 0;
54
55 namespace {
56
57 // The empirical_type adds a basic level of validation to arbitrary data
58 // allowing us to track if data has been discovered and stored or not. An
59 // empirical_type will be marked as valid only if it has been explicitly
60 // assigned to.
61 template <typename type_t> class empirical_type {
62 public:
63 // Ctor. Contents is invalid when constructed.
empirical_type()64 empirical_type() : valid(false) {}
65
66 // Return true and copy contents to out if valid, else return false.
get(type_t & out) const67 bool get(type_t &out) const {
68 if (valid)
69 out = data;
70 return valid;
71 }
72
73 // Return a pointer to the contents or nullptr if it was not valid.
get() const74 const type_t *get() const { return valid ? &data : nullptr; }
75
76 // Assign data explicitly.
set(const type_t in)77 void set(const type_t in) {
78 data = in;
79 valid = true;
80 }
81
82 // Mark contents as invalid.
invalidate()83 void invalidate() { valid = false; }
84
85 // Returns true if this type contains valid data.
isValid() const86 bool isValid() const { return valid; }
87
88 // Assignment operator.
operator =(const type_t in)89 empirical_type<type_t> &operator=(const type_t in) {
90 set(in);
91 return *this;
92 }
93
94 // Dereference operator returns contents.
95 // Warning: Will assert if not valid so use only when you know data is valid.
operator *() const96 const type_t &operator*() const {
97 assert(valid);
98 return data;
99 }
100
101 protected:
102 bool valid;
103 type_t data;
104 };
105
106 // ArgItem is used by the GetArgs() function when reading function arguments
107 // from the target.
108 struct ArgItem {
109 enum { ePointer, eInt32, eInt64, eLong, eBool } type;
110
111 uint64_t value;
112
operator uint64_t__anon8822fb4a0111::ArgItem113 explicit operator uint64_t() const { return value; }
114 };
115
116 // Context structure to be passed into GetArgsXXX(), argument reading functions
117 // below.
118 struct GetArgsCtx {
119 RegisterContext *reg_ctx;
120 Process *process;
121 };
122
GetArgsX86(const GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)123 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
124 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
125
126 Status err;
127
128 // get the current stack pointer
129 uint64_t sp = ctx.reg_ctx->GetSP();
130
131 for (size_t i = 0; i < num_args; ++i) {
132 ArgItem &arg = arg_list[i];
133 // advance up the stack by one argument
134 sp += sizeof(uint32_t);
135 // get the argument type size
136 size_t arg_size = sizeof(uint32_t);
137 // read the argument from memory
138 arg.value = 0;
139 Status err;
140 size_t read =
141 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err);
142 if (read != arg_size || !err.Success()) {
143 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 " '%s'",
144 __FUNCTION__, uint64_t(i), err.AsCString());
145 return false;
146 }
147 }
148 return true;
149 }
150
GetArgsX86_64(GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)151 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
152 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
153
154 // number of arguments passed in registers
155 static const uint32_t args_in_reg = 6;
156 // register passing order
157 static const std::array<const char *, args_in_reg> reg_names{
158 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
159 // argument type to size mapping
160 static const std::array<size_t, 5> arg_size{{
161 8, // ePointer,
162 4, // eInt32,
163 8, // eInt64,
164 8, // eLong,
165 4, // eBool,
166 }};
167
168 Status err;
169
170 // get the current stack pointer
171 uint64_t sp = ctx.reg_ctx->GetSP();
172 // step over the return address
173 sp += sizeof(uint64_t);
174
175 // check the stack alignment was correct (16 byte aligned)
176 if ((sp & 0xf) != 0x0) {
177 LLDB_LOGF(log, "%s - stack misaligned", __FUNCTION__);
178 return false;
179 }
180
181 // find the start of arguments on the stack
182 uint64_t sp_offset = 0;
183 for (uint32_t i = args_in_reg; i < num_args; ++i) {
184 sp_offset += arg_size[arg_list[i].type];
185 }
186 // round up to multiple of 16
187 sp_offset = (sp_offset + 0xf) & 0xf;
188 sp += sp_offset;
189
190 for (size_t i = 0; i < num_args; ++i) {
191 bool success = false;
192 ArgItem &arg = arg_list[i];
193 // arguments passed in registers
194 if (i < args_in_reg) {
195 const RegisterInfo *reg =
196 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]);
197 RegisterValue reg_val;
198 if (ctx.reg_ctx->ReadRegister(reg, reg_val))
199 arg.value = reg_val.GetAsUInt64(0, &success);
200 }
201 // arguments passed on the stack
202 else {
203 // get the argument type size
204 const size_t size = arg_size[arg_list[i].type];
205 // read the argument from memory
206 arg.value = 0;
207 // note: due to little endian layout reading 4 or 8 bytes will give the
208 // correct value.
209 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err);
210 success = (err.Success() && read == size);
211 // advance past this argument
212 sp -= size;
213 }
214 // fail if we couldn't read this argument
215 if (!success) {
216 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
217 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
218 return false;
219 }
220 }
221 return true;
222 }
223
GetArgsArm(GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)224 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
225 // number of arguments passed in registers
226 static const uint32_t args_in_reg = 4;
227
228 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
229
230 Status err;
231
232 // get the current stack pointer
233 uint64_t sp = ctx.reg_ctx->GetSP();
234
235 for (size_t i = 0; i < num_args; ++i) {
236 bool success = false;
237 ArgItem &arg = arg_list[i];
238 // arguments passed in registers
239 if (i < args_in_reg) {
240 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
241 RegisterValue reg_val;
242 if (ctx.reg_ctx->ReadRegister(reg, reg_val))
243 arg.value = reg_val.GetAsUInt32(0, &success);
244 }
245 // arguments passed on the stack
246 else {
247 // get the argument type size
248 const size_t arg_size = sizeof(uint32_t);
249 // clear all 64bits
250 arg.value = 0;
251 // read this argument from memory
252 size_t bytes_read =
253 ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
254 success = (err.Success() && bytes_read == arg_size);
255 // advance the stack pointer
256 sp += sizeof(uint32_t);
257 }
258 // fail if we couldn't read this argument
259 if (!success) {
260 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
261 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
262 return false;
263 }
264 }
265 return true;
266 }
267
GetArgsAarch64(GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)268 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
269 // number of arguments passed in registers
270 static const uint32_t args_in_reg = 8;
271
272 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
273
274 for (size_t i = 0; i < num_args; ++i) {
275 bool success = false;
276 ArgItem &arg = arg_list[i];
277 // arguments passed in registers
278 if (i < args_in_reg) {
279 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
280 RegisterValue reg_val;
281 if (ctx.reg_ctx->ReadRegister(reg, reg_val))
282 arg.value = reg_val.GetAsUInt64(0, &success);
283 }
284 // arguments passed on the stack
285 else {
286 LLDB_LOGF(log, "%s - reading arguments spilled to stack not implemented",
287 __FUNCTION__);
288 }
289 // fail if we couldn't read this argument
290 if (!success) {
291 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64, __FUNCTION__,
292 uint64_t(i));
293 return false;
294 }
295 }
296 return true;
297 }
298
GetArgsMipsel(GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)299 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
300 // number of arguments passed in registers
301 static const uint32_t args_in_reg = 4;
302 // register file offset to first argument
303 static const uint32_t reg_offset = 4;
304
305 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
306
307 Status err;
308
309 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow
310 // space)
311 uint64_t sp = ctx.reg_ctx->GetSP() + 16;
312
313 for (size_t i = 0; i < num_args; ++i) {
314 bool success = false;
315 ArgItem &arg = arg_list[i];
316 // arguments passed in registers
317 if (i < args_in_reg) {
318 const RegisterInfo *reg =
319 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
320 RegisterValue reg_val;
321 if (ctx.reg_ctx->ReadRegister(reg, reg_val))
322 arg.value = reg_val.GetAsUInt64(0, &success);
323 }
324 // arguments passed on the stack
325 else {
326 const size_t arg_size = sizeof(uint32_t);
327 arg.value = 0;
328 size_t bytes_read =
329 ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
330 success = (err.Success() && bytes_read == arg_size);
331 // advance the stack pointer
332 sp += arg_size;
333 }
334 // fail if we couldn't read this argument
335 if (!success) {
336 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
337 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
338 return false;
339 }
340 }
341 return true;
342 }
343
GetArgsMips64el(GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)344 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
345 // number of arguments passed in registers
346 static const uint32_t args_in_reg = 8;
347 // register file offset to first argument
348 static const uint32_t reg_offset = 4;
349
350 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
351
352 Status err;
353
354 // get the current stack pointer
355 uint64_t sp = ctx.reg_ctx->GetSP();
356
357 for (size_t i = 0; i < num_args; ++i) {
358 bool success = false;
359 ArgItem &arg = arg_list[i];
360 // arguments passed in registers
361 if (i < args_in_reg) {
362 const RegisterInfo *reg =
363 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
364 RegisterValue reg_val;
365 if (ctx.reg_ctx->ReadRegister(reg, reg_val))
366 arg.value = reg_val.GetAsUInt64(0, &success);
367 }
368 // arguments passed on the stack
369 else {
370 // get the argument type size
371 const size_t arg_size = sizeof(uint64_t);
372 // clear all 64bits
373 arg.value = 0;
374 // read this argument from memory
375 size_t bytes_read =
376 ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
377 success = (err.Success() && bytes_read == arg_size);
378 // advance the stack pointer
379 sp += arg_size;
380 }
381 // fail if we couldn't read this argument
382 if (!success) {
383 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
384 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
385 return false;
386 }
387 }
388 return true;
389 }
390
GetArgs(ExecutionContext & exe_ctx,ArgItem * arg_list,size_t num_args)391 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) {
392 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
393
394 // verify that we have a target
395 if (!exe_ctx.GetTargetPtr()) {
396 LLDB_LOGF(log, "%s - invalid target", __FUNCTION__);
397 return false;
398 }
399
400 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()};
401 assert(ctx.reg_ctx && ctx.process);
402
403 // dispatch based on architecture
404 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) {
405 case llvm::Triple::ArchType::x86:
406 return GetArgsX86(ctx, arg_list, num_args);
407
408 case llvm::Triple::ArchType::x86_64:
409 return GetArgsX86_64(ctx, arg_list, num_args);
410
411 case llvm::Triple::ArchType::arm:
412 return GetArgsArm(ctx, arg_list, num_args);
413
414 case llvm::Triple::ArchType::aarch64:
415 return GetArgsAarch64(ctx, arg_list, num_args);
416
417 case llvm::Triple::ArchType::mipsel:
418 return GetArgsMipsel(ctx, arg_list, num_args);
419
420 case llvm::Triple::ArchType::mips64el:
421 return GetArgsMips64el(ctx, arg_list, num_args);
422
423 default:
424 // unsupported architecture
425 if (log) {
426 LLDB_LOGF(log, "%s - architecture not supported: '%s'", __FUNCTION__,
427 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName());
428 }
429 return false;
430 }
431 }
432
IsRenderScriptScriptModule(ModuleSP module)433 bool IsRenderScriptScriptModule(ModuleSP module) {
434 if (!module)
435 return false;
436 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"),
437 eSymbolTypeData) != nullptr;
438 }
439
ParseCoordinate(llvm::StringRef coord_s,RSCoordinate & coord)440 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) {
441 // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a
442 // comma separated 1,2 or 3-dimensional coordinate with the whitespace
443 // trimmed. Missing coordinates are defaulted to zero. If parsing of any
444 // elements fails the contents of &coord are undefined and `false` is
445 // returned, `true` otherwise
446
447 llvm::SmallVector<llvm::StringRef, 4> matches;
448
449 if (!RegularExpression("^([0-9]+),([0-9]+),([0-9]+)$")
450 .Execute(coord_s, &matches) &&
451 !RegularExpression("^([0-9]+),([0-9]+)$").Execute(coord_s, &matches) &&
452 !RegularExpression("^([0-9]+)$").Execute(coord_s, &matches))
453 return false;
454
455 auto get_index = [&](size_t idx, uint32_t &i) -> bool {
456 std::string group;
457 errno = 0;
458 if (idx + 1 < matches.size()) {
459 return !llvm::StringRef(matches[idx + 1]).getAsInteger<uint32_t>(10, i);
460 }
461 return true;
462 };
463
464 return get_index(0, coord.x) && get_index(1, coord.y) &&
465 get_index(2, coord.z);
466 }
467
SkipPrologue(lldb::ModuleSP & module,Address & addr)468 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) {
469 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
470 SymbolContext sc;
471 uint32_t resolved_flags =
472 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc);
473 if (resolved_flags & eSymbolContextFunction) {
474 if (sc.function) {
475 const uint32_t offset = sc.function->GetPrologueByteSize();
476 ConstString name = sc.GetFunctionName();
477 if (offset)
478 addr.Slide(offset);
479 LLDB_LOGF(log, "%s: Prologue offset for %s is %" PRIu32, __FUNCTION__,
480 name.AsCString(), offset);
481 }
482 return true;
483 } else
484 return false;
485 }
486 } // anonymous namespace
487
488 // The ScriptDetails class collects data associated with a single script
489 // instance.
490 struct RenderScriptRuntime::ScriptDetails {
491 ~ScriptDetails() = default;
492
493 enum ScriptType { eScript, eScriptC };
494
495 // The derived type of the script.
496 empirical_type<ScriptType> type;
497 // The name of the original source file.
498 empirical_type<std::string> res_name;
499 // Path to script .so file on the device.
500 empirical_type<std::string> shared_lib;
501 // Directory where kernel objects are cached on device.
502 empirical_type<std::string> cache_dir;
503 // Pointer to the context which owns this script.
504 empirical_type<lldb::addr_t> context;
505 // Pointer to the script object itself.
506 empirical_type<lldb::addr_t> script;
507 };
508
509 // This Element class represents the Element object in RS, defining the type
510 // associated with an Allocation.
511 struct RenderScriptRuntime::Element {
512 // Taken from rsDefines.h
513 enum DataKind {
514 RS_KIND_USER,
515 RS_KIND_PIXEL_L = 7,
516 RS_KIND_PIXEL_A,
517 RS_KIND_PIXEL_LA,
518 RS_KIND_PIXEL_RGB,
519 RS_KIND_PIXEL_RGBA,
520 RS_KIND_PIXEL_DEPTH,
521 RS_KIND_PIXEL_YUV,
522 RS_KIND_INVALID = 100
523 };
524
525 // Taken from rsDefines.h
526 enum DataType {
527 RS_TYPE_NONE = 0,
528 RS_TYPE_FLOAT_16,
529 RS_TYPE_FLOAT_32,
530 RS_TYPE_FLOAT_64,
531 RS_TYPE_SIGNED_8,
532 RS_TYPE_SIGNED_16,
533 RS_TYPE_SIGNED_32,
534 RS_TYPE_SIGNED_64,
535 RS_TYPE_UNSIGNED_8,
536 RS_TYPE_UNSIGNED_16,
537 RS_TYPE_UNSIGNED_32,
538 RS_TYPE_UNSIGNED_64,
539 RS_TYPE_BOOLEAN,
540
541 RS_TYPE_UNSIGNED_5_6_5,
542 RS_TYPE_UNSIGNED_5_5_5_1,
543 RS_TYPE_UNSIGNED_4_4_4_4,
544
545 RS_TYPE_MATRIX_4X4,
546 RS_TYPE_MATRIX_3X3,
547 RS_TYPE_MATRIX_2X2,
548
549 RS_TYPE_ELEMENT = 1000,
550 RS_TYPE_TYPE,
551 RS_TYPE_ALLOCATION,
552 RS_TYPE_SAMPLER,
553 RS_TYPE_SCRIPT,
554 RS_TYPE_MESH,
555 RS_TYPE_PROGRAM_FRAGMENT,
556 RS_TYPE_PROGRAM_VERTEX,
557 RS_TYPE_PROGRAM_RASTER,
558 RS_TYPE_PROGRAM_STORE,
559 RS_TYPE_FONT,
560
561 RS_TYPE_INVALID = 10000
562 };
563
564 std::vector<Element> children; // Child Element fields for structs
565 empirical_type<lldb::addr_t>
566 element_ptr; // Pointer to the RS Element of the Type
567 empirical_type<DataType>
568 type; // Type of each data pointer stored by the allocation
569 empirical_type<DataKind>
570 type_kind; // Defines pixel type if Allocation is created from an image
571 empirical_type<uint32_t>
572 type_vec_size; // Vector size of each data point, e.g '4' for uchar4
573 empirical_type<uint32_t> field_count; // Number of Subelements
574 empirical_type<uint32_t> datum_size; // Size of a single Element with padding
575 empirical_type<uint32_t> padding; // Number of padding bytes
576 empirical_type<uint32_t>
577 array_size; // Number of items in array, only needed for structs
578 ConstString type_name; // Name of type, only needed for structs
579
580 static ConstString
581 GetFallbackStructName(); // Print this as the type name of a struct Element
582 // If we can't resolve the actual struct name
583
ShouldRefreshRenderScriptRuntime::Element584 bool ShouldRefresh() const {
585 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
586 const bool valid_type =
587 type.isValid() && type_vec_size.isValid() && type_kind.isValid();
588 return !valid_ptr || !valid_type || !datum_size.isValid();
589 }
590 };
591
592 // This AllocationDetails class collects data associated with a single
593 // allocation instance.
594 struct RenderScriptRuntime::AllocationDetails {
595 struct Dimension {
596 uint32_t dim_1;
597 uint32_t dim_2;
598 uint32_t dim_3;
599 uint32_t cube_map;
600
DimensionRenderScriptRuntime::AllocationDetails::Dimension601 Dimension() {
602 dim_1 = 0;
603 dim_2 = 0;
604 dim_3 = 0;
605 cube_map = 0;
606 }
607 };
608
609 // The FileHeader struct specifies the header we use for writing allocations
610 // to a binary file. Our format begins with the ASCII characters "RSAD",
611 // identifying the file as an allocation dump. Member variables dims and
612 // hdr_size are then written consecutively, immediately followed by an
613 // instance of the ElementHeader struct. Because Elements can contain
614 // subelements, there may be more than one instance of the ElementHeader
615 // struct. With this first instance being the root element, and the other
616 // instances being the root's descendants. To identify which instances are an
617 // ElementHeader's children, each struct is immediately followed by a
618 // sequence of consecutive offsets to the start of its child structs. These
619 // offsets are
620 // 4 bytes in size, and the 0 offset signifies no more children.
621 struct FileHeader {
622 uint8_t ident[4]; // ASCII 'RSAD' identifying the file
623 uint32_t dims[3]; // Dimensions
624 uint16_t hdr_size; // Header size in bytes, including all element headers
625 };
626
627 struct ElementHeader {
628 uint16_t type; // DataType enum
629 uint32_t kind; // DataKind enum
630 uint32_t element_size; // Size of a single element, including padding
631 uint16_t vector_size; // Vector width
632 uint32_t array_size; // Number of elements in array
633 };
634
635 // Monotonically increasing from 1
636 static uint32_t ID;
637
638 // Maps Allocation DataType enum and vector size to printable strings using
639 // mapping from RenderScript numerical types summary documentation
640 static const char *RsDataTypeToString[][4];
641
642 // Maps Allocation DataKind enum to printable strings
643 static const char *RsDataKindToString[];
644
645 // Maps allocation types to format sizes for printing.
646 static const uint32_t RSTypeToFormat[][3];
647
648 // Give each allocation an ID as a way
649 // for commands to reference it.
650 const uint32_t id;
651
652 // Allocation Element type
653 RenderScriptRuntime::Element element;
654 // Dimensions of the Allocation
655 empirical_type<Dimension> dimension;
656 // Pointer to address of the RS Allocation
657 empirical_type<lldb::addr_t> address;
658 // Pointer to the data held by the Allocation
659 empirical_type<lldb::addr_t> data_ptr;
660 // Pointer to the RS Type of the Allocation
661 empirical_type<lldb::addr_t> type_ptr;
662 // Pointer to the RS Context of the Allocation
663 empirical_type<lldb::addr_t> context;
664 // Size of the allocation
665 empirical_type<uint32_t> size;
666 // Stride between rows of the allocation
667 empirical_type<uint32_t> stride;
668
669 // Give each allocation an id, so we can reference it in user commands.
AllocationDetailsRenderScriptRuntime::AllocationDetails670 AllocationDetails() : id(ID++) {}
671
ShouldRefreshRenderScriptRuntime::AllocationDetails672 bool ShouldRefresh() const {
673 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
674 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
675 return !valid_ptrs || !dimension.isValid() || !size.isValid() ||
676 element.ShouldRefresh();
677 }
678 };
679
GetFallbackStructName()680 ConstString RenderScriptRuntime::Element::GetFallbackStructName() {
681 static const ConstString FallbackStructName("struct");
682 return FallbackStructName;
683 }
684
685 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
686
687 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
688 "User", "Undefined", "Undefined", "Undefined",
689 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7
690 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel",
691 "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
692
693 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
694 {"None", "None", "None", "None"},
695 {"half", "half2", "half3", "half4"},
696 {"float", "float2", "float3", "float4"},
697 {"double", "double2", "double3", "double4"},
698 {"char", "char2", "char3", "char4"},
699 {"short", "short2", "short3", "short4"},
700 {"int", "int2", "int3", "int4"},
701 {"long", "long2", "long3", "long4"},
702 {"uchar", "uchar2", "uchar3", "uchar4"},
703 {"ushort", "ushort2", "ushort3", "ushort4"},
704 {"uint", "uint2", "uint3", "uint4"},
705 {"ulong", "ulong2", "ulong3", "ulong4"},
706 {"bool", "bool2", "bool3", "bool4"},
707 {"packed_565", "packed_565", "packed_565", "packed_565"},
708 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
709 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
710 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
711 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
712 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
713
714 // Handlers
715 {"RS Element", "RS Element", "RS Element", "RS Element"},
716 {"RS Type", "RS Type", "RS Type", "RS Type"},
717 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
718 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
719 {"RS Script", "RS Script", "RS Script", "RS Script"},
720
721 // Deprecated
722 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
723 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment",
724 "RS Program Fragment"},
725 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex",
726 "RS Program Vertex"},
727 {"RS Program Raster", "RS Program Raster", "RS Program Raster",
728 "RS Program Raster"},
729 {"RS Program Store", "RS Program Store", "RS Program Store",
730 "RS Program Store"},
731 {"RS Font", "RS Font", "RS Font", "RS Font"}};
732
733 // Used as an index into the RSTypeToFormat array elements
734 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize };
735
736 // { format enum of single element, format enum of element vector, size of
737 // element}
738 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
739 // RS_TYPE_NONE
740 {eFormatHex, eFormatHex, 1},
741 // RS_TYPE_FLOAT_16
742 {eFormatFloat, eFormatVectorOfFloat16, 2},
743 // RS_TYPE_FLOAT_32
744 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},
745 // RS_TYPE_FLOAT_64
746 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},
747 // RS_TYPE_SIGNED_8
748 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},
749 // RS_TYPE_SIGNED_16
750 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},
751 // RS_TYPE_SIGNED_32
752 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},
753 // RS_TYPE_SIGNED_64
754 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},
755 // RS_TYPE_UNSIGNED_8
756 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},
757 // RS_TYPE_UNSIGNED_16
758 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},
759 // RS_TYPE_UNSIGNED_32
760 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},
761 // RS_TYPE_UNSIGNED_64
762 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},
763 // RS_TYPE_BOOL
764 {eFormatBoolean, eFormatBoolean, 1},
765 // RS_TYPE_UNSIGNED_5_6_5
766 {eFormatHex, eFormatHex, sizeof(uint16_t)},
767 // RS_TYPE_UNSIGNED_5_5_5_1
768 {eFormatHex, eFormatHex, sizeof(uint16_t)},
769 // RS_TYPE_UNSIGNED_4_4_4_4
770 {eFormatHex, eFormatHex, sizeof(uint16_t)},
771 // RS_TYPE_MATRIX_4X4
772 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16},
773 // RS_TYPE_MATRIX_3X3
774 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},
775 // RS_TYPE_MATRIX_2X2
776 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}};
777
778 // Static Functions
779 LanguageRuntime *
CreateInstance(Process * process,lldb::LanguageType language)780 RenderScriptRuntime::CreateInstance(Process *process,
781 lldb::LanguageType language) {
782
783 if (language == eLanguageTypeExtRenderScript)
784 return new RenderScriptRuntime(process);
785 else
786 return nullptr;
787 }
788
789 // Callback with a module to search for matching symbols. We first check that
790 // the module contains RS kernels. Then look for a symbol which matches our
791 // kernel name. The breakpoint address is finally set using the address of this
792 // symbol.
793 Searcher::CallbackReturn
SearchCallback(SearchFilter & filter,SymbolContext & context,Address *)794 RSBreakpointResolver::SearchCallback(SearchFilter &filter,
795 SymbolContext &context, Address *) {
796 BreakpointSP breakpoint_sp = GetBreakpoint();
797 assert(breakpoint_sp);
798
799 ModuleSP module = context.module_sp;
800
801 if (!module || !IsRenderScriptScriptModule(module))
802 return Searcher::eCallbackReturnContinue;
803
804 // Attempt to set a breakpoint on the kernel name symbol within the module
805 // library. If it's not found, it's likely debug info is unavailable - try to
806 // set a breakpoint on <name>.expand.
807 const Symbol *kernel_sym =
808 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
809 if (!kernel_sym) {
810 std::string kernel_name_expanded(m_kernel_name.AsCString());
811 kernel_name_expanded.append(".expand");
812 kernel_sym = module->FindFirstSymbolWithNameAndType(
813 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
814 }
815
816 if (kernel_sym) {
817 Address bp_addr = kernel_sym->GetAddress();
818 if (filter.AddressPasses(bp_addr))
819 breakpoint_sp->AddLocation(bp_addr);
820 }
821
822 return Searcher::eCallbackReturnContinue;
823 }
824
825 Searcher::CallbackReturn
SearchCallback(lldb_private::SearchFilter & filter,lldb_private::SymbolContext & context,Address *)826 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter,
827 lldb_private::SymbolContext &context,
828 Address *) {
829 BreakpointSP breakpoint_sp = GetBreakpoint();
830 assert(breakpoint_sp);
831
832 // We need to have access to the list of reductions currently parsed, as
833 // reduce names don't actually exist as symbols in a module. They are only
834 // identifiable by parsing the .rs.info packet, or finding the expand symbol.
835 // We therefore need access to the list of parsed rs modules to properly
836 // resolve reduction names.
837 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
838 ModuleSP module = context.module_sp;
839
840 if (!module || !IsRenderScriptScriptModule(module))
841 return Searcher::eCallbackReturnContinue;
842
843 if (!m_rsmodules)
844 return Searcher::eCallbackReturnContinue;
845
846 for (const auto &module_desc : *m_rsmodules) {
847 if (module_desc->m_module != module)
848 continue;
849
850 for (const auto &reduction : module_desc->m_reductions) {
851 if (reduction.m_reduce_name != m_reduce_name)
852 continue;
853
854 std::array<std::pair<ConstString, int>, 5> funcs{
855 {{reduction.m_init_name, eKernelTypeInit},
856 {reduction.m_accum_name, eKernelTypeAccum},
857 {reduction.m_comb_name, eKernelTypeComb},
858 {reduction.m_outc_name, eKernelTypeOutC},
859 {reduction.m_halter_name, eKernelTypeHalter}}};
860
861 for (const auto &kernel : funcs) {
862 // Skip constituent functions that don't match our spec
863 if (!(m_kernel_types & kernel.second))
864 continue;
865
866 const auto kernel_name = kernel.first;
867 const auto symbol = module->FindFirstSymbolWithNameAndType(
868 kernel_name, eSymbolTypeCode);
869 if (!symbol)
870 continue;
871
872 auto address = symbol->GetAddress();
873 if (filter.AddressPasses(address)) {
874 bool new_bp;
875 if (!SkipPrologue(module, address)) {
876 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__);
877 }
878 breakpoint_sp->AddLocation(address, &new_bp);
879 LLDB_LOGF(log, "%s: %s reduction breakpoint on %s in %s",
880 __FUNCTION__, new_bp ? "new" : "existing",
881 kernel_name.GetCString(),
882 address.GetModule()->GetFileSpec().GetCString());
883 }
884 }
885 }
886 }
887 return eCallbackReturnContinue;
888 }
889
SearchCallback(SearchFilter & filter,SymbolContext & context,Address * addr)890 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback(
891 SearchFilter &filter, SymbolContext &context, Address *addr) {
892
893 BreakpointSP breakpoint_sp = GetBreakpoint();
894 if (!breakpoint_sp)
895 return eCallbackReturnContinue;
896
897 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
898 ModuleSP &module = context.module_sp;
899
900 if (!module || !IsRenderScriptScriptModule(module))
901 return Searcher::eCallbackReturnContinue;
902
903 std::vector<std::string> names;
904 Breakpoint& breakpoint = *breakpoint_sp;
905 breakpoint.GetNames(names);
906 if (names.empty())
907 return eCallbackReturnContinue;
908
909 for (auto &name : names) {
910 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name));
911 if (!sg) {
912 LLDB_LOGF(log, "%s: could not find script group for %s", __FUNCTION__,
913 name.c_str());
914 continue;
915 }
916
917 LLDB_LOGF(log, "%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str());
918
919 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) {
920 if (log) {
921 LLDB_LOGF(log, "%s: Adding breakpoint for %s", __FUNCTION__,
922 k.m_name.AsCString());
923 LLDB_LOGF(log, "%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr);
924 }
925
926 const lldb_private::Symbol *sym =
927 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode);
928 if (!sym) {
929 LLDB_LOGF(log, "%s: Unable to find symbol for %s", __FUNCTION__,
930 k.m_name.AsCString());
931 continue;
932 }
933
934 if (log) {
935 LLDB_LOGF(log, "%s: Found symbol name is %s", __FUNCTION__,
936 sym->GetName().AsCString());
937 }
938
939 auto address = sym->GetAddress();
940 if (!SkipPrologue(module, address)) {
941 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__);
942 }
943
944 bool new_bp;
945 breakpoint.AddLocation(address, &new_bp);
946
947 LLDB_LOGF(log, "%s: Placed %sbreakpoint on %s", __FUNCTION__,
948 new_bp ? "new " : "", k.m_name.AsCString());
949
950 // exit after placing the first breakpoint if we do not intend to stop on
951 // all kernels making up this script group
952 if (!m_stop_on_all)
953 break;
954 }
955 }
956
957 return eCallbackReturnContinue;
958 }
959
Initialize()960 void RenderScriptRuntime::Initialize() {
961 PluginManager::RegisterPlugin(GetPluginNameStatic(),
962 "RenderScript language support", CreateInstance,
963 GetCommandObject);
964 }
965
Terminate()966 void RenderScriptRuntime::Terminate() {
967 PluginManager::UnregisterPlugin(CreateInstance);
968 }
969
GetPluginNameStatic()970 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() {
971 static ConstString plugin_name("renderscript");
972 return plugin_name;
973 }
974
975 RenderScriptRuntime::ModuleKind
GetModuleKind(const lldb::ModuleSP & module_sp)976 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) {
977 if (module_sp) {
978 if (IsRenderScriptScriptModule(module_sp))
979 return eModuleKindKernelObj;
980
981 // Is this the main RS runtime library
982 const ConstString rs_lib("libRS.so");
983 if (module_sp->GetFileSpec().GetFilename() == rs_lib) {
984 return eModuleKindLibRS;
985 }
986
987 const ConstString rs_driverlib("libRSDriver.so");
988 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) {
989 return eModuleKindDriver;
990 }
991
992 const ConstString rs_cpureflib("libRSCpuRef.so");
993 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) {
994 return eModuleKindImpl;
995 }
996 }
997 return eModuleKindIgnored;
998 }
999
IsRenderScriptModule(const lldb::ModuleSP & module_sp)1000 bool RenderScriptRuntime::IsRenderScriptModule(
1001 const lldb::ModuleSP &module_sp) {
1002 return GetModuleKind(module_sp) != eModuleKindIgnored;
1003 }
1004
ModulesDidLoad(const ModuleList & module_list)1005 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) {
1006 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex());
1007
1008 size_t num_modules = module_list.GetSize();
1009 for (size_t i = 0; i < num_modules; i++) {
1010 auto mod = module_list.GetModuleAtIndex(i);
1011 if (IsRenderScriptModule(mod)) {
1012 LoadModule(mod);
1013 }
1014 }
1015 }
1016
1017 // PluginInterface protocol
GetPluginName()1018 lldb_private::ConstString RenderScriptRuntime::GetPluginName() {
1019 return GetPluginNameStatic();
1020 }
1021
GetPluginVersion()1022 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; }
1023
GetDynamicTypeAndAddress(ValueObject & in_value,lldb::DynamicValueType use_dynamic,TypeAndOrName & class_type_or_name,Address & address,Value::ValueType & value_type)1024 bool RenderScriptRuntime::GetDynamicTypeAndAddress(
1025 ValueObject &in_value, lldb::DynamicValueType use_dynamic,
1026 TypeAndOrName &class_type_or_name, Address &address,
1027 Value::ValueType &value_type) {
1028 return false;
1029 }
1030
1031 TypeAndOrName
FixUpDynamicType(const TypeAndOrName & type_and_or_name,ValueObject & static_value)1032 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name,
1033 ValueObject &static_value) {
1034 return type_and_or_name;
1035 }
1036
CouldHaveDynamicValue(ValueObject & in_value)1037 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) {
1038 return false;
1039 }
1040
1041 lldb::BreakpointResolverSP
CreateExceptionResolver(const lldb::BreakpointSP & bp,bool catch_bp,bool throw_bp)1042 RenderScriptRuntime::CreateExceptionResolver(const lldb::BreakpointSP &bp,
1043 bool catch_bp, bool throw_bp) {
1044 BreakpointResolverSP resolver_sp;
1045 return resolver_sp;
1046 }
1047
1048 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
1049 {
1050 // rsdScript
1051 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP"
1052 "NS0_7ScriptCEPKcS7_PKhjj",
1053 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_"
1054 "7ScriptCEPKcS7_PKhmj",
1055 0, RenderScriptRuntime::eModuleKindDriver,
1056 &lldb_private::RenderScriptRuntime::CaptureScriptInit},
1057 {"rsdScriptInvokeForEachMulti",
1058 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1059 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
1060 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1061 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
1062 0, RenderScriptRuntime::eModuleKindDriver,
1063 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti},
1064 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render"
1065 "script7ContextEPKNS0_6ScriptEjPvj",
1066 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_"
1067 "6ScriptEjPvm",
1068 0, RenderScriptRuntime::eModuleKindDriver,
1069 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar},
1070
1071 // rsdAllocation
1072 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C"
1073 "ontextEPNS0_10AllocationEb",
1074 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_"
1075 "10AllocationEb",
1076 0, RenderScriptRuntime::eModuleKindDriver,
1077 &lldb_private::RenderScriptRuntime::CaptureAllocationInit},
1078 {"rsdAllocationRead2D",
1079 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1080 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
1081 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1082 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
1083 0, RenderScriptRuntime::eModuleKindDriver, nullptr},
1084 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc"
1085 "ript7ContextEPNS0_10AllocationE",
1086 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_"
1087 "10AllocationE",
1088 0, RenderScriptRuntime::eModuleKindDriver,
1089 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy},
1090
1091 // renderscript script groups
1092 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip"
1093 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver"
1094 "InfojjjEj",
1095 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan"
1096 "dKernelDriverInfojjjEj",
1097 0, RenderScriptRuntime::eModuleKindImpl,
1098 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}};
1099
1100 const size_t RenderScriptRuntime::s_runtimeHookCount =
1101 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
1102
HookCallback(void * baton,StoppointCallbackContext * ctx,lldb::user_id_t break_id,lldb::user_id_t break_loc_id)1103 bool RenderScriptRuntime::HookCallback(void *baton,
1104 StoppointCallbackContext *ctx,
1105 lldb::user_id_t break_id,
1106 lldb::user_id_t break_loc_id) {
1107 RuntimeHook *hook = (RuntimeHook *)baton;
1108 ExecutionContext exe_ctx(ctx->exe_ctx_ref);
1109
1110 RenderScriptRuntime *lang_rt = llvm::cast<RenderScriptRuntime>(
1111 exe_ctx.GetProcessPtr()->GetLanguageRuntime(
1112 eLanguageTypeExtRenderScript));
1113
1114 lang_rt->HookCallback(hook, exe_ctx);
1115
1116 return false;
1117 }
1118
HookCallback(RuntimeHook * hook,ExecutionContext & exe_ctx)1119 void RenderScriptRuntime::HookCallback(RuntimeHook *hook,
1120 ExecutionContext &exe_ctx) {
1121 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1122
1123 LLDB_LOGF(log, "%s - '%s'", __FUNCTION__, hook->defn->name);
1124
1125 if (hook->defn->grabber) {
1126 (this->*(hook->defn->grabber))(hook, exe_ctx);
1127 }
1128 }
1129
CaptureDebugHintScriptGroup2(RuntimeHook * hook_info,ExecutionContext & context)1130 void RenderScriptRuntime::CaptureDebugHintScriptGroup2(
1131 RuntimeHook *hook_info, ExecutionContext &context) {
1132 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1133
1134 enum {
1135 eGroupName = 0,
1136 eGroupNameSize,
1137 eKernel,
1138 eKernelCount,
1139 };
1140
1141 std::array<ArgItem, 4> args{{
1142 {ArgItem::ePointer, 0}, // const char *groupName
1143 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize
1144 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel
1145 {ArgItem::eInt32, 0}, // const uint32_t kernelCount
1146 }};
1147
1148 if (!GetArgs(context, args.data(), args.size())) {
1149 LLDB_LOGF(log, "%s - Error while reading the function parameters",
1150 __FUNCTION__);
1151 return;
1152 } else if (log) {
1153 LLDB_LOGF(log, "%s - groupName : 0x%" PRIx64, __FUNCTION__,
1154 addr_t(args[eGroupName]));
1155 LLDB_LOGF(log, "%s - groupNameSize: %" PRIu64, __FUNCTION__,
1156 uint64_t(args[eGroupNameSize]));
1157 LLDB_LOGF(log, "%s - kernel : 0x%" PRIx64, __FUNCTION__,
1158 addr_t(args[eKernel]));
1159 LLDB_LOGF(log, "%s - kernelCount : %" PRIu64, __FUNCTION__,
1160 uint64_t(args[eKernelCount]));
1161 }
1162
1163 // parse script group name
1164 ConstString group_name;
1165 {
1166 Status err;
1167 const uint64_t len = uint64_t(args[eGroupNameSize]);
1168 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]);
1169 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err);
1170 buffer.get()[len] = '\0';
1171 if (!err.Success()) {
1172 LLDB_LOGF(log, "Error reading scriptgroup name from target");
1173 return;
1174 } else {
1175 LLDB_LOGF(log, "Extracted scriptgroup name %s", buffer.get());
1176 }
1177 // write back the script group name
1178 group_name.SetCString(buffer.get());
1179 }
1180
1181 // create or access existing script group
1182 RSScriptGroupDescriptorSP group;
1183 {
1184 // search for existing script group
1185 for (auto sg : m_scriptGroups) {
1186 if (sg->m_name == group_name) {
1187 group = sg;
1188 break;
1189 }
1190 }
1191 if (!group) {
1192 group = std::make_shared<RSScriptGroupDescriptor>();
1193 group->m_name = group_name;
1194 m_scriptGroups.push_back(group);
1195 } else {
1196 // already have this script group
1197 LLDB_LOGF(log, "Attempt to add duplicate script group %s",
1198 group_name.AsCString());
1199 return;
1200 }
1201 }
1202 assert(group);
1203
1204 const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1205 std::vector<addr_t> kernels;
1206 // parse kernel addresses in script group
1207 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) {
1208 RSScriptGroupDescriptor::Kernel kernel;
1209 // extract script group kernel addresses from the target
1210 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size;
1211 uint64_t kernel_addr = 0;
1212 Status err;
1213 size_t read =
1214 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err);
1215 if (!err.Success() || read != target_ptr_size) {
1216 LLDB_LOGF(log, "Error parsing kernel address %" PRIu64 " in script group",
1217 i);
1218 return;
1219 }
1220 LLDB_LOGF(log, "Extracted scriptgroup kernel address - 0x%" PRIx64,
1221 kernel_addr);
1222 kernel.m_addr = kernel_addr;
1223
1224 // try to resolve the associated kernel name
1225 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) {
1226 LLDB_LOGF(log, "Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i,
1227 kernel_addr);
1228 return;
1229 }
1230
1231 // try to find the non '.expand' function
1232 {
1233 const llvm::StringRef expand(".expand");
1234 const llvm::StringRef name_ref = kernel.m_name.GetStringRef();
1235 if (name_ref.endswith(expand)) {
1236 const ConstString base_kernel(name_ref.drop_back(expand.size()));
1237 // verify this function is a valid kernel
1238 if (IsKnownKernel(base_kernel)) {
1239 kernel.m_name = base_kernel;
1240 LLDB_LOGF(log, "%s - found non expand version '%s'", __FUNCTION__,
1241 base_kernel.GetCString());
1242 }
1243 }
1244 }
1245 // add to a list of script group kernels we know about
1246 group->m_kernels.push_back(kernel);
1247 }
1248
1249 // Resolve any pending scriptgroup breakpoints
1250 {
1251 Target &target = m_process->GetTarget();
1252 const BreakpointList &list = target.GetBreakpointList();
1253 const size_t num_breakpoints = list.GetSize();
1254 LLDB_LOGF(log, "Resolving %zu breakpoints", num_breakpoints);
1255 for (size_t i = 0; i < num_breakpoints; ++i) {
1256 const BreakpointSP bp = list.GetBreakpointAtIndex(i);
1257 if (bp) {
1258 if (bp->MatchesName(group_name.AsCString())) {
1259 LLDB_LOGF(log, "Found breakpoint with name %s",
1260 group_name.AsCString());
1261 bp->ResolveBreakpoint();
1262 }
1263 }
1264 }
1265 }
1266 }
1267
CaptureScriptInvokeForEachMulti(RuntimeHook * hook,ExecutionContext & exe_ctx)1268 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti(
1269 RuntimeHook *hook, ExecutionContext &exe_ctx) {
1270 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1271
1272 enum {
1273 eRsContext = 0,
1274 eRsScript,
1275 eRsSlot,
1276 eRsAIns,
1277 eRsInLen,
1278 eRsAOut,
1279 eRsUsr,
1280 eRsUsrLen,
1281 eRsSc,
1282 };
1283
1284 std::array<ArgItem, 9> args{{
1285 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc
1286 ArgItem{ArgItem::ePointer, 0}, // Script *s
1287 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot
1288 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns
1289 ArgItem{ArgItem::eInt32, 0}, // size_t inLen
1290 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout
1291 ArgItem{ArgItem::ePointer, 0}, // const void *usr
1292 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen
1293 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc
1294 }};
1295
1296 bool success = GetArgs(exe_ctx, &args[0], args.size());
1297 if (!success) {
1298 LLDB_LOGF(log, "%s - Error while reading the function parameters",
1299 __FUNCTION__);
1300 return;
1301 }
1302
1303 const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1304 Status err;
1305 std::vector<uint64_t> allocs;
1306
1307 // traverse allocation list
1308 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) {
1309 // calculate offest to allocation pointer
1310 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1311
1312 // Note: due to little endian layout, reading 32bits or 64bits into res
1313 // will give the correct results.
1314 uint64_t result = 0;
1315 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err);
1316 if (read != target_ptr_size || !err.Success()) {
1317 LLDB_LOGF(log,
1318 "%s - Error while reading allocation list argument %" PRIu64,
1319 __FUNCTION__, i);
1320 } else {
1321 allocs.push_back(result);
1322 }
1323 }
1324
1325 // if there is an output allocation track it
1326 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) {
1327 allocs.push_back(alloc_out);
1328 }
1329
1330 // for all allocations we have found
1331 for (const uint64_t alloc_addr : allocs) {
1332 AllocationDetails *alloc = LookUpAllocation(alloc_addr);
1333 if (!alloc)
1334 alloc = CreateAllocation(alloc_addr);
1335
1336 if (alloc) {
1337 // save the allocation address
1338 if (alloc->address.isValid()) {
1339 // check the allocation address we already have matches
1340 assert(*alloc->address.get() == alloc_addr);
1341 } else {
1342 alloc->address = alloc_addr;
1343 }
1344
1345 // save the context
1346 if (log) {
1347 if (alloc->context.isValid() &&
1348 *alloc->context.get() != addr_t(args[eRsContext]))
1349 LLDB_LOGF(log, "%s - Allocation used by multiple contexts",
1350 __FUNCTION__);
1351 }
1352 alloc->context = addr_t(args[eRsContext]);
1353 }
1354 }
1355
1356 // make sure we track this script object
1357 if (lldb_private::RenderScriptRuntime::ScriptDetails *script =
1358 LookUpScript(addr_t(args[eRsScript]), true)) {
1359 if (log) {
1360 if (script->context.isValid() &&
1361 *script->context.get() != addr_t(args[eRsContext]))
1362 LLDB_LOGF(log, "%s - Script used by multiple contexts", __FUNCTION__);
1363 }
1364 script->context = addr_t(args[eRsContext]);
1365 }
1366 }
1367
CaptureSetGlobalVar(RuntimeHook * hook,ExecutionContext & context)1368 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook,
1369 ExecutionContext &context) {
1370 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1371
1372 enum {
1373 eRsContext,
1374 eRsScript,
1375 eRsId,
1376 eRsData,
1377 eRsLength,
1378 };
1379
1380 std::array<ArgItem, 5> args{{
1381 ArgItem{ArgItem::ePointer, 0}, // eRsContext
1382 ArgItem{ArgItem::ePointer, 0}, // eRsScript
1383 ArgItem{ArgItem::eInt32, 0}, // eRsId
1384 ArgItem{ArgItem::ePointer, 0}, // eRsData
1385 ArgItem{ArgItem::eInt32, 0}, // eRsLength
1386 }};
1387
1388 bool success = GetArgs(context, &args[0], args.size());
1389 if (!success) {
1390 LLDB_LOGF(log, "%s - error reading the function parameters.", __FUNCTION__);
1391 return;
1392 }
1393
1394 if (log) {
1395 LLDB_LOGF(log,
1396 "%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64
1397 ":%" PRIu64 "bytes.",
1398 __FUNCTION__, uint64_t(args[eRsContext]),
1399 uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1400 uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1401
1402 addr_t script_addr = addr_t(args[eRsScript]);
1403 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) {
1404 auto rsm = m_scriptMappings[script_addr];
1405 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) {
1406 auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1407 LLDB_LOGF(log, "%s - Setting of '%s' within '%s' inferred",
1408 __FUNCTION__, rsg.m_name.AsCString(),
1409 rsm->m_module->GetFileSpec().GetFilename().AsCString());
1410 }
1411 }
1412 }
1413 }
1414
CaptureAllocationInit(RuntimeHook * hook,ExecutionContext & exe_ctx)1415 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook,
1416 ExecutionContext &exe_ctx) {
1417 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1418
1419 enum { eRsContext, eRsAlloc, eRsForceZero };
1420
1421 std::array<ArgItem, 3> args{{
1422 ArgItem{ArgItem::ePointer, 0}, // eRsContext
1423 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1424 ArgItem{ArgItem::eBool, 0}, // eRsForceZero
1425 }};
1426
1427 bool success = GetArgs(exe_ctx, &args[0], args.size());
1428 if (!success) {
1429 LLDB_LOGF(log, "%s - error while reading the function parameters",
1430 __FUNCTION__);
1431 return;
1432 }
1433
1434 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
1435 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]),
1436 uint64_t(args[eRsForceZero]));
1437
1438 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc]));
1439 if (alloc)
1440 alloc->context = uint64_t(args[eRsContext]);
1441 }
1442
CaptureAllocationDestroy(RuntimeHook * hook,ExecutionContext & exe_ctx)1443 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook,
1444 ExecutionContext &exe_ctx) {
1445 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1446
1447 enum {
1448 eRsContext,
1449 eRsAlloc,
1450 };
1451
1452 std::array<ArgItem, 2> args{{
1453 ArgItem{ArgItem::ePointer, 0}, // eRsContext
1454 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1455 }};
1456
1457 bool success = GetArgs(exe_ctx, &args[0], args.size());
1458 if (!success) {
1459 LLDB_LOGF(log, "%s - error while reading the function parameters.",
1460 __FUNCTION__);
1461 return;
1462 }
1463
1464 LLDB_LOGF(log, "%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__,
1465 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]));
1466
1467 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) {
1468 auto &allocation_up = *iter; // get the unique pointer
1469 if (allocation_up->address.isValid() &&
1470 *allocation_up->address.get() == addr_t(args[eRsAlloc])) {
1471 m_allocations.erase(iter);
1472 LLDB_LOGF(log, "%s - deleted allocation entry.", __FUNCTION__);
1473 return;
1474 }
1475 }
1476
1477 LLDB_LOGF(log, "%s - couldn't find destroyed allocation.", __FUNCTION__);
1478 }
1479
CaptureScriptInit(RuntimeHook * hook,ExecutionContext & exe_ctx)1480 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook,
1481 ExecutionContext &exe_ctx) {
1482 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1483
1484 Status err;
1485 Process *process = exe_ctx.GetProcessPtr();
1486
1487 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr };
1488
1489 std::array<ArgItem, 4> args{
1490 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1491 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1492 bool success = GetArgs(exe_ctx, &args[0], args.size());
1493 if (!success) {
1494 LLDB_LOGF(log, "%s - error while reading the function parameters.",
1495 __FUNCTION__);
1496 return;
1497 }
1498
1499 std::string res_name;
1500 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err);
1501 if (err.Fail()) {
1502 LLDB_LOGF(log, "%s - error reading res_name: %s.", __FUNCTION__,
1503 err.AsCString());
1504 }
1505
1506 std::string cache_dir;
1507 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err);
1508 if (err.Fail()) {
1509 LLDB_LOGF(log, "%s - error reading cache_dir: %s.", __FUNCTION__,
1510 err.AsCString());
1511 }
1512
1513 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
1514 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]),
1515 res_name.c_str(), cache_dir.c_str());
1516
1517 if (res_name.size() > 0) {
1518 StreamString strm;
1519 strm.Printf("librs.%s.so", res_name.c_str());
1520
1521 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1522 if (script) {
1523 script->type = ScriptDetails::eScriptC;
1524 script->cache_dir = cache_dir;
1525 script->res_name = res_name;
1526 script->shared_lib = std::string(strm.GetString());
1527 script->context = addr_t(args[eRsContext]);
1528 }
1529
1530 LLDB_LOGF(log,
1531 "%s - '%s' tagged with context 0x%" PRIx64
1532 " and script 0x%" PRIx64 ".",
1533 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]),
1534 uint64_t(args[eRsScript]));
1535 } else if (log) {
1536 LLDB_LOGF(log, "%s - resource name invalid, Script not tagged.",
1537 __FUNCTION__);
1538 }
1539 }
1540
LoadRuntimeHooks(lldb::ModuleSP module,ModuleKind kind)1541 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module,
1542 ModuleKind kind) {
1543 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1544
1545 if (!module) {
1546 return;
1547 }
1548
1549 Target &target = GetProcess()->GetTarget();
1550 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine();
1551
1552 if (machine != llvm::Triple::ArchType::x86 &&
1553 machine != llvm::Triple::ArchType::arm &&
1554 machine != llvm::Triple::ArchType::aarch64 &&
1555 machine != llvm::Triple::ArchType::mipsel &&
1556 machine != llvm::Triple::ArchType::mips64el &&
1557 machine != llvm::Triple::ArchType::x86_64) {
1558 LLDB_LOGF(log, "%s - unable to hook runtime functions.", __FUNCTION__);
1559 return;
1560 }
1561
1562 const uint32_t target_ptr_size =
1563 target.GetArchitecture().GetAddressByteSize();
1564
1565 std::array<bool, s_runtimeHookCount> hook_placed;
1566 hook_placed.fill(false);
1567
1568 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) {
1569 const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1570 if (hook_defn->kind != kind) {
1571 continue;
1572 }
1573
1574 const char *symbol_name = (target_ptr_size == 4)
1575 ? hook_defn->symbol_name_m32
1576 : hook_defn->symbol_name_m64;
1577
1578 const Symbol *sym = module->FindFirstSymbolWithNameAndType(
1579 ConstString(symbol_name), eSymbolTypeCode);
1580 if (!sym) {
1581 if (log) {
1582 LLDB_LOGF(log, "%s - symbol '%s' related to the function %s not found",
1583 __FUNCTION__, symbol_name, hook_defn->name);
1584 }
1585 continue;
1586 }
1587
1588 addr_t addr = sym->GetLoadAddress(&target);
1589 if (addr == LLDB_INVALID_ADDRESS) {
1590 LLDB_LOGF(log,
1591 "%s - unable to resolve the address of hook function '%s' "
1592 "with symbol '%s'.",
1593 __FUNCTION__, hook_defn->name, symbol_name);
1594 continue;
1595 } else {
1596 LLDB_LOGF(log, "%s - function %s, address resolved at 0x%" PRIx64,
1597 __FUNCTION__, hook_defn->name, addr);
1598 }
1599
1600 RuntimeHookSP hook(new RuntimeHook());
1601 hook->address = addr;
1602 hook->defn = hook_defn;
1603 hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1604 hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1605 m_runtimeHooks[addr] = hook;
1606 if (log) {
1607 LLDB_LOGF(log,
1608 "%s - successfully hooked '%s' in '%s' version %" PRIu64
1609 " at 0x%" PRIx64 ".",
1610 __FUNCTION__, hook_defn->name,
1611 module->GetFileSpec().GetFilename().AsCString(),
1612 (uint64_t)hook_defn->version, (uint64_t)addr);
1613 }
1614 hook_placed[idx] = true;
1615 }
1616
1617 // log any unhooked function
1618 if (log) {
1619 for (size_t i = 0; i < hook_placed.size(); ++i) {
1620 if (hook_placed[i])
1621 continue;
1622 const HookDefn &hook_defn = s_runtimeHookDefns[i];
1623 if (hook_defn.kind != kind)
1624 continue;
1625 LLDB_LOGF(log, "%s - function %s was not hooked", __FUNCTION__,
1626 hook_defn.name);
1627 }
1628 }
1629 }
1630
FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)1631 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) {
1632 if (!rsmodule_sp)
1633 return;
1634
1635 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1636
1637 const ModuleSP module = rsmodule_sp->m_module;
1638 const FileSpec &file = module->GetPlatformFileSpec();
1639
1640 // Iterate over all of the scripts that we currently know of. Note: We cant
1641 // push or pop to m_scripts here or it may invalidate rs_script.
1642 for (const auto &rs_script : m_scripts) {
1643 // Extract the expected .so file path for this script.
1644 std::string shared_lib;
1645 if (!rs_script->shared_lib.get(shared_lib))
1646 continue;
1647
1648 // Only proceed if the module that has loaded corresponds to this script.
1649 if (file.GetFilename() != ConstString(shared_lib.c_str()))
1650 continue;
1651
1652 // Obtain the script address which we use as a key.
1653 lldb::addr_t script;
1654 if (!rs_script->script.get(script))
1655 continue;
1656
1657 // If we have a script mapping for the current script.
1658 if (m_scriptMappings.find(script) != m_scriptMappings.end()) {
1659 // if the module we have stored is different to the one we just received.
1660 if (m_scriptMappings[script] != rsmodule_sp) {
1661 LLDB_LOGF(
1662 log,
1663 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
1664 __FUNCTION__, (uint64_t)script,
1665 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1666 }
1667 }
1668 // We don't have a script mapping for the current script.
1669 else {
1670 // Obtain the script resource name.
1671 std::string res_name;
1672 if (rs_script->res_name.get(res_name))
1673 // Set the modules resource name.
1674 rsmodule_sp->m_resname = res_name;
1675 // Add Script/Module pair to map.
1676 m_scriptMappings[script] = rsmodule_sp;
1677 LLDB_LOGF(log, "%s - script %" PRIx64 " associated with rsmodule '%s'.",
1678 __FUNCTION__, (uint64_t)script,
1679 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1680 }
1681 }
1682 }
1683
1684 // Uses the Target API to evaluate the expression passed as a parameter to the
1685 // function The result of that expression is returned an unsigned 64 bit int,
1686 // via the result* parameter. Function returns true on success, and false on
1687 // failure
EvalRSExpression(const char * expr,StackFrame * frame_ptr,uint64_t * result)1688 bool RenderScriptRuntime::EvalRSExpression(const char *expr,
1689 StackFrame *frame_ptr,
1690 uint64_t *result) {
1691 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1692 LLDB_LOGF(log, "%s(%s)", __FUNCTION__, expr);
1693
1694 ValueObjectSP expr_result;
1695 EvaluateExpressionOptions options;
1696 options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
1697 // Perform the actual expression evaluation
1698 auto &target = GetProcess()->GetTarget();
1699 target.EvaluateExpression(expr, frame_ptr, expr_result, options);
1700
1701 if (!expr_result) {
1702 LLDB_LOGF(log, "%s: couldn't evaluate expression.", __FUNCTION__);
1703 return false;
1704 }
1705
1706 // The result of the expression is invalid
1707 if (!expr_result->GetError().Success()) {
1708 Status err = expr_result->GetError();
1709 // Expression returned is void, so this is actually a success
1710 if (err.GetError() == UserExpression::kNoResult) {
1711 LLDB_LOGF(log, "%s - expression returned void.", __FUNCTION__);
1712
1713 result = nullptr;
1714 return true;
1715 }
1716
1717 LLDB_LOGF(log, "%s - error evaluating expression result: %s", __FUNCTION__,
1718 err.AsCString());
1719 return false;
1720 }
1721
1722 bool success = false;
1723 // We only read the result as an uint32_t.
1724 *result = expr_result->GetValueAsUnsigned(0, &success);
1725
1726 if (!success) {
1727 LLDB_LOGF(log, "%s - couldn't convert expression result to uint32_t",
1728 __FUNCTION__);
1729 return false;
1730 }
1731
1732 return true;
1733 }
1734
1735 namespace {
1736 // Used to index expression format strings
1737 enum ExpressionStrings {
1738 eExprGetOffsetPtr = 0,
1739 eExprAllocGetType,
1740 eExprTypeDimX,
1741 eExprTypeDimY,
1742 eExprTypeDimZ,
1743 eExprTypeElemPtr,
1744 eExprElementType,
1745 eExprElementKind,
1746 eExprElementVec,
1747 eExprElementFieldCount,
1748 eExprSubelementsId,
1749 eExprSubelementsName,
1750 eExprSubelementsArrSize,
1751
1752 _eExprLast // keep at the end, implicit size of the array runtime_expressions
1753 };
1754
1755 // max length of an expanded expression
1756 const int jit_max_expr_size = 512;
1757
1758 // Retrieve the string to JIT for the given expression
1759 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); "
JITTemplate(ExpressionStrings e)1760 const char *JITTemplate(ExpressionStrings e) {
1761 // Format strings containing the expressions we may need to evaluate.
1762 static std::array<const char *, _eExprLast> runtime_expressions = {
1763 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1764 "(int*)_"
1765 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation"
1766 "CubemapFace"
1767 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr
1768
1769 // Type* rsaAllocationGetType(Context*, Allocation*)
1770 JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType
1771
1772 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the
1773 // data in the following way mHal.state.dimX; mHal.state.dimY;
1774 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement;
1775 // into typeData Need to specify 32 or 64 bit for uint_t since this
1776 // differs between devices
1777 JIT_TEMPLATE_CONTEXT
1778 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1779 ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX
1780 JIT_TEMPLATE_CONTEXT
1781 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1782 ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY
1783 JIT_TEMPLATE_CONTEXT
1784 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1785 ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ
1786 JIT_TEMPLATE_CONTEXT
1787 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1788 ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr
1789
1790 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1791 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into
1792 // elemData
1793 JIT_TEMPLATE_CONTEXT
1794 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1795 ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType
1796 JIT_TEMPLATE_CONTEXT
1797 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1798 ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind
1799 JIT_TEMPLATE_CONTEXT
1800 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1801 ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec
1802 JIT_TEMPLATE_CONTEXT
1803 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1804 ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount
1805
1806 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t
1807 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize)
1808 // Needed for Allocations of structs to gather details about
1809 // fields/Subelements Element* of field
1810 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1811 "]; size_t arr_size[%" PRIu32 "];"
1812 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1813 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId
1814
1815 // Name of field
1816 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1817 "]; size_t arr_size[%" PRIu32 "];"
1818 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1819 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName
1820
1821 // Array size of field
1822 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1823 "]; size_t arr_size[%" PRIu32 "];"
1824 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1825 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize
1826
1827 return runtime_expressions[e];
1828 }
1829 } // end of the anonymous namespace
1830
1831 // JITs the RS runtime for the internal data pointer of an allocation. Is
1832 // passed x,y,z coordinates for the pointer to a specific element. Then sets
1833 // the data_ptr member in Allocation with the result. Returns true on success,
1834 // false otherwise
JITDataPointer(AllocationDetails * alloc,StackFrame * frame_ptr,uint32_t x,uint32_t y,uint32_t z)1835 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc,
1836 StackFrame *frame_ptr, uint32_t x,
1837 uint32_t y, uint32_t z) {
1838 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1839
1840 if (!alloc->address.isValid()) {
1841 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1842 return false;
1843 }
1844
1845 const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
1846 char expr_buf[jit_max_expr_size];
1847
1848 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1849 *alloc->address.get(), x, y, z);
1850 if (written < 0) {
1851 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1852 return false;
1853 } else if (written >= jit_max_expr_size) {
1854 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1855 return false;
1856 }
1857
1858 uint64_t result = 0;
1859 if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1860 return false;
1861
1862 addr_t data_ptr = static_cast<lldb::addr_t>(result);
1863 alloc->data_ptr = data_ptr;
1864
1865 return true;
1866 }
1867
1868 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1869 // Then sets the type_ptr member in Allocation with the result. Returns true on
1870 // success, false otherwise
JITTypePointer(AllocationDetails * alloc,StackFrame * frame_ptr)1871 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc,
1872 StackFrame *frame_ptr) {
1873 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1874
1875 if (!alloc->address.isValid() || !alloc->context.isValid()) {
1876 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1877 return false;
1878 }
1879
1880 const char *fmt_str = JITTemplate(eExprAllocGetType);
1881 char expr_buf[jit_max_expr_size];
1882
1883 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1884 *alloc->context.get(), *alloc->address.get());
1885 if (written < 0) {
1886 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1887 return false;
1888 } else if (written >= jit_max_expr_size) {
1889 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1890 return false;
1891 }
1892
1893 uint64_t result = 0;
1894 if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1895 return false;
1896
1897 addr_t type_ptr = static_cast<lldb::addr_t>(result);
1898 alloc->type_ptr = type_ptr;
1899
1900 return true;
1901 }
1902
1903 // JITs the RS runtime for information about the dimensions and type of an
1904 // allocation Then sets dimension and element_ptr members in Allocation with
1905 // the result. Returns true on success, false otherwise
JITTypePacked(AllocationDetails * alloc,StackFrame * frame_ptr)1906 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc,
1907 StackFrame *frame_ptr) {
1908 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1909
1910 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) {
1911 LLDB_LOGF(log, "%s - Failed to find allocation details.", __FUNCTION__);
1912 return false;
1913 }
1914
1915 // Expression is different depending on if device is 32 or 64 bit
1916 uint32_t target_ptr_size =
1917 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1918 const uint32_t bits = target_ptr_size == 4 ? 32 : 64;
1919
1920 // We want 4 elements from packed data
1921 const uint32_t num_exprs = 4;
1922 static_assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1),
1923 "Invalid number of expressions");
1924
1925 char expr_bufs[num_exprs][jit_max_expr_size];
1926 uint64_t results[num_exprs];
1927
1928 for (uint32_t i = 0; i < num_exprs; ++i) {
1929 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1930 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str,
1931 *alloc->context.get(), bits, *alloc->type_ptr.get());
1932 if (written < 0) {
1933 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1934 return false;
1935 } else if (written >= jit_max_expr_size) {
1936 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1937 return false;
1938 }
1939
1940 // Perform expression evaluation
1941 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
1942 return false;
1943 }
1944
1945 // Assign results to allocation members
1946 AllocationDetails::Dimension dims;
1947 dims.dim_1 = static_cast<uint32_t>(results[0]);
1948 dims.dim_2 = static_cast<uint32_t>(results[1]);
1949 dims.dim_3 = static_cast<uint32_t>(results[2]);
1950 alloc->dimension = dims;
1951
1952 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]);
1953 alloc->element.element_ptr = element_ptr;
1954
1955 LLDB_LOGF(log,
1956 "%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32
1957 ") Element*: 0x%" PRIx64 ".",
1958 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr);
1959
1960 return true;
1961 }
1962
1963 // JITs the RS runtime for information about the Element of an allocation Then
1964 // sets type, type_vec_size, field_count and type_kind members in Element with
1965 // the result. Returns true on success, false otherwise
JITElementPacked(Element & elem,const lldb::addr_t context,StackFrame * frame_ptr)1966 bool RenderScriptRuntime::JITElementPacked(Element &elem,
1967 const lldb::addr_t context,
1968 StackFrame *frame_ptr) {
1969 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
1970
1971 if (!elem.element_ptr.isValid()) {
1972 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1973 return false;
1974 }
1975
1976 // We want 4 elements from packed data
1977 const uint32_t num_exprs = 4;
1978 static_assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1),
1979 "Invalid number of expressions");
1980
1981 char expr_bufs[num_exprs][jit_max_expr_size];
1982 uint64_t results[num_exprs];
1983
1984 for (uint32_t i = 0; i < num_exprs; i++) {
1985 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i));
1986 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context,
1987 *elem.element_ptr.get());
1988 if (written < 0) {
1989 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1990 return false;
1991 } else if (written >= jit_max_expr_size) {
1992 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1993 return false;
1994 }
1995
1996 // Perform expression evaluation
1997 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
1998 return false;
1999 }
2000
2001 // Assign results to allocation members
2002 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
2003 elem.type_kind =
2004 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
2005 elem.type_vec_size = static_cast<uint32_t>(results[2]);
2006 elem.field_count = static_cast<uint32_t>(results[3]);
2007
2008 LLDB_LOGF(log,
2009 "%s - data type %" PRIu32 ", pixel type %" PRIu32
2010 ", vector size %" PRIu32 ", field count %" PRIu32,
2011 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(),
2012 *elem.type_vec_size.get(), *elem.field_count.get());
2013
2014 // If this Element has subelements then JIT rsaElementGetSubElements() for
2015 // details about its fields
2016 return !(*elem.field_count.get() > 0 &&
2017 !JITSubelements(elem, context, frame_ptr));
2018 }
2019
2020 // JITs the RS runtime for information about the subelements/fields of a struct
2021 // allocation This is necessary for infering the struct type so we can pretty
2022 // print the allocation's contents. Returns true on success, false otherwise
JITSubelements(Element & elem,const lldb::addr_t context,StackFrame * frame_ptr)2023 bool RenderScriptRuntime::JITSubelements(Element &elem,
2024 const lldb::addr_t context,
2025 StackFrame *frame_ptr) {
2026 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2027
2028 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) {
2029 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2030 return false;
2031 }
2032
2033 const short num_exprs = 3;
2034 static_assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1),
2035 "Invalid number of expressions");
2036
2037 char expr_buffer[jit_max_expr_size];
2038 uint64_t results;
2039
2040 // Iterate over struct fields.
2041 const uint32_t field_count = *elem.field_count.get();
2042 for (uint32_t field_index = 0; field_index < field_count; ++field_index) {
2043 Element child;
2044 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) {
2045 const char *fmt_str =
2046 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
2047 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str,
2048 context, field_count, field_count, field_count,
2049 *elem.element_ptr.get(), field_count, field_index);
2050 if (written < 0) {
2051 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2052 return false;
2053 } else if (written >= jit_max_expr_size) {
2054 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2055 return false;
2056 }
2057
2058 // Perform expression evaluation
2059 if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
2060 return false;
2061
2062 LLDB_LOGF(log, "%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
2063
2064 switch (expr_index) {
2065 case 0: // Element* of child
2066 child.element_ptr = static_cast<addr_t>(results);
2067 break;
2068 case 1: // Name of child
2069 {
2070 lldb::addr_t address = static_cast<addr_t>(results);
2071 Status err;
2072 std::string name;
2073 GetProcess()->ReadCStringFromMemory(address, name, err);
2074 if (!err.Fail())
2075 child.type_name = ConstString(name);
2076 else {
2077 LLDB_LOGF(log, "%s - warning: Couldn't read field name.",
2078 __FUNCTION__);
2079 }
2080 break;
2081 }
2082 case 2: // Array size of child
2083 child.array_size = static_cast<uint32_t>(results);
2084 break;
2085 }
2086 }
2087
2088 // We need to recursively JIT each Element field of the struct since
2089 // structs can be nested inside structs.
2090 if (!JITElementPacked(child, context, frame_ptr))
2091 return false;
2092 elem.children.push_back(child);
2093 }
2094
2095 // Try to infer the name of the struct type so we can pretty print the
2096 // allocation contents.
2097 FindStructTypeName(elem, frame_ptr);
2098
2099 return true;
2100 }
2101
2102 // JITs the RS runtime for the address of the last element in the allocation.
2103 // The `elem_size` parameter represents the size of a single element, including
2104 // padding. Which is needed as an offset from the last element pointer. Using
2105 // this offset minus the starting address we can calculate the size of the
2106 // allocation. Returns true on success, false otherwise
JITAllocationSize(AllocationDetails * alloc,StackFrame * frame_ptr)2107 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc,
2108 StackFrame *frame_ptr) {
2109 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2110
2111 if (!alloc->address.isValid() || !alloc->dimension.isValid() ||
2112 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) {
2113 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2114 return false;
2115 }
2116
2117 // Find dimensions
2118 uint32_t dim_x = alloc->dimension.get()->dim_1;
2119 uint32_t dim_y = alloc->dimension.get()->dim_2;
2120 uint32_t dim_z = alloc->dimension.get()->dim_3;
2121
2122 // Our plan of jitting the last element address doesn't seem to work for
2123 // struct Allocations` Instead try to infer the size ourselves without any
2124 // inter element padding.
2125 if (alloc->element.children.size() > 0) {
2126 if (dim_x == 0)
2127 dim_x = 1;
2128 if (dim_y == 0)
2129 dim_y = 1;
2130 if (dim_z == 0)
2131 dim_z = 1;
2132
2133 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get();
2134
2135 LLDB_LOGF(log, "%s - inferred size of struct allocation %" PRIu32 ".",
2136 __FUNCTION__, *alloc->size.get());
2137 return true;
2138 }
2139
2140 const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2141 char expr_buf[jit_max_expr_size];
2142
2143 // Calculate last element
2144 dim_x = dim_x == 0 ? 0 : dim_x - 1;
2145 dim_y = dim_y == 0 ? 0 : dim_y - 1;
2146 dim_z = dim_z == 0 ? 0 : dim_z - 1;
2147
2148 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2149 *alloc->address.get(), dim_x, dim_y, dim_z);
2150 if (written < 0) {
2151 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2152 return false;
2153 } else if (written >= jit_max_expr_size) {
2154 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2155 return false;
2156 }
2157
2158 uint64_t result = 0;
2159 if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2160 return false;
2161
2162 addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2163 // Find pointer to last element and add on size of an element
2164 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) +
2165 *alloc->element.datum_size.get();
2166
2167 return true;
2168 }
2169
2170 // JITs the RS runtime for information about the stride between rows in the
2171 // allocation. This is done to detect padding, since allocated memory is
2172 // 16-byte aligned. Returns true on success, false otherwise
JITAllocationStride(AllocationDetails * alloc,StackFrame * frame_ptr)2173 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc,
2174 StackFrame *frame_ptr) {
2175 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2176
2177 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) {
2178 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2179 return false;
2180 }
2181
2182 const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2183 char expr_buf[jit_max_expr_size];
2184
2185 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2186 *alloc->address.get(), 0, 1, 0);
2187 if (written < 0) {
2188 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2189 return false;
2190 } else if (written >= jit_max_expr_size) {
2191 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2192 return false;
2193 }
2194
2195 uint64_t result = 0;
2196 if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2197 return false;
2198
2199 addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2200 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get());
2201
2202 return true;
2203 }
2204
2205 // JIT all the current runtime info regarding an allocation
RefreshAllocation(AllocationDetails * alloc,StackFrame * frame_ptr)2206 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc,
2207 StackFrame *frame_ptr) {
2208 // GetOffsetPointer()
2209 if (!JITDataPointer(alloc, frame_ptr))
2210 return false;
2211
2212 // rsaAllocationGetType()
2213 if (!JITTypePointer(alloc, frame_ptr))
2214 return false;
2215
2216 // rsaTypeGetNativeData()
2217 if (!JITTypePacked(alloc, frame_ptr))
2218 return false;
2219
2220 // rsaElementGetNativeData()
2221 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr))
2222 return false;
2223
2224 // Sets the datum_size member in Element
2225 SetElementSize(alloc->element);
2226
2227 // Use GetOffsetPointer() to infer size of the allocation
2228 return JITAllocationSize(alloc, frame_ptr);
2229 }
2230
2231 // Function attempts to set the type_name member of the paramaterised Element
2232 // object. This string should be the name of the struct type the Element
2233 // represents. We need this string for pretty printing the Element to users.
FindStructTypeName(Element & elem,StackFrame * frame_ptr)2234 void RenderScriptRuntime::FindStructTypeName(Element &elem,
2235 StackFrame *frame_ptr) {
2236 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2237
2238 if (!elem.type_name.IsEmpty()) // Name already set
2239 return;
2240 else
2241 elem.type_name = Element::GetFallbackStructName(); // Default type name if
2242 // we don't succeed
2243
2244 // Find all the global variables from the script rs modules
2245 VariableList var_list;
2246 for (auto module_sp : m_rsmodules)
2247 module_sp->m_module->FindGlobalVariables(
2248 RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list);
2249
2250 // Iterate over all the global variables looking for one with a matching type
2251 // to the Element. We make the assumption a match exists since there needs to
2252 // be a global variable to reflect the struct type back into java host code.
2253 for (const VariableSP &var_sp : var_list) {
2254 if (!var_sp)
2255 continue;
2256
2257 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2258 if (!valobj_sp)
2259 continue;
2260
2261 // Find the number of variable fields.
2262 // If it has no fields, or more fields than our Element, then it can't be
2263 // the struct we're looking for. Don't check for equality since RS can add
2264 // extra struct members for padding.
2265 size_t num_children = valobj_sp->GetNumChildren();
2266 if (num_children > elem.children.size() || num_children == 0)
2267 continue;
2268
2269 // Iterate over children looking for members with matching field names. If
2270 // all the field names match, this is likely the struct we want.
2271 // TODO: This could be made more robust by also checking children data
2272 // sizes, or array size
2273 bool found = true;
2274 for (size_t i = 0; i < num_children; ++i) {
2275 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true);
2276 if (!child || (child->GetName() != elem.children[i].type_name)) {
2277 found = false;
2278 break;
2279 }
2280 }
2281
2282 // RS can add extra struct members for padding in the format
2283 // '#rs_padding_[0-9]+'
2284 if (found && num_children < elem.children.size()) {
2285 const uint32_t size_diff = elem.children.size() - num_children;
2286 LLDB_LOGF(log, "%s - %" PRIu32 " padding struct entries", __FUNCTION__,
2287 size_diff);
2288
2289 for (uint32_t i = 0; i < size_diff; ++i) {
2290 ConstString name = elem.children[num_children + i].type_name;
2291 if (strcmp(name.AsCString(), "#rs_padding") < 0)
2292 found = false;
2293 }
2294 }
2295
2296 // We've found a global variable with matching type
2297 if (found) {
2298 // Dereference since our Element type isn't a pointer.
2299 if (valobj_sp->IsPointerType()) {
2300 Status err;
2301 ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2302 if (!err.Fail())
2303 valobj_sp = deref_valobj;
2304 }
2305
2306 // Save name of variable in Element.
2307 elem.type_name = valobj_sp->GetTypeName();
2308 LLDB_LOGF(log, "%s - element name set to %s", __FUNCTION__,
2309 elem.type_name.AsCString());
2310
2311 return;
2312 }
2313 }
2314 }
2315
2316 // Function sets the datum_size member of Element. Representing the size of a
2317 // single instance including padding. Assumes the relevant allocation
2318 // information has already been jitted.
SetElementSize(Element & elem)2319 void RenderScriptRuntime::SetElementSize(Element &elem) {
2320 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2321 const Element::DataType type = *elem.type.get();
2322 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
2323 "Invalid allocation type");
2324
2325 const uint32_t vec_size = *elem.type_vec_size.get();
2326 uint32_t data_size = 0;
2327 uint32_t padding = 0;
2328
2329 // Element is of a struct type, calculate size recursively.
2330 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) {
2331 for (Element &child : elem.children) {
2332 SetElementSize(child);
2333 const uint32_t array_size =
2334 child.array_size.isValid() ? *child.array_size.get() : 1;
2335 data_size += *child.datum_size.get() * array_size;
2336 }
2337 }
2338 // These have been packed already
2339 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 ||
2340 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2341 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) {
2342 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2343 } else if (type < Element::RS_TYPE_ELEMENT) {
2344 data_size =
2345 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2346 if (vec_size == 3)
2347 padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2348 } else
2349 data_size =
2350 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2351
2352 elem.padding = padding;
2353 elem.datum_size = data_size + padding;
2354 LLDB_LOGF(log, "%s - element size set to %" PRIu32, __FUNCTION__,
2355 data_size + padding);
2356 }
2357
2358 // Given an allocation, this function copies the allocation contents from
2359 // device into a buffer on the heap. Returning a shared pointer to the buffer
2360 // containing the data.
2361 std::shared_ptr<uint8_t>
GetAllocationData(AllocationDetails * alloc,StackFrame * frame_ptr)2362 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc,
2363 StackFrame *frame_ptr) {
2364 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2365
2366 // JIT all the allocation details
2367 if (alloc->ShouldRefresh()) {
2368 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info",
2369 __FUNCTION__);
2370
2371 if (!RefreshAllocation(alloc, frame_ptr)) {
2372 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__);
2373 return nullptr;
2374 }
2375 }
2376
2377 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2378 alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2379 "Allocation information not available");
2380
2381 // Allocate a buffer to copy data into
2382 const uint32_t size = *alloc->size.get();
2383 std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2384 if (!buffer) {
2385 LLDB_LOGF(log, "%s - couldn't allocate a %" PRIu32 " byte buffer",
2386 __FUNCTION__, size);
2387 return nullptr;
2388 }
2389
2390 // Read the inferior memory
2391 Status err;
2392 lldb::addr_t data_ptr = *alloc->data_ptr.get();
2393 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err);
2394 if (err.Fail()) {
2395 LLDB_LOGF(log,
2396 "%s - '%s' Couldn't read %" PRIu32
2397 " bytes of allocation data from 0x%" PRIx64,
2398 __FUNCTION__, err.AsCString(), size, data_ptr);
2399 return nullptr;
2400 }
2401
2402 return buffer;
2403 }
2404
2405 // Function copies data from a binary file into an allocation. There is a
2406 // header at the start of the file, FileHeader, before the data content itself.
2407 // Information from this header is used to display warnings to the user about
2408 // incompatibilities
LoadAllocation(Stream & strm,const uint32_t alloc_id,const char * path,StackFrame * frame_ptr)2409 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id,
2410 const char *path,
2411 StackFrame *frame_ptr) {
2412 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2413
2414 // Find allocation with the given id
2415 AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2416 if (!alloc)
2417 return false;
2418
2419 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__,
2420 *alloc->address.get());
2421
2422 // JIT all the allocation details
2423 if (alloc->ShouldRefresh()) {
2424 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
2425 __FUNCTION__);
2426
2427 if (!RefreshAllocation(alloc, frame_ptr)) {
2428 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__);
2429 return false;
2430 }
2431 }
2432
2433 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2434 alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2435 alloc->element.datum_size.isValid() &&
2436 "Allocation information not available");
2437
2438 // Check we can read from file
2439 FileSpec file(path);
2440 FileSystem::Instance().Resolve(file);
2441 if (!FileSystem::Instance().Exists(file)) {
2442 strm.Printf("Error: File %s does not exist", path);
2443 strm.EOL();
2444 return false;
2445 }
2446
2447 if (!FileSystem::Instance().Readable(file)) {
2448 strm.Printf("Error: File %s does not have readable permissions", path);
2449 strm.EOL();
2450 return false;
2451 }
2452
2453 // Read file into data buffer
2454 auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath());
2455
2456 // Cast start of buffer to FileHeader and use pointer to read metadata
2457 void *file_buf = data_sp->GetBytes();
2458 if (file_buf == nullptr ||
2459 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) +
2460 sizeof(AllocationDetails::ElementHeader))) {
2461 strm.Printf("Error: File %s does not contain enough data for header", path);
2462 strm.EOL();
2463 return false;
2464 }
2465 const AllocationDetails::FileHeader *file_header =
2466 static_cast<AllocationDetails::FileHeader *>(file_buf);
2467
2468 // Check file starts with ascii characters "RSAD"
2469 if (memcmp(file_header->ident, "RSAD", 4)) {
2470 strm.Printf("Error: File doesn't contain identifier for an RS allocation "
2471 "dump. Are you sure this is the correct file?");
2472 strm.EOL();
2473 return false;
2474 }
2475
2476 // Look at the type of the root element in the header
2477 AllocationDetails::ElementHeader root_el_hdr;
2478 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) +
2479 sizeof(AllocationDetails::FileHeader),
2480 sizeof(AllocationDetails::ElementHeader));
2481
2482 LLDB_LOGF(log, "%s - header type %" PRIu32 ", element size %" PRIu32,
2483 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size);
2484
2485 // Check if the target allocation and file both have the same number of bytes
2486 // for an Element
2487 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) {
2488 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32
2489 " bytes, allocation %" PRIu32 " bytes",
2490 root_el_hdr.element_size, *alloc->element.datum_size.get());
2491 strm.EOL();
2492 }
2493
2494 // Check if the target allocation and file both have the same type
2495 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2496 const uint32_t file_type = root_el_hdr.type;
2497
2498 if (file_type > Element::RS_TYPE_FONT) {
2499 strm.Printf("Warning: File has unknown allocation type");
2500 strm.EOL();
2501 } else if (alloc_type != file_type) {
2502 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString
2503 // array
2504 uint32_t target_type_name_idx = alloc_type;
2505 uint32_t head_type_name_idx = file_type;
2506 if (alloc_type >= Element::RS_TYPE_ELEMENT &&
2507 alloc_type <= Element::RS_TYPE_FONT)
2508 target_type_name_idx = static_cast<Element::DataType>(
2509 (alloc_type - Element::RS_TYPE_ELEMENT) +
2510 Element::RS_TYPE_MATRIX_2X2 + 1);
2511
2512 if (file_type >= Element::RS_TYPE_ELEMENT &&
2513 file_type <= Element::RS_TYPE_FONT)
2514 head_type_name_idx = static_cast<Element::DataType>(
2515 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 +
2516 1);
2517
2518 const char *head_type_name =
2519 AllocationDetails::RsDataTypeToString[head_type_name_idx][0];
2520 const char *target_type_name =
2521 AllocationDetails::RsDataTypeToString[target_type_name_idx][0];
2522
2523 strm.Printf(
2524 "Warning: Mismatched Types - file '%s' type, allocation '%s' type",
2525 head_type_name, target_type_name);
2526 strm.EOL();
2527 }
2528
2529 // Advance buffer past header
2530 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size;
2531
2532 // Calculate size of allocation data in file
2533 size_t size = data_sp->GetByteSize() - file_header->hdr_size;
2534
2535 // Check if the target allocation and file both have the same total data
2536 // size.
2537 const uint32_t alloc_size = *alloc->size.get();
2538 if (alloc_size != size) {
2539 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64
2540 " bytes, allocation 0x%" PRIx32 " bytes",
2541 (uint64_t)size, alloc_size);
2542 strm.EOL();
2543 // Set length to copy to minimum
2544 size = alloc_size < size ? alloc_size : size;
2545 }
2546
2547 // Copy file data from our buffer into the target allocation.
2548 lldb::addr_t alloc_data = *alloc->data_ptr.get();
2549 Status err;
2550 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err);
2551 if (!err.Success() || written != size) {
2552 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString());
2553 strm.EOL();
2554 return false;
2555 }
2556
2557 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path,
2558 alloc->id);
2559 strm.EOL();
2560
2561 return true;
2562 }
2563
2564 // Function takes as parameters a byte buffer, which will eventually be written
2565 // to file as the element header, an offset into that buffer, and an Element
2566 // that will be saved into the buffer at the parametrised offset. Return value
2567 // is the new offset after writing the element into the buffer. Elements are
2568 // saved to the file as the ElementHeader struct followed by offsets to the
2569 // structs of all the element's children.
PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer,size_t offset,const Element & elem)2570 size_t RenderScriptRuntime::PopulateElementHeaders(
2571 const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2572 const Element &elem) {
2573 // File struct for an element header with all the relevant details copied
2574 // from elem. We assume members are valid already.
2575 AllocationDetails::ElementHeader elem_header;
2576 elem_header.type = *elem.type.get();
2577 elem_header.kind = *elem.type_kind.get();
2578 elem_header.element_size = *elem.datum_size.get();
2579 elem_header.vector_size = *elem.type_vec_size.get();
2580 elem_header.array_size =
2581 elem.array_size.isValid() ? *elem.array_size.get() : 0;
2582 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2583
2584 // Copy struct into buffer and advance offset We assume that header_buffer
2585 // has been checked for nullptr before this method is called
2586 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2587 offset += elem_header_size;
2588
2589 // Starting offset of child ElementHeader struct
2590 size_t child_offset =
2591 offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2592 for (const RenderScriptRuntime::Element &child : elem.children) {
2593 // Recursively populate the buffer with the element header structs of
2594 // children. Then save the offsets where they were set after the parent
2595 // element header.
2596 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2597 offset += sizeof(uint32_t);
2598
2599 child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2600 }
2601
2602 // Zero indicates no more children
2603 memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2604
2605 return child_offset;
2606 }
2607
2608 // Given an Element object this function returns the total size needed in the
2609 // file header to store the element's details. Taking into account the size of
2610 // the element header struct, plus the offsets to all the element's children.
2611 // Function is recursive so that the size of all ancestors is taken into
2612 // account.
CalculateElementHeaderSize(const Element & elem)2613 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) {
2614 // Offsets to children plus zero terminator
2615 size_t size = (elem.children.size() + 1) * sizeof(uint32_t);
2616 // Size of header struct with type details
2617 size += sizeof(AllocationDetails::ElementHeader);
2618
2619 // Calculate recursively for all descendants
2620 for (const Element &child : elem.children)
2621 size += CalculateElementHeaderSize(child);
2622
2623 return size;
2624 }
2625
2626 // Function copies allocation contents into a binary file. This file can then
2627 // be loaded later into a different allocation. There is a header, FileHeader,
2628 // before the allocation data containing meta-data.
SaveAllocation(Stream & strm,const uint32_t alloc_id,const char * path,StackFrame * frame_ptr)2629 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id,
2630 const char *path,
2631 StackFrame *frame_ptr) {
2632 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2633
2634 // Find allocation with the given id
2635 AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2636 if (!alloc)
2637 return false;
2638
2639 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64 ".", __FUNCTION__,
2640 *alloc->address.get());
2641
2642 // JIT all the allocation details
2643 if (alloc->ShouldRefresh()) {
2644 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
2645 __FUNCTION__);
2646
2647 if (!RefreshAllocation(alloc, frame_ptr)) {
2648 LLDB_LOGF(log, "%s - couldn't JIT allocation details.", __FUNCTION__);
2649 return false;
2650 }
2651 }
2652
2653 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2654 alloc->element.type_vec_size.isValid() &&
2655 alloc->element.datum_size.get() &&
2656 alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2657 "Allocation information not available");
2658
2659 // Check we can create writable file
2660 FileSpec file_spec(path);
2661 FileSystem::Instance().Resolve(file_spec);
2662 auto file = FileSystem::Instance().Open(
2663 file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate |
2664 File::eOpenOptionTruncate);
2665
2666 if (!file) {
2667 std::string error = llvm::toString(file.takeError());
2668 strm.Printf("Error: Failed to open '%s' for writing: %s", path,
2669 error.c_str());
2670 strm.EOL();
2671 return false;
2672 }
2673
2674 // Read allocation into buffer of heap memory
2675 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2676 if (!buffer) {
2677 strm.Printf("Error: Couldn't read allocation data into buffer");
2678 strm.EOL();
2679 return false;
2680 }
2681
2682 // Create the file header
2683 AllocationDetails::FileHeader head;
2684 memcpy(head.ident, "RSAD", 4);
2685 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2686 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2687 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2688
2689 const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2690 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) <
2691 UINT16_MAX &&
2692 "Element header too large");
2693 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) +
2694 element_header_size);
2695
2696 // Write the file header
2697 size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2698 LLDB_LOGF(log, "%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__,
2699 (uint64_t)num_bytes);
2700
2701 Status err = file.get()->Write(&head, num_bytes);
2702 if (!err.Success()) {
2703 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2704 strm.EOL();
2705 return false;
2706 }
2707
2708 // Create the headers describing the element type of the allocation.
2709 std::shared_ptr<uint8_t> element_header_buffer(
2710 new uint8_t[element_header_size]);
2711 if (element_header_buffer == nullptr) {
2712 strm.Printf("Internal Error: Couldn't allocate %" PRIu64
2713 " bytes on the heap",
2714 (uint64_t)element_header_size);
2715 strm.EOL();
2716 return false;
2717 }
2718
2719 PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2720
2721 // Write headers for allocation element type to file
2722 num_bytes = element_header_size;
2723 LLDB_LOGF(log, "%s - writing element headers, 0x%" PRIx64 " bytes.",
2724 __FUNCTION__, (uint64_t)num_bytes);
2725
2726 err = file.get()->Write(element_header_buffer.get(), num_bytes);
2727 if (!err.Success()) {
2728 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2729 strm.EOL();
2730 return false;
2731 }
2732
2733 // Write allocation data to file
2734 num_bytes = static_cast<size_t>(*alloc->size.get());
2735 LLDB_LOGF(log, "%s - writing 0x%" PRIx64 " bytes", __FUNCTION__,
2736 (uint64_t)num_bytes);
2737
2738 err = file.get()->Write(buffer.get(), num_bytes);
2739 if (!err.Success()) {
2740 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2741 strm.EOL();
2742 return false;
2743 }
2744
2745 strm.Printf("Allocation written to file '%s'", path);
2746 strm.EOL();
2747 return true;
2748 }
2749
LoadModule(const lldb::ModuleSP & module_sp)2750 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) {
2751 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2752
2753 if (module_sp) {
2754 for (const auto &rs_module : m_rsmodules) {
2755 if (rs_module->m_module == module_sp) {
2756 // Check if the user has enabled automatically breaking on all RS
2757 // kernels.
2758 if (m_breakAllKernels)
2759 BreakOnModuleKernels(rs_module);
2760
2761 return false;
2762 }
2763 }
2764 bool module_loaded = false;
2765 switch (GetModuleKind(module_sp)) {
2766 case eModuleKindKernelObj: {
2767 RSModuleDescriptorSP module_desc;
2768 module_desc = std::make_shared<RSModuleDescriptor>(module_sp);
2769 if (module_desc->ParseRSInfo()) {
2770 m_rsmodules.push_back(module_desc);
2771 module_desc->WarnIfVersionMismatch(GetProcess()
2772 ->GetTarget()
2773 .GetDebugger()
2774 .GetAsyncOutputStream()
2775 .get());
2776 module_loaded = true;
2777 }
2778 if (module_loaded) {
2779 FixupScriptDetails(module_desc);
2780 }
2781 break;
2782 }
2783 case eModuleKindDriver: {
2784 if (!m_libRSDriver) {
2785 m_libRSDriver = module_sp;
2786 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2787 }
2788 break;
2789 }
2790 case eModuleKindImpl: {
2791 if (!m_libRSCpuRef) {
2792 m_libRSCpuRef = module_sp;
2793 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl);
2794 }
2795 break;
2796 }
2797 case eModuleKindLibRS: {
2798 if (!m_libRS) {
2799 m_libRS = module_sp;
2800 static ConstString gDbgPresentStr("gDebuggerPresent");
2801 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType(
2802 gDbgPresentStr, eSymbolTypeData);
2803 if (debug_present) {
2804 Status err;
2805 uint32_t flag = 0x00000001U;
2806 Target &target = GetProcess()->GetTarget();
2807 addr_t addr = debug_present->GetLoadAddress(&target);
2808 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err);
2809 if (err.Success()) {
2810 LLDB_LOGF(log, "%s - debugger present flag set on debugee.",
2811 __FUNCTION__);
2812
2813 m_debuggerPresentFlagged = true;
2814 } else if (log) {
2815 LLDB_LOGF(log, "%s - error writing debugger present flags '%s' ",
2816 __FUNCTION__, err.AsCString());
2817 }
2818 } else if (log) {
2819 LLDB_LOGF(
2820 log,
2821 "%s - error writing debugger present flags - symbol not found",
2822 __FUNCTION__);
2823 }
2824 }
2825 break;
2826 }
2827 default:
2828 break;
2829 }
2830 if (module_loaded)
2831 Update();
2832 return module_loaded;
2833 }
2834 return false;
2835 }
2836
Update()2837 void RenderScriptRuntime::Update() {
2838 if (m_rsmodules.size() > 0) {
2839 if (!m_initiated) {
2840 Initiate();
2841 }
2842 }
2843 }
2844
WarnIfVersionMismatch(lldb_private::Stream * s) const2845 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const {
2846 if (!s)
2847 return;
2848
2849 if (m_slang_version.empty() || m_bcc_version.empty()) {
2850 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug "
2851 "experience may be unreliable");
2852 s->EOL();
2853 } else if (m_slang_version != m_bcc_version) {
2854 s->Printf("WARNING: The debug info emitted by the slang frontend "
2855 "(llvm-rs-cc) used to build this module (%s) does not match the "
2856 "version of bcc used to generate the debug information (%s). "
2857 "This is an unsupported configuration and may result in a poor "
2858 "debugging experience; proceed with caution",
2859 m_slang_version.c_str(), m_bcc_version.c_str());
2860 s->EOL();
2861 }
2862 }
2863
ParsePragmaCount(llvm::StringRef * lines,size_t n_lines)2864 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines,
2865 size_t n_lines) {
2866 // Skip the pragma prototype line
2867 ++lines;
2868 for (; n_lines--; ++lines) {
2869 const auto kv_pair = lines->split(" - ");
2870 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str();
2871 }
2872 return true;
2873 }
2874
ParseExportReduceCount(llvm::StringRef * lines,size_t n_lines)2875 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines,
2876 size_t n_lines) {
2877 // The list of reduction kernels in the `.rs.info` symbol is of the form
2878 // "signature - accumulatordatasize - reduction_name - initializer_name -
2879 // accumulator_name - combiner_name - outconverter_name - halter_name" Where
2880 // a function is not explicitly named by the user, or is not generated by the
2881 // compiler, it is named "." so the dash separated list should always be 8
2882 // items long
2883 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
2884 // Skip the exportReduceCount line
2885 ++lines;
2886 for (; n_lines--; ++lines) {
2887 llvm::SmallVector<llvm::StringRef, 8> spec;
2888 lines->split(spec, " - ");
2889 if (spec.size() != 8) {
2890 if (spec.size() < 8) {
2891 if (log)
2892 log->Error("Error parsing RenderScript reduction spec. wrong number "
2893 "of fields");
2894 return false;
2895 } else if (log)
2896 log->Warning("Extraneous members in reduction spec: '%s'",
2897 lines->str().c_str());
2898 }
2899
2900 const auto sig_s = spec[0];
2901 uint32_t sig;
2902 if (sig_s.getAsInteger(10, sig)) {
2903 if (log)
2904 log->Error("Error parsing Renderscript reduction spec: invalid kernel "
2905 "signature: '%s'",
2906 sig_s.str().c_str());
2907 return false;
2908 }
2909
2910 const auto accum_data_size_s = spec[1];
2911 uint32_t accum_data_size;
2912 if (accum_data_size_s.getAsInteger(10, accum_data_size)) {
2913 if (log)
2914 log->Error("Error parsing Renderscript reduction spec: invalid "
2915 "accumulator data size %s",
2916 accum_data_size_s.str().c_str());
2917 return false;
2918 }
2919
2920 LLDB_LOGF(log, "Found RenderScript reduction '%s'", spec[2].str().c_str());
2921
2922 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size,
2923 spec[2], spec[3], spec[4],
2924 spec[5], spec[6], spec[7]));
2925 }
2926 return true;
2927 }
2928
ParseVersionInfo(llvm::StringRef * lines,size_t n_lines)2929 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines,
2930 size_t n_lines) {
2931 // Skip the versionInfo line
2932 ++lines;
2933 for (; n_lines--; ++lines) {
2934 // We're only interested in bcc and slang versions, and ignore all other
2935 // versionInfo lines
2936 const auto kv_pair = lines->split(" - ");
2937 if (kv_pair.first == "slang")
2938 m_slang_version = kv_pair.second.str();
2939 else if (kv_pair.first == "bcc")
2940 m_bcc_version = kv_pair.second.str();
2941 }
2942 return true;
2943 }
2944
ParseExportForeachCount(llvm::StringRef * lines,size_t n_lines)2945 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines,
2946 size_t n_lines) {
2947 // Skip the exportForeachCount line
2948 ++lines;
2949 for (; n_lines--; ++lines) {
2950 uint32_t slot;
2951 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name"
2952 // pair per line
2953 const auto kv_pair = lines->split(" - ");
2954 if (kv_pair.first.getAsInteger(10, slot))
2955 return false;
2956 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot));
2957 }
2958 return true;
2959 }
2960
ParseExportVarCount(llvm::StringRef * lines,size_t n_lines)2961 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines,
2962 size_t n_lines) {
2963 // Skip the ExportVarCount line
2964 ++lines;
2965 for (; n_lines--; ++lines)
2966 m_globals.push_back(RSGlobalDescriptor(this, *lines));
2967 return true;
2968 }
2969
2970 // The .rs.info symbol in renderscript modules contains a string which needs to
2971 // be parsed. The string is basic and is parsed on a line by line basis.
ParseRSInfo()2972 bool RSModuleDescriptor::ParseRSInfo() {
2973 assert(m_module);
2974 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
2975 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(
2976 ConstString(".rs.info"), eSymbolTypeData);
2977 if (!info_sym)
2978 return false;
2979
2980 const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2981 if (addr == LLDB_INVALID_ADDRESS)
2982 return false;
2983
2984 const addr_t size = info_sym->GetByteSize();
2985 const FileSpec fs = m_module->GetFileSpec();
2986
2987 auto buffer =
2988 FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr);
2989 if (!buffer)
2990 return false;
2991
2992 // split rs.info. contents into lines
2993 llvm::SmallVector<llvm::StringRef, 128> info_lines;
2994 {
2995 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes());
2996 raw_rs_info.split(info_lines, '\n');
2997 LLDB_LOGF(log, "'.rs.info symbol for '%s':\n%s",
2998 m_module->GetFileSpec().GetCString(), raw_rs_info.str().c_str());
2999 }
3000
3001 enum {
3002 eExportVar,
3003 eExportForEach,
3004 eExportReduce,
3005 ePragma,
3006 eBuildChecksum,
3007 eObjectSlot,
3008 eVersionInfo,
3009 };
3010
3011 const auto rs_info_handler = [](llvm::StringRef name) -> int {
3012 return llvm::StringSwitch<int>(name)
3013 // The number of visible global variables in the script
3014 .Case("exportVarCount", eExportVar)
3015 // The number of RenderScrip `forEach` kernels __attribute__((kernel))
3016 .Case("exportForEachCount", eExportForEach)
3017 // The number of generalreductions: This marked in the script by
3018 // `#pragma reduce()`
3019 .Case("exportReduceCount", eExportReduce)
3020 // Total count of all RenderScript specific `#pragmas` used in the
3021 // script
3022 .Case("pragmaCount", ePragma)
3023 .Case("objectSlotCount", eObjectSlot)
3024 .Case("versionInfo", eVersionInfo)
3025 .Default(-1);
3026 };
3027
3028 // parse all text lines of .rs.info
3029 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) {
3030 const auto kv_pair = line->split(": ");
3031 const auto key = kv_pair.first;
3032 const auto val = kv_pair.second.trim();
3033
3034 const auto handler = rs_info_handler(key);
3035 if (handler == -1)
3036 continue;
3037 // getAsInteger returns `true` on an error condition - we're only
3038 // interested in numeric fields at the moment
3039 uint64_t n_lines;
3040 if (val.getAsInteger(10, n_lines)) {
3041 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}",
3042 line->str());
3043 continue;
3044 }
3045 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines)
3046 return false;
3047
3048 bool success = false;
3049 switch (handler) {
3050 case eExportVar:
3051 success = ParseExportVarCount(line, n_lines);
3052 break;
3053 case eExportForEach:
3054 success = ParseExportForeachCount(line, n_lines);
3055 break;
3056 case eExportReduce:
3057 success = ParseExportReduceCount(line, n_lines);
3058 break;
3059 case ePragma:
3060 success = ParsePragmaCount(line, n_lines);
3061 break;
3062 case eVersionInfo:
3063 success = ParseVersionInfo(line, n_lines);
3064 break;
3065 default: {
3066 LLDB_LOGF(log, "%s - skipping .rs.info field '%s'", __FUNCTION__,
3067 line->str().c_str());
3068 continue;
3069 }
3070 }
3071 if (!success)
3072 return false;
3073 line += n_lines;
3074 }
3075 return info_lines.size() > 0;
3076 }
3077
DumpStatus(Stream & strm) const3078 void RenderScriptRuntime::DumpStatus(Stream &strm) const {
3079 if (m_libRS) {
3080 strm.Printf("Runtime Library discovered.");
3081 strm.EOL();
3082 }
3083 if (m_libRSDriver) {
3084 strm.Printf("Runtime Driver discovered.");
3085 strm.EOL();
3086 }
3087 if (m_libRSCpuRef) {
3088 strm.Printf("CPU Reference Implementation discovered.");
3089 strm.EOL();
3090 }
3091
3092 if (m_runtimeHooks.size()) {
3093 strm.Printf("Runtime functions hooked:");
3094 strm.EOL();
3095 for (auto b : m_runtimeHooks) {
3096 strm.Indent(b.second->defn->name);
3097 strm.EOL();
3098 }
3099 } else {
3100 strm.Printf("Runtime is not hooked.");
3101 strm.EOL();
3102 }
3103 }
3104
DumpContexts(Stream & strm) const3105 void RenderScriptRuntime::DumpContexts(Stream &strm) const {
3106 strm.Printf("Inferred RenderScript Contexts:");
3107 strm.EOL();
3108 strm.IndentMore();
3109
3110 std::map<addr_t, uint64_t> contextReferences;
3111
3112 // Iterate over all of the currently discovered scripts. Note: We cant push
3113 // or pop from m_scripts inside this loop or it may invalidate script.
3114 for (const auto &script : m_scripts) {
3115 if (!script->context.isValid())
3116 continue;
3117 lldb::addr_t context = *script->context;
3118
3119 if (contextReferences.find(context) != contextReferences.end()) {
3120 contextReferences[context]++;
3121 } else {
3122 contextReferences[context] = 1;
3123 }
3124 }
3125
3126 for (const auto &cRef : contextReferences) {
3127 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances",
3128 cRef.first, cRef.second);
3129 strm.EOL();
3130 }
3131 strm.IndentLess();
3132 }
3133
DumpKernels(Stream & strm) const3134 void RenderScriptRuntime::DumpKernels(Stream &strm) const {
3135 strm.Printf("RenderScript Kernels:");
3136 strm.EOL();
3137 strm.IndentMore();
3138 for (const auto &module : m_rsmodules) {
3139 strm.Printf("Resource '%s':", module->m_resname.c_str());
3140 strm.EOL();
3141 for (const auto &kernel : module->m_kernels) {
3142 strm.Indent(kernel.m_name.GetStringRef());
3143 strm.EOL();
3144 }
3145 }
3146 strm.IndentLess();
3147 }
3148
3149 RenderScriptRuntime::AllocationDetails *
FindAllocByID(Stream & strm,const uint32_t alloc_id)3150 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) {
3151 AllocationDetails *alloc = nullptr;
3152
3153 // See if we can find allocation using id as an index;
3154 if (alloc_id <= m_allocations.size() && alloc_id != 0 &&
3155 m_allocations[alloc_id - 1]->id == alloc_id) {
3156 alloc = m_allocations[alloc_id - 1].get();
3157 return alloc;
3158 }
3159
3160 // Fallback to searching
3161 for (const auto &a : m_allocations) {
3162 if (a->id == alloc_id) {
3163 alloc = a.get();
3164 break;
3165 }
3166 }
3167
3168 if (alloc == nullptr) {
3169 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32,
3170 alloc_id);
3171 strm.EOL();
3172 }
3173
3174 return alloc;
3175 }
3176
3177 // Prints the contents of an allocation to the output stream, which may be a
3178 // file
DumpAllocation(Stream & strm,StackFrame * frame_ptr,const uint32_t id)3179 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr,
3180 const uint32_t id) {
3181 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3182
3183 // Check we can find the desired allocation
3184 AllocationDetails *alloc = FindAllocByID(strm, id);
3185 if (!alloc)
3186 return false; // FindAllocByID() will print error message for us here
3187
3188 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__,
3189 *alloc->address.get());
3190
3191 // Check we have information about the allocation, if not calculate it
3192 if (alloc->ShouldRefresh()) {
3193 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
3194 __FUNCTION__);
3195
3196 // JIT all the allocation information
3197 if (!RefreshAllocation(alloc, frame_ptr)) {
3198 strm.Printf("Error: Couldn't JIT allocation details");
3199 strm.EOL();
3200 return false;
3201 }
3202 }
3203
3204 // Establish format and size of each data element
3205 const uint32_t vec_size = *alloc->element.type_vec_size.get();
3206 const Element::DataType type = *alloc->element.type.get();
3207
3208 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
3209 "Invalid allocation type");
3210
3211 lldb::Format format;
3212 if (type >= Element::RS_TYPE_ELEMENT)
3213 format = eFormatHex;
3214 else
3215 format = vec_size == 1
3216 ? static_cast<lldb::Format>(
3217 AllocationDetails::RSTypeToFormat[type][eFormatSingle])
3218 : static_cast<lldb::Format>(
3219 AllocationDetails::RSTypeToFormat[type][eFormatVector]);
3220
3221 const uint32_t data_size = *alloc->element.datum_size.get();
3222
3223 LLDB_LOGF(log, "%s - element size %" PRIu32 " bytes, including padding",
3224 __FUNCTION__, data_size);
3225
3226 // Allocate a buffer to copy data into
3227 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
3228 if (!buffer) {
3229 strm.Printf("Error: Couldn't read allocation data");
3230 strm.EOL();
3231 return false;
3232 }
3233
3234 // Calculate stride between rows as there may be padding at end of rows since
3235 // allocated memory is 16-byte aligned
3236 if (!alloc->stride.isValid()) {
3237 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
3238 alloc->stride = 0;
3239 else if (!JITAllocationStride(alloc, frame_ptr)) {
3240 strm.Printf("Error: Couldn't calculate allocation row stride");
3241 strm.EOL();
3242 return false;
3243 }
3244 }
3245 const uint32_t stride = *alloc->stride.get();
3246 const uint32_t size = *alloc->size.get(); // Size of whole allocation
3247 const uint32_t padding =
3248 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
3249 LLDB_LOGF(log,
3250 "%s - stride %" PRIu32 " bytes, size %" PRIu32
3251 " bytes, padding %" PRIu32,
3252 __FUNCTION__, stride, size, padding);
3253
3254 // Find dimensions used to index loops, so need to be non-zero
3255 uint32_t dim_x = alloc->dimension.get()->dim_1;
3256 dim_x = dim_x == 0 ? 1 : dim_x;
3257
3258 uint32_t dim_y = alloc->dimension.get()->dim_2;
3259 dim_y = dim_y == 0 ? 1 : dim_y;
3260
3261 uint32_t dim_z = alloc->dimension.get()->dim_3;
3262 dim_z = dim_z == 0 ? 1 : dim_z;
3263
3264 // Use data extractor to format output
3265 const uint32_t target_ptr_size =
3266 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
3267 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(),
3268 target_ptr_size);
3269
3270 uint32_t offset = 0; // Offset in buffer to next element to be printed
3271 uint32_t prev_row = 0; // Offset to the start of the previous row
3272
3273 // Iterate over allocation dimensions, printing results to user
3274 strm.Printf("Data (X, Y, Z):");
3275 for (uint32_t z = 0; z < dim_z; ++z) {
3276 for (uint32_t y = 0; y < dim_y; ++y) {
3277 // Use stride to index start of next row.
3278 if (!(y == 0 && z == 0))
3279 offset = prev_row + stride;
3280 prev_row = offset;
3281
3282 // Print each element in the row individually
3283 for (uint32_t x = 0; x < dim_x; ++x) {
3284 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
3285 if ((type == Element::RS_TYPE_NONE) &&
3286 (alloc->element.children.size() > 0) &&
3287 (alloc->element.type_name != Element::GetFallbackStructName())) {
3288 // Here we are dumping an Element of struct type. This is done using
3289 // expression evaluation with the name of the struct type and pointer
3290 // to element. Don't print the name of the resulting expression,
3291 // since this will be '$[0-9]+'
3292 DumpValueObjectOptions expr_options;
3293 expr_options.SetHideName(true);
3294
3295 // Setup expression as dereferencing a pointer cast to element
3296 // address.
3297 char expr_char_buffer[jit_max_expr_size];
3298 int written =
3299 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
3300 alloc->element.type_name.AsCString(),
3301 *alloc->data_ptr.get() + offset);
3302
3303 if (written < 0 || written >= jit_max_expr_size) {
3304 LLDB_LOGF(log, "%s - error in snprintf().", __FUNCTION__);
3305 continue;
3306 }
3307
3308 // Evaluate expression
3309 ValueObjectSP expr_result;
3310 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer,
3311 frame_ptr, expr_result);
3312
3313 // Print the results to our stream.
3314 expr_result->Dump(strm, expr_options);
3315 } else {
3316 DumpDataExtractor(alloc_data, &strm, offset, format,
3317 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0,
3318 0);
3319 }
3320 offset += data_size;
3321 }
3322 }
3323 }
3324 strm.EOL();
3325
3326 return true;
3327 }
3328
3329 // Function recalculates all our cached information about allocations by
3330 // jitting the RS runtime regarding each allocation we know about. Returns true
3331 // if all allocations could be recomputed, false otherwise.
RecomputeAllAllocations(Stream & strm,StackFrame * frame_ptr)3332 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm,
3333 StackFrame *frame_ptr) {
3334 bool success = true;
3335 for (auto &alloc : m_allocations) {
3336 // JIT current allocation information
3337 if (!RefreshAllocation(alloc.get(), frame_ptr)) {
3338 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32
3339 "\n",
3340 alloc->id);
3341 success = false;
3342 }
3343 }
3344
3345 if (success)
3346 strm.Printf("All allocations successfully recomputed");
3347 strm.EOL();
3348
3349 return success;
3350 }
3351
3352 // Prints information regarding currently loaded allocations. These details are
3353 // gathered by jitting the runtime, which has as latency. Index parameter
3354 // specifies a single allocation ID to print, or a zero value to print them all
ListAllocations(Stream & strm,StackFrame * frame_ptr,const uint32_t index)3355 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr,
3356 const uint32_t index) {
3357 strm.Printf("RenderScript Allocations:");
3358 strm.EOL();
3359 strm.IndentMore();
3360
3361 for (auto &alloc : m_allocations) {
3362 // index will only be zero if we want to print all allocations
3363 if (index != 0 && index != alloc->id)
3364 continue;
3365
3366 // JIT current allocation information
3367 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) {
3368 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32,
3369 alloc->id);
3370 strm.EOL();
3371 continue;
3372 }
3373
3374 strm.Printf("%" PRIu32 ":", alloc->id);
3375 strm.EOL();
3376 strm.IndentMore();
3377
3378 strm.Indent("Context: ");
3379 if (!alloc->context.isValid())
3380 strm.Printf("unknown\n");
3381 else
3382 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3383
3384 strm.Indent("Address: ");
3385 if (!alloc->address.isValid())
3386 strm.Printf("unknown\n");
3387 else
3388 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3389
3390 strm.Indent("Data pointer: ");
3391 if (!alloc->data_ptr.isValid())
3392 strm.Printf("unknown\n");
3393 else
3394 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3395
3396 strm.Indent("Dimensions: ");
3397 if (!alloc->dimension.isValid())
3398 strm.Printf("unknown\n");
3399 else
3400 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3401 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2,
3402 alloc->dimension.get()->dim_3);
3403
3404 strm.Indent("Data Type: ");
3405 if (!alloc->element.type.isValid() ||
3406 !alloc->element.type_vec_size.isValid())
3407 strm.Printf("unknown\n");
3408 else {
3409 const int vector_size = *alloc->element.type_vec_size.get();
3410 Element::DataType type = *alloc->element.type.get();
3411
3412 if (!alloc->element.type_name.IsEmpty())
3413 strm.Printf("%s\n", alloc->element.type_name.AsCString());
3414 else {
3415 // Enum value isn't monotonous, so doesn't always index
3416 // RsDataTypeToString array
3417 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3418 type =
3419 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3420 Element::RS_TYPE_MATRIX_2X2 + 1);
3421
3422 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3423 sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3424 vector_size > 4 || vector_size < 1)
3425 strm.Printf("invalid type\n");
3426 else
3427 strm.Printf(
3428 "%s\n",
3429 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3430 [vector_size - 1]);
3431 }
3432 }
3433
3434 strm.Indent("Data Kind: ");
3435 if (!alloc->element.type_kind.isValid())
3436 strm.Printf("unknown\n");
3437 else {
3438 const Element::DataKind kind = *alloc->element.type_kind.get();
3439 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3440 strm.Printf("invalid kind\n");
3441 else
3442 strm.Printf(
3443 "%s\n",
3444 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3445 }
3446
3447 strm.EOL();
3448 strm.IndentLess();
3449 }
3450 strm.IndentLess();
3451 }
3452
3453 // Set breakpoints on every kernel found in RS module
BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)3454 void RenderScriptRuntime::BreakOnModuleKernels(
3455 const RSModuleDescriptorSP rsmodule_sp) {
3456 for (const auto &kernel : rsmodule_sp->m_kernels) {
3457 // Don't set breakpoint on 'root' kernel
3458 if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3459 continue;
3460
3461 CreateKernelBreakpoint(kernel.m_name);
3462 }
3463 }
3464
3465 // Method is internally called by the 'kernel breakpoint all' command to enable
3466 // or disable breaking on all kernels. When do_break is true we want to enable
3467 // this functionality. When do_break is false we want to disable it.
SetBreakAllKernels(bool do_break,TargetSP target)3468 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) {
3469 Log *log(
3470 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3471
3472 InitSearchFilter(target);
3473
3474 // Set breakpoints on all the kernels
3475 if (do_break && !m_breakAllKernels) {
3476 m_breakAllKernels = true;
3477
3478 for (const auto &module : m_rsmodules)
3479 BreakOnModuleKernels(module);
3480
3481 LLDB_LOGF(log,
3482 "%s(True) - breakpoints set on all currently loaded kernels.",
3483 __FUNCTION__);
3484 } else if (!do_break &&
3485 m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3486 {
3487 m_breakAllKernels = false;
3488
3489 LLDB_LOGF(log, "%s(False) - breakpoints no longer automatically set.",
3490 __FUNCTION__);
3491 }
3492 }
3493
3494 // Given the name of a kernel this function creates a breakpoint using our own
3495 // breakpoint resolver, and returns the Breakpoint shared pointer.
3496 BreakpointSP
CreateKernelBreakpoint(ConstString name)3497 RenderScriptRuntime::CreateKernelBreakpoint(ConstString name) {
3498 Log *log(
3499 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3500
3501 if (!m_filtersp) {
3502 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3503 __FUNCTION__);
3504 return nullptr;
3505 }
3506
3507 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3508 Target &target = GetProcess()->GetTarget();
3509 BreakpointSP bp = target.CreateBreakpoint(
3510 m_filtersp, resolver_sp, false, false, false);
3511
3512 // Give RS breakpoints a specific name, so the user can manipulate them as a
3513 // group.
3514 Status err;
3515 target.AddNameToBreakpoint(bp, "RenderScriptKernel", err);
3516 if (err.Fail() && log)
3517 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3518 err.AsCString());
3519
3520 return bp;
3521 }
3522
3523 BreakpointSP
CreateReductionBreakpoint(ConstString name,int kernel_types)3524 RenderScriptRuntime::CreateReductionBreakpoint(ConstString name,
3525 int kernel_types) {
3526 Log *log(
3527 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3528
3529 if (!m_filtersp) {
3530 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3531 __FUNCTION__);
3532 return nullptr;
3533 }
3534
3535 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver(
3536 nullptr, name, &m_rsmodules, kernel_types));
3537 Target &target = GetProcess()->GetTarget();
3538 BreakpointSP bp = target.CreateBreakpoint(
3539 m_filtersp, resolver_sp, false, false, false);
3540
3541 // Give RS breakpoints a specific name, so the user can manipulate them as a
3542 // group.
3543 Status err;
3544 target.AddNameToBreakpoint(bp, "RenderScriptReduction", err);
3545 if (err.Fail() && log)
3546 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3547 err.AsCString());
3548
3549 return bp;
3550 }
3551
3552 // Given an expression for a variable this function tries to calculate the
3553 // variable's value. If this is possible it returns true and sets the uint64_t
3554 // parameter to the variables unsigned value. Otherwise function returns false.
GetFrameVarAsUnsigned(const StackFrameSP frame_sp,const char * var_name,uint64_t & val)3555 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp,
3556 const char *var_name,
3557 uint64_t &val) {
3558 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3559 Status err;
3560 VariableSP var_sp;
3561
3562 // Find variable in stack frame
3563 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3564 var_name, eNoDynamicValues,
3565 StackFrame::eExpressionPathOptionCheckPtrVsMember |
3566 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3567 var_sp, err));
3568 if (!err.Success()) {
3569 LLDB_LOGF(log, "%s - error, couldn't find '%s' in frame", __FUNCTION__,
3570 var_name);
3571 return false;
3572 }
3573
3574 // Find the uint32_t value for the variable
3575 bool success = false;
3576 val = value_sp->GetValueAsUnsigned(0, &success);
3577 if (!success) {
3578 LLDB_LOGF(log, "%s - error, couldn't parse '%s' as an uint32_t.",
3579 __FUNCTION__, var_name);
3580 return false;
3581 }
3582
3583 return true;
3584 }
3585
3586 // Function attempts to find the current coordinate of a kernel invocation by
3587 // investigating the values of frame variables in the .expand function. These
3588 // coordinates are returned via the coord array reference parameter. Returns
3589 // true if the coordinates could be found, and false otherwise.
GetKernelCoordinate(RSCoordinate & coord,Thread * thread_ptr)3590 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord,
3591 Thread *thread_ptr) {
3592 static const char *const x_expr = "rsIndex";
3593 static const char *const y_expr = "p->current.y";
3594 static const char *const z_expr = "p->current.z";
3595
3596 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
3597
3598 if (!thread_ptr) {
3599 LLDB_LOGF(log, "%s - Error, No thread pointer", __FUNCTION__);
3600
3601 return false;
3602 }
3603
3604 // Walk the call stack looking for a function whose name has the suffix
3605 // '.expand' and contains the variables we're looking for.
3606 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) {
3607 if (!thread_ptr->SetSelectedFrameByIndex(i))
3608 continue;
3609
3610 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3611 if (!frame_sp)
3612 continue;
3613
3614 // Find the function name
3615 const SymbolContext sym_ctx =
3616 frame_sp->GetSymbolContext(eSymbolContextFunction);
3617 const ConstString func_name = sym_ctx.GetFunctionName();
3618 if (!func_name)
3619 continue;
3620
3621 LLDB_LOGF(log, "%s - Inspecting function '%s'", __FUNCTION__,
3622 func_name.GetCString());
3623
3624 // Check if function name has .expand suffix
3625 if (!func_name.GetStringRef().endswith(".expand"))
3626 continue;
3627
3628 LLDB_LOGF(log, "%s - Found .expand function '%s'", __FUNCTION__,
3629 func_name.GetCString());
3630
3631 // Get values for variables in .expand frame that tell us the current
3632 // kernel invocation
3633 uint64_t x, y, z;
3634 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) &&
3635 GetFrameVarAsUnsigned(frame_sp, y_expr, y) &&
3636 GetFrameVarAsUnsigned(frame_sp, z_expr, z);
3637
3638 if (found) {
3639 // The RenderScript runtime uses uint32_t for these vars. If they're not
3640 // within bounds, our frame parsing is garbage
3641 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX);
3642 coord.x = (uint32_t)x;
3643 coord.y = (uint32_t)y;
3644 coord.z = (uint32_t)z;
3645 return true;
3646 }
3647 }
3648 return false;
3649 }
3650
3651 // Callback when a kernel breakpoint hits and we're looking for a specific
3652 // coordinate. Baton parameter contains a pointer to the target coordinate we
3653 // want to break on. Function then checks the .expand frame for the current
3654 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id
3655 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the
3656 // id for the BreakpointLocation which was hit, a single logical breakpoint can
3657 // have multiple addresses.
KernelBreakpointHit(void * baton,StoppointCallbackContext * ctx,user_id_t break_id,user_id_t break_loc_id)3658 bool RenderScriptRuntime::KernelBreakpointHit(void *baton,
3659 StoppointCallbackContext *ctx,
3660 user_id_t break_id,
3661 user_id_t break_loc_id) {
3662 Log *log(
3663 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3664
3665 assert(baton &&
3666 "Error: null baton in conditional kernel breakpoint callback");
3667
3668 // Coordinate we want to stop on
3669 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton);
3670
3671 LLDB_LOGF(log, "%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__,
3672 break_id, target_coord.x, target_coord.y, target_coord.z);
3673
3674 // Select current thread
3675 ExecutionContext context(ctx->exe_ctx_ref);
3676 Thread *thread_ptr = context.GetThreadPtr();
3677 assert(thread_ptr && "Null thread pointer");
3678
3679 // Find current kernel invocation from .expand frame variables
3680 RSCoordinate current_coord{};
3681 if (!GetKernelCoordinate(current_coord, thread_ptr)) {
3682 LLDB_LOGF(log, "%s - Error, couldn't select .expand stack frame",
3683 __FUNCTION__);
3684 return false;
3685 }
3686
3687 LLDB_LOGF(log, "%s - " FMT_COORD, __FUNCTION__, current_coord.x,
3688 current_coord.y, current_coord.z);
3689
3690 // Check if the current kernel invocation coordinate matches our target
3691 // coordinate
3692 if (target_coord == current_coord) {
3693 LLDB_LOGF(log, "%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x,
3694 current_coord.y, current_coord.z);
3695
3696 BreakpointSP breakpoint_sp =
3697 context.GetTargetPtr()->GetBreakpointByID(break_id);
3698 assert(breakpoint_sp != nullptr &&
3699 "Error: Couldn't find breakpoint matching break id for callback");
3700 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint
3701 // should only be hit once.
3702 return true;
3703 }
3704
3705 // No match on coordinate
3706 return false;
3707 }
3708
SetConditional(BreakpointSP bp,Stream & messages,const RSCoordinate & coord)3709 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages,
3710 const RSCoordinate &coord) {
3711 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD,
3712 coord.x, coord.y, coord.z);
3713 messages.EOL();
3714
3715 // Allocate memory for the baton, and copy over coordinate
3716 RSCoordinate *baton = new RSCoordinate(coord);
3717
3718 // Create a callback that will be invoked every time the breakpoint is hit.
3719 // The baton object passed to the handler is the target coordinate we want to
3720 // break on.
3721 bp->SetCallback(KernelBreakpointHit, baton, true);
3722
3723 // Store a shared pointer to the baton, so the memory will eventually be
3724 // cleaned up after destruction
3725 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton);
3726 }
3727
3728 // Tries to set a breakpoint on the start of a kernel, resolved using the
3729 // kernel name. Argument 'coords', represents a three dimensional coordinate
3730 // which can be used to specify a single kernel instance to break on. If this
3731 // is set then we add a callback to the breakpoint.
PlaceBreakpointOnKernel(TargetSP target,Stream & messages,const char * name,const RSCoordinate * coord)3732 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target,
3733 Stream &messages,
3734 const char *name,
3735 const RSCoordinate *coord) {
3736 if (!name)
3737 return false;
3738
3739 InitSearchFilter(target);
3740
3741 ConstString kernel_name(name);
3742 BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3743 if (!bp)
3744 return false;
3745
3746 // We have a conditional breakpoint on a specific coordinate
3747 if (coord)
3748 SetConditional(bp, messages, *coord);
3749
3750 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3751
3752 return true;
3753 }
3754
3755 BreakpointSP
CreateScriptGroupBreakpoint(ConstString name,bool stop_on_all)3756 RenderScriptRuntime::CreateScriptGroupBreakpoint(ConstString name,
3757 bool stop_on_all) {
3758 Log *log(
3759 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
3760
3761 if (!m_filtersp) {
3762 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3763 __FUNCTION__);
3764 return nullptr;
3765 }
3766
3767 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver(
3768 nullptr, name, m_scriptGroups, stop_on_all));
3769 Target &target = GetProcess()->GetTarget();
3770 BreakpointSP bp = target.CreateBreakpoint(
3771 m_filtersp, resolver_sp, false, false, false);
3772 // Give RS breakpoints a specific name, so the user can manipulate them as a
3773 // group.
3774 Status err;
3775 target.AddNameToBreakpoint(bp, name.GetCString(), err);
3776 if (err.Fail() && log)
3777 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3778 err.AsCString());
3779 // ask the breakpoint to resolve itself
3780 bp->ResolveBreakpoint();
3781 return bp;
3782 }
3783
PlaceBreakpointOnScriptGroup(TargetSP target,Stream & strm,ConstString name,bool multi)3784 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target,
3785 Stream &strm,
3786 ConstString name,
3787 bool multi) {
3788 InitSearchFilter(target);
3789 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi);
3790 if (bp)
3791 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3792 return bool(bp);
3793 }
3794
PlaceBreakpointOnReduction(TargetSP target,Stream & messages,const char * reduce_name,const RSCoordinate * coord,int kernel_types)3795 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target,
3796 Stream &messages,
3797 const char *reduce_name,
3798 const RSCoordinate *coord,
3799 int kernel_types) {
3800 if (!reduce_name)
3801 return false;
3802
3803 InitSearchFilter(target);
3804 BreakpointSP bp =
3805 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types);
3806 if (!bp)
3807 return false;
3808
3809 if (coord)
3810 SetConditional(bp, messages, *coord);
3811
3812 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3813
3814 return true;
3815 }
3816
DumpModules(Stream & strm) const3817 void RenderScriptRuntime::DumpModules(Stream &strm) const {
3818 strm.Printf("RenderScript Modules:");
3819 strm.EOL();
3820 strm.IndentMore();
3821 for (const auto &module : m_rsmodules) {
3822 module->Dump(strm);
3823 }
3824 strm.IndentLess();
3825 }
3826
3827 RenderScriptRuntime::ScriptDetails *
LookUpScript(addr_t address,bool create)3828 RenderScriptRuntime::LookUpScript(addr_t address, bool create) {
3829 for (const auto &s : m_scripts) {
3830 if (s->script.isValid())
3831 if (*s->script == address)
3832 return s.get();
3833 }
3834 if (create) {
3835 std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3836 s->script = address;
3837 m_scripts.push_back(std::move(s));
3838 return m_scripts.back().get();
3839 }
3840 return nullptr;
3841 }
3842
3843 RenderScriptRuntime::AllocationDetails *
LookUpAllocation(addr_t address)3844 RenderScriptRuntime::LookUpAllocation(addr_t address) {
3845 for (const auto &a : m_allocations) {
3846 if (a->address.isValid())
3847 if (*a->address == address)
3848 return a.get();
3849 }
3850 return nullptr;
3851 }
3852
3853 RenderScriptRuntime::AllocationDetails *
CreateAllocation(addr_t address)3854 RenderScriptRuntime::CreateAllocation(addr_t address) {
3855 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
3856
3857 // Remove any previous allocation which contains the same address
3858 auto it = m_allocations.begin();
3859 while (it != m_allocations.end()) {
3860 if (*((*it)->address) == address) {
3861 LLDB_LOGF(log, "%s - Removing allocation id: %d, address: 0x%" PRIx64,
3862 __FUNCTION__, (*it)->id, address);
3863
3864 it = m_allocations.erase(it);
3865 } else {
3866 it++;
3867 }
3868 }
3869
3870 std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3871 a->address = address;
3872 m_allocations.push_back(std::move(a));
3873 return m_allocations.back().get();
3874 }
3875
ResolveKernelName(lldb::addr_t kernel_addr,ConstString & name)3876 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr,
3877 ConstString &name) {
3878 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS);
3879
3880 Target &target = GetProcess()->GetTarget();
3881 Address resolved;
3882 // RenderScript module
3883 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) {
3884 LLDB_LOGF(log, "%s: unable to resolve 0x%" PRIx64 " to a loaded symbol",
3885 __FUNCTION__, kernel_addr);
3886 return false;
3887 }
3888
3889 Symbol *sym = resolved.CalculateSymbolContextSymbol();
3890 if (!sym)
3891 return false;
3892
3893 name = sym->GetName();
3894 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule()));
3895 LLDB_LOGF(log, "%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__,
3896 kernel_addr, name.GetCString());
3897 return true;
3898 }
3899
Dump(Stream & strm) const3900 void RSModuleDescriptor::Dump(Stream &strm) const {
3901 int indent = strm.GetIndentLevel();
3902
3903 strm.Indent();
3904 m_module->GetFileSpec().Dump(strm.AsRawOstream());
3905 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded."
3906 : "Debug info does not exist.");
3907 strm.EOL();
3908 strm.IndentMore();
3909
3910 strm.Indent();
3911 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
3912 strm.EOL();
3913 strm.IndentMore();
3914 for (const auto &global : m_globals) {
3915 global.Dump(strm);
3916 }
3917 strm.IndentLess();
3918
3919 strm.Indent();
3920 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
3921 strm.EOL();
3922 strm.IndentMore();
3923 for (const auto &kernel : m_kernels) {
3924 kernel.Dump(strm);
3925 }
3926 strm.IndentLess();
3927
3928 strm.Indent();
3929 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
3930 strm.EOL();
3931 strm.IndentMore();
3932 for (const auto &key_val : m_pragmas) {
3933 strm.Indent();
3934 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
3935 strm.EOL();
3936 }
3937 strm.IndentLess();
3938
3939 strm.Indent();
3940 strm.Printf("Reductions: %" PRIu64,
3941 static_cast<uint64_t>(m_reductions.size()));
3942 strm.EOL();
3943 strm.IndentMore();
3944 for (const auto &reduction : m_reductions) {
3945 reduction.Dump(strm);
3946 }
3947
3948 strm.SetIndentLevel(indent);
3949 }
3950
Dump(Stream & strm) const3951 void RSGlobalDescriptor::Dump(Stream &strm) const {
3952 strm.Indent(m_name.GetStringRef());
3953 VariableList var_list;
3954 m_module->m_module->FindGlobalVariables(m_name, CompilerDeclContext(), 1U,
3955 var_list);
3956 if (var_list.GetSize() == 1) {
3957 auto var = var_list.GetVariableAtIndex(0);
3958 auto type = var->GetType();
3959 if (type) {
3960 strm.Printf(" - ");
3961 type->DumpTypeName(&strm);
3962 } else {
3963 strm.Printf(" - Unknown Type");
3964 }
3965 } else {
3966 strm.Printf(" - variable identified, but not found in binary");
3967 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(
3968 m_name, eSymbolTypeData);
3969 if (s) {
3970 strm.Printf(" (symbol exists) ");
3971 }
3972 }
3973
3974 strm.EOL();
3975 }
3976
Dump(Stream & strm) const3977 void RSKernelDescriptor::Dump(Stream &strm) const {
3978 strm.Indent(m_name.GetStringRef());
3979 strm.EOL();
3980 }
3981
Dump(lldb_private::Stream & stream) const3982 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const {
3983 stream.Indent(m_reduce_name.GetStringRef());
3984 stream.IndentMore();
3985 stream.EOL();
3986 stream.Indent();
3987 stream.Printf("accumulator: %s", m_accum_name.AsCString());
3988 stream.EOL();
3989 stream.Indent();
3990 stream.Printf("initializer: %s", m_init_name.AsCString());
3991 stream.EOL();
3992 stream.Indent();
3993 stream.Printf("combiner: %s", m_comb_name.AsCString());
3994 stream.EOL();
3995 stream.Indent();
3996 stream.Printf("outconverter: %s", m_outc_name.AsCString());
3997 stream.EOL();
3998 // XXX This is currently unspecified by RenderScript, and unused
3999 // stream.Indent();
4000 // stream.Printf("halter: '%s'", m_init_name.AsCString());
4001 // stream.EOL();
4002 stream.IndentLess();
4003 }
4004
4005 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed {
4006 public:
CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter & interpreter)4007 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
4008 : CommandObjectParsed(
4009 interpreter, "renderscript module dump",
4010 "Dumps renderscript specific information for all modules.",
4011 "renderscript module dump",
4012 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4013
4014 ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
4015
DoExecute(Args & command,CommandReturnObject & result)4016 bool DoExecute(Args &command, CommandReturnObject &result) override {
4017 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4018 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4019 eLanguageTypeExtRenderScript));
4020 runtime->DumpModules(result.GetOutputStream());
4021 result.SetStatus(eReturnStatusSuccessFinishResult);
4022 return true;
4023 }
4024 };
4025
4026 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword {
4027 public:
CommandObjectRenderScriptRuntimeModule(CommandInterpreter & interpreter)4028 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
4029 : CommandObjectMultiword(interpreter, "renderscript module",
4030 "Commands that deal with RenderScript modules.",
4031 nullptr) {
4032 LoadSubCommand(
4033 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(
4034 interpreter)));
4035 }
4036
4037 ~CommandObjectRenderScriptRuntimeModule() override = default;
4038 };
4039
4040 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed {
4041 public:
CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter & interpreter)4042 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
4043 : CommandObjectParsed(
4044 interpreter, "renderscript kernel list",
4045 "Lists renderscript kernel names and associated script resources.",
4046 "renderscript kernel list",
4047 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4048
4049 ~CommandObjectRenderScriptRuntimeKernelList() override = default;
4050
DoExecute(Args & command,CommandReturnObject & result)4051 bool DoExecute(Args &command, CommandReturnObject &result) override {
4052 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4053 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4054 eLanguageTypeExtRenderScript));
4055 runtime->DumpKernels(result.GetOutputStream());
4056 result.SetStatus(eReturnStatusSuccessFinishResult);
4057 return true;
4058 }
4059 };
4060
4061 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = {
4062 {LLDB_OPT_SET_1, false, "function-role", 't',
4063 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner,
4064 "Break on a comma separated set of reduction kernel types "
4065 "(accumulator,outcoverter,combiner,initializer"},
4066 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4067 nullptr, {}, 0, eArgTypeValue,
4068 "Set a breakpoint on a single invocation of the kernel with specified "
4069 "coordinate.\n"
4070 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4071 "integers representing kernel dimensions. "
4072 "Any unset dimensions will be defaulted to zero."}};
4073
4074 class CommandObjectRenderScriptRuntimeReductionBreakpointSet
4075 : public CommandObjectParsed {
4076 public:
CommandObjectRenderScriptRuntimeReductionBreakpointSet(CommandInterpreter & interpreter)4077 CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4078 CommandInterpreter &interpreter)
4079 : CommandObjectParsed(
4080 interpreter, "renderscript reduction breakpoint set",
4081 "Set a breakpoint on named RenderScript general reductions",
4082 "renderscript reduction breakpoint set <kernel_name> [-t "
4083 "<reduction_kernel_type,...>]",
4084 eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4085 eCommandProcessMustBePaused),
4086 m_options(){};
4087
4088 class CommandOptions : public Options {
4089 public:
CommandOptions()4090 CommandOptions()
4091 : Options(),
4092 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {}
4093
4094 ~CommandOptions() override = default;
4095
SetOptionValue(uint32_t option_idx,llvm::StringRef option_arg,ExecutionContext * exe_ctx)4096 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4097 ExecutionContext *exe_ctx) override {
4098 Status err;
4099 StreamString err_str;
4100 const int short_option = m_getopt_table[option_idx].val;
4101 switch (short_option) {
4102 case 't':
4103 if (!ParseReductionTypes(option_arg, err_str))
4104 err.SetErrorStringWithFormat(
4105 "Unable to deduce reduction types for %s: %s",
4106 option_arg.str().c_str(), err_str.GetData());
4107 break;
4108 case 'c': {
4109 auto coord = RSCoordinate{};
4110 if (!ParseCoordinate(option_arg, coord))
4111 err.SetErrorStringWithFormat("unable to parse coordinate for %s",
4112 option_arg.str().c_str());
4113 else {
4114 m_have_coord = true;
4115 m_coord = coord;
4116 }
4117 break;
4118 }
4119 default:
4120 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option);
4121 }
4122 return err;
4123 }
4124
OptionParsingStarting(ExecutionContext * exe_ctx)4125 void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4126 m_have_coord = false;
4127 }
4128
GetDefinitions()4129 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4130 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options);
4131 }
4132
ParseReductionTypes(llvm::StringRef option_val,StreamString & err_str)4133 bool ParseReductionTypes(llvm::StringRef option_val,
4134 StreamString &err_str) {
4135 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone;
4136 const auto reduce_name_to_type = [](llvm::StringRef name) -> int {
4137 return llvm::StringSwitch<int>(name)
4138 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum)
4139 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit)
4140 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC)
4141 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb)
4142 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll)
4143 // Currently not exposed by the runtime
4144 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter)
4145 .Default(0);
4146 };
4147
4148 // Matching a comma separated list of known words is fairly
4149 // straightforward with PCRE, but we're using ERE, so we end up with a
4150 // little ugliness...
4151 RegularExpression match_type_list(
4152 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$"));
4153
4154 assert(match_type_list.IsValid());
4155
4156 if (!match_type_list.Execute(option_val)) {
4157 err_str.PutCString(
4158 "a comma-separated list of kernel types is required");
4159 return false;
4160 }
4161
4162 // splitting on commas is much easier with llvm::StringRef than regex
4163 llvm::SmallVector<llvm::StringRef, 5> type_names;
4164 llvm::StringRef(option_val).split(type_names, ',');
4165
4166 for (const auto &name : type_names) {
4167 const int type = reduce_name_to_type(name);
4168 if (!type) {
4169 err_str.Printf("unknown kernel type name %s", name.str().c_str());
4170 return false;
4171 }
4172 m_kernel_types |= type;
4173 }
4174
4175 return true;
4176 }
4177
4178 int m_kernel_types;
4179 llvm::StringRef m_reduce_name;
4180 RSCoordinate m_coord;
4181 bool m_have_coord;
4182 };
4183
GetOptions()4184 Options *GetOptions() override { return &m_options; }
4185
DoExecute(Args & command,CommandReturnObject & result)4186 bool DoExecute(Args &command, CommandReturnObject &result) override {
4187 const size_t argc = command.GetArgumentCount();
4188 if (argc < 1) {
4189 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, "
4190 "and an optional kernel type list",
4191 m_cmd_name.c_str());
4192 result.SetStatus(eReturnStatusFailed);
4193 return false;
4194 }
4195
4196 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4197 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4198 eLanguageTypeExtRenderScript));
4199
4200 auto &outstream = result.GetOutputStream();
4201 auto name = command.GetArgumentAtIndex(0);
4202 auto &target = m_exe_ctx.GetTargetSP();
4203 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4204 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord,
4205 m_options.m_kernel_types)) {
4206 result.SetStatus(eReturnStatusFailed);
4207 result.AppendError("Error: unable to place breakpoint on reduction");
4208 return false;
4209 }
4210 result.AppendMessage("Breakpoint(s) created");
4211 result.SetStatus(eReturnStatusSuccessFinishResult);
4212 return true;
4213 }
4214
4215 private:
4216 CommandOptions m_options;
4217 };
4218
4219 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = {
4220 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4221 nullptr, {}, 0, eArgTypeValue,
4222 "Set a breakpoint on a single invocation of the kernel with specified "
4223 "coordinate.\n"
4224 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4225 "integers representing kernel dimensions. "
4226 "Any unset dimensions will be defaulted to zero."}};
4227
4228 class CommandObjectRenderScriptRuntimeKernelBreakpointSet
4229 : public CommandObjectParsed {
4230 public:
CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter & interpreter)4231 CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4232 CommandInterpreter &interpreter)
4233 : CommandObjectParsed(
4234 interpreter, "renderscript kernel breakpoint set",
4235 "Sets a breakpoint on a renderscript kernel.",
4236 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
4237 eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4238 eCommandProcessMustBePaused),
4239 m_options() {}
4240
4241 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
4242
GetOptions()4243 Options *GetOptions() override { return &m_options; }
4244
4245 class CommandOptions : public Options {
4246 public:
CommandOptions()4247 CommandOptions() : Options() {}
4248
4249 ~CommandOptions() override = default;
4250
SetOptionValue(uint32_t option_idx,llvm::StringRef option_arg,ExecutionContext * exe_ctx)4251 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4252 ExecutionContext *exe_ctx) override {
4253 Status err;
4254 const int short_option = m_getopt_table[option_idx].val;
4255
4256 switch (short_option) {
4257 case 'c': {
4258 auto coord = RSCoordinate{};
4259 if (!ParseCoordinate(option_arg, coord))
4260 err.SetErrorStringWithFormat(
4261 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
4262 option_arg.str().c_str());
4263 else {
4264 m_have_coord = true;
4265 m_coord = coord;
4266 }
4267 break;
4268 }
4269 default:
4270 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4271 break;
4272 }
4273 return err;
4274 }
4275
OptionParsingStarting(ExecutionContext * exe_ctx)4276 void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4277 m_have_coord = false;
4278 }
4279
GetDefinitions()4280 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4281 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options);
4282 }
4283
4284 RSCoordinate m_coord;
4285 bool m_have_coord;
4286 };
4287
DoExecute(Args & command,CommandReturnObject & result)4288 bool DoExecute(Args &command, CommandReturnObject &result) override {
4289 const size_t argc = command.GetArgumentCount();
4290 if (argc < 1) {
4291 result.AppendErrorWithFormat(
4292 "'%s' takes 1 argument of kernel name, and an optional coordinate.",
4293 m_cmd_name.c_str());
4294 result.SetStatus(eReturnStatusFailed);
4295 return false;
4296 }
4297
4298 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4299 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4300 eLanguageTypeExtRenderScript));
4301
4302 auto &outstream = result.GetOutputStream();
4303 auto &target = m_exe_ctx.GetTargetSP();
4304 auto name = command.GetArgumentAtIndex(0);
4305 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4306 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) {
4307 result.SetStatus(eReturnStatusFailed);
4308 result.AppendErrorWithFormat(
4309 "Error: unable to set breakpoint on kernel '%s'", name);
4310 return false;
4311 }
4312
4313 result.AppendMessage("Breakpoint(s) created");
4314 result.SetStatus(eReturnStatusSuccessFinishResult);
4315 return true;
4316 }
4317
4318 private:
4319 CommandOptions m_options;
4320 };
4321
4322 class CommandObjectRenderScriptRuntimeKernelBreakpointAll
4323 : public CommandObjectParsed {
4324 public:
CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter & interpreter)4325 CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4326 CommandInterpreter &interpreter)
4327 : CommandObjectParsed(
4328 interpreter, "renderscript kernel breakpoint all",
4329 "Automatically sets a breakpoint on all renderscript kernels that "
4330 "are or will be loaded.\n"
4331 "Disabling option means breakpoints will no longer be set on any "
4332 "kernels loaded in the future, "
4333 "but does not remove currently set breakpoints.",
4334 "renderscript kernel breakpoint all <enable/disable>",
4335 eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4336 eCommandProcessMustBePaused) {}
4337
4338 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
4339
DoExecute(Args & command,CommandReturnObject & result)4340 bool DoExecute(Args &command, CommandReturnObject &result) override {
4341 const size_t argc = command.GetArgumentCount();
4342 if (argc != 1) {
4343 result.AppendErrorWithFormat(
4344 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
4345 result.SetStatus(eReturnStatusFailed);
4346 return false;
4347 }
4348
4349 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4350 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4351 eLanguageTypeExtRenderScript));
4352
4353 bool do_break = false;
4354 const char *argument = command.GetArgumentAtIndex(0);
4355 if (strcmp(argument, "enable") == 0) {
4356 do_break = true;
4357 result.AppendMessage("Breakpoints will be set on all kernels.");
4358 } else if (strcmp(argument, "disable") == 0) {
4359 do_break = false;
4360 result.AppendMessage("Breakpoints will not be set on any new kernels.");
4361 } else {
4362 result.AppendErrorWithFormat(
4363 "Argument must be either 'enable' or 'disable'");
4364 result.SetStatus(eReturnStatusFailed);
4365 return false;
4366 }
4367
4368 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
4369
4370 result.SetStatus(eReturnStatusSuccessFinishResult);
4371 return true;
4372 }
4373 };
4374
4375 class CommandObjectRenderScriptRuntimeReductionBreakpoint
4376 : public CommandObjectMultiword {
4377 public:
CommandObjectRenderScriptRuntimeReductionBreakpoint(CommandInterpreter & interpreter)4378 CommandObjectRenderScriptRuntimeReductionBreakpoint(
4379 CommandInterpreter &interpreter)
4380 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint",
4381 "Commands that manipulate breakpoints on "
4382 "renderscript general reductions.",
4383 nullptr) {
4384 LoadSubCommand(
4385 "set", CommandObjectSP(
4386 new CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4387 interpreter)));
4388 }
4389
4390 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default;
4391 };
4392
4393 class CommandObjectRenderScriptRuntimeKernelCoordinate
4394 : public CommandObjectParsed {
4395 public:
CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter & interpreter)4396 CommandObjectRenderScriptRuntimeKernelCoordinate(
4397 CommandInterpreter &interpreter)
4398 : CommandObjectParsed(
4399 interpreter, "renderscript kernel coordinate",
4400 "Shows the (x,y,z) coordinate of the current kernel invocation.",
4401 "renderscript kernel coordinate",
4402 eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4403 eCommandProcessMustBePaused) {}
4404
4405 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
4406
DoExecute(Args & command,CommandReturnObject & result)4407 bool DoExecute(Args &command, CommandReturnObject &result) override {
4408 RSCoordinate coord{};
4409 bool success = RenderScriptRuntime::GetKernelCoordinate(
4410 coord, m_exe_ctx.GetThreadPtr());
4411 Stream &stream = result.GetOutputStream();
4412
4413 if (success) {
4414 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z);
4415 stream.EOL();
4416 result.SetStatus(eReturnStatusSuccessFinishResult);
4417 } else {
4418 stream.Printf("Error: Coordinate could not be found.");
4419 stream.EOL();
4420 result.SetStatus(eReturnStatusFailed);
4421 }
4422 return true;
4423 }
4424 };
4425
4426 class CommandObjectRenderScriptRuntimeKernelBreakpoint
4427 : public CommandObjectMultiword {
4428 public:
CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter & interpreter)4429 CommandObjectRenderScriptRuntimeKernelBreakpoint(
4430 CommandInterpreter &interpreter)
4431 : CommandObjectMultiword(
4432 interpreter, "renderscript kernel",
4433 "Commands that generate breakpoints on renderscript kernels.",
4434 nullptr) {
4435 LoadSubCommand(
4436 "set",
4437 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4438 interpreter)));
4439 LoadSubCommand(
4440 "all",
4441 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4442 interpreter)));
4443 }
4444
4445 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
4446 };
4447
4448 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword {
4449 public:
CommandObjectRenderScriptRuntimeKernel(CommandInterpreter & interpreter)4450 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
4451 : CommandObjectMultiword(interpreter, "renderscript kernel",
4452 "Commands that deal with RenderScript kernels.",
4453 nullptr) {
4454 LoadSubCommand(
4455 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(
4456 interpreter)));
4457 LoadSubCommand(
4458 "coordinate",
4459 CommandObjectSP(
4460 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
4461 LoadSubCommand(
4462 "breakpoint",
4463 CommandObjectSP(
4464 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
4465 }
4466
4467 ~CommandObjectRenderScriptRuntimeKernel() override = default;
4468 };
4469
4470 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed {
4471 public:
CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter & interpreter)4472 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
4473 : CommandObjectParsed(interpreter, "renderscript context dump",
4474 "Dumps renderscript context information.",
4475 "renderscript context dump",
4476 eCommandRequiresProcess |
4477 eCommandProcessMustBeLaunched) {}
4478
4479 ~CommandObjectRenderScriptRuntimeContextDump() override = default;
4480
DoExecute(Args & command,CommandReturnObject & result)4481 bool DoExecute(Args &command, CommandReturnObject &result) override {
4482 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4483 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4484 eLanguageTypeExtRenderScript));
4485 runtime->DumpContexts(result.GetOutputStream());
4486 result.SetStatus(eReturnStatusSuccessFinishResult);
4487 return true;
4488 }
4489 };
4490
4491 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = {
4492 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument,
4493 nullptr, {}, 0, eArgTypeFilename,
4494 "Print results to specified file instead of command line."}};
4495
4496 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword {
4497 public:
CommandObjectRenderScriptRuntimeContext(CommandInterpreter & interpreter)4498 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
4499 : CommandObjectMultiword(interpreter, "renderscript context",
4500 "Commands that deal with RenderScript contexts.",
4501 nullptr) {
4502 LoadSubCommand(
4503 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(
4504 interpreter)));
4505 }
4506
4507 ~CommandObjectRenderScriptRuntimeContext() override = default;
4508 };
4509
4510 class CommandObjectRenderScriptRuntimeAllocationDump
4511 : public CommandObjectParsed {
4512 public:
CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter & interpreter)4513 CommandObjectRenderScriptRuntimeAllocationDump(
4514 CommandInterpreter &interpreter)
4515 : CommandObjectParsed(interpreter, "renderscript allocation dump",
4516 "Displays the contents of a particular allocation",
4517 "renderscript allocation dump <ID>",
4518 eCommandRequiresProcess |
4519 eCommandProcessMustBeLaunched),
4520 m_options() {}
4521
4522 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
4523
GetOptions()4524 Options *GetOptions() override { return &m_options; }
4525
4526 class CommandOptions : public Options {
4527 public:
CommandOptions()4528 CommandOptions() : Options() {}
4529
4530 ~CommandOptions() override = default;
4531
SetOptionValue(uint32_t option_idx,llvm::StringRef option_arg,ExecutionContext * exe_ctx)4532 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4533 ExecutionContext *exe_ctx) override {
4534 Status err;
4535 const int short_option = m_getopt_table[option_idx].val;
4536
4537 switch (short_option) {
4538 case 'f':
4539 m_outfile.SetFile(option_arg, FileSpec::Style::native);
4540 FileSystem::Instance().Resolve(m_outfile);
4541 if (FileSystem::Instance().Exists(m_outfile)) {
4542 m_outfile.Clear();
4543 err.SetErrorStringWithFormat("file already exists: '%s'",
4544 option_arg.str().c_str());
4545 }
4546 break;
4547 default:
4548 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4549 break;
4550 }
4551 return err;
4552 }
4553
OptionParsingStarting(ExecutionContext * exe_ctx)4554 void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4555 m_outfile.Clear();
4556 }
4557
GetDefinitions()4558 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4559 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options);
4560 }
4561
4562 FileSpec m_outfile;
4563 };
4564
DoExecute(Args & command,CommandReturnObject & result)4565 bool DoExecute(Args &command, CommandReturnObject &result) override {
4566 const size_t argc = command.GetArgumentCount();
4567 if (argc < 1) {
4568 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. "
4569 "As well as an optional -f argument",
4570 m_cmd_name.c_str());
4571 result.SetStatus(eReturnStatusFailed);
4572 return false;
4573 }
4574
4575 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4576 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4577 eLanguageTypeExtRenderScript));
4578
4579 const char *id_cstr = command.GetArgumentAtIndex(0);
4580 bool success = false;
4581 const uint32_t id =
4582 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4583 if (!success) {
4584 result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4585 id_cstr);
4586 result.SetStatus(eReturnStatusFailed);
4587 return false;
4588 }
4589
4590 Stream *output_stream_p = nullptr;
4591 std::unique_ptr<Stream> output_stream_storage;
4592
4593 const FileSpec &outfile_spec =
4594 m_options.m_outfile; // Dump allocation to file instead
4595 if (outfile_spec) {
4596 // Open output file
4597 std::string path = outfile_spec.GetPath();
4598 auto file = FileSystem::Instance().Open(
4599 outfile_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate);
4600 if (file) {
4601 output_stream_storage =
4602 std::make_unique<StreamFile>(std::move(file.get()));
4603 output_stream_p = output_stream_storage.get();
4604 result.GetOutputStream().Printf("Results written to '%s'",
4605 path.c_str());
4606 result.GetOutputStream().EOL();
4607 } else {
4608 std::string error = llvm::toString(file.takeError());
4609 result.AppendErrorWithFormat("Couldn't open file '%s': %s",
4610 path.c_str(), error.c_str());
4611 result.SetStatus(eReturnStatusFailed);
4612 return false;
4613 }
4614 } else
4615 output_stream_p = &result.GetOutputStream();
4616
4617 assert(output_stream_p != nullptr);
4618 bool dumped =
4619 runtime->DumpAllocation(*output_stream_p, m_exe_ctx.GetFramePtr(), id);
4620
4621 if (dumped)
4622 result.SetStatus(eReturnStatusSuccessFinishResult);
4623 else
4624 result.SetStatus(eReturnStatusFailed);
4625
4626 return true;
4627 }
4628
4629 private:
4630 CommandOptions m_options;
4631 };
4632
4633 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = {
4634 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr,
4635 {}, 0, eArgTypeIndex,
4636 "Only show details of a single allocation with specified id."}};
4637
4638 class CommandObjectRenderScriptRuntimeAllocationList
4639 : public CommandObjectParsed {
4640 public:
CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter & interpreter)4641 CommandObjectRenderScriptRuntimeAllocationList(
4642 CommandInterpreter &interpreter)
4643 : CommandObjectParsed(
4644 interpreter, "renderscript allocation list",
4645 "List renderscript allocations and their information.",
4646 "renderscript allocation list",
4647 eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4648 m_options() {}
4649
4650 ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4651
GetOptions()4652 Options *GetOptions() override { return &m_options; }
4653
4654 class CommandOptions : public Options {
4655 public:
CommandOptions()4656 CommandOptions() : Options(), m_id(0) {}
4657
4658 ~CommandOptions() override = default;
4659
SetOptionValue(uint32_t option_idx,llvm::StringRef option_arg,ExecutionContext * exe_ctx)4660 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4661 ExecutionContext *exe_ctx) override {
4662 Status err;
4663 const int short_option = m_getopt_table[option_idx].val;
4664
4665 switch (short_option) {
4666 case 'i':
4667 if (option_arg.getAsInteger(0, m_id))
4668 err.SetErrorStringWithFormat("invalid integer value for option '%c'",
4669 short_option);
4670 break;
4671 default:
4672 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4673 break;
4674 }
4675 return err;
4676 }
4677
OptionParsingStarting(ExecutionContext * exe_ctx)4678 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; }
4679
GetDefinitions()4680 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4681 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options);
4682 }
4683
4684 uint32_t m_id;
4685 };
4686
DoExecute(Args & command,CommandReturnObject & result)4687 bool DoExecute(Args &command, CommandReturnObject &result) override {
4688 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4689 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4690 eLanguageTypeExtRenderScript));
4691 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(),
4692 m_options.m_id);
4693 result.SetStatus(eReturnStatusSuccessFinishResult);
4694 return true;
4695 }
4696
4697 private:
4698 CommandOptions m_options;
4699 };
4700
4701 class CommandObjectRenderScriptRuntimeAllocationLoad
4702 : public CommandObjectParsed {
4703 public:
CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter & interpreter)4704 CommandObjectRenderScriptRuntimeAllocationLoad(
4705 CommandInterpreter &interpreter)
4706 : CommandObjectParsed(
4707 interpreter, "renderscript allocation load",
4708 "Loads renderscript allocation contents from a file.",
4709 "renderscript allocation load <ID> <filename>",
4710 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4711
4712 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4713
DoExecute(Args & command,CommandReturnObject & result)4714 bool DoExecute(Args &command, CommandReturnObject &result) override {
4715 const size_t argc = command.GetArgumentCount();
4716 if (argc != 2) {
4717 result.AppendErrorWithFormat(
4718 "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4719 m_cmd_name.c_str());
4720 result.SetStatus(eReturnStatusFailed);
4721 return false;
4722 }
4723
4724 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4725 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4726 eLanguageTypeExtRenderScript));
4727
4728 const char *id_cstr = command.GetArgumentAtIndex(0);
4729 bool success = false;
4730 const uint32_t id =
4731 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4732 if (!success) {
4733 result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4734 id_cstr);
4735 result.SetStatus(eReturnStatusFailed);
4736 return false;
4737 }
4738
4739 const char *path = command.GetArgumentAtIndex(1);
4740 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path,
4741 m_exe_ctx.GetFramePtr());
4742
4743 if (loaded)
4744 result.SetStatus(eReturnStatusSuccessFinishResult);
4745 else
4746 result.SetStatus(eReturnStatusFailed);
4747
4748 return true;
4749 }
4750 };
4751
4752 class CommandObjectRenderScriptRuntimeAllocationSave
4753 : public CommandObjectParsed {
4754 public:
CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter & interpreter)4755 CommandObjectRenderScriptRuntimeAllocationSave(
4756 CommandInterpreter &interpreter)
4757 : CommandObjectParsed(interpreter, "renderscript allocation save",
4758 "Write renderscript allocation contents to a file.",
4759 "renderscript allocation save <ID> <filename>",
4760 eCommandRequiresProcess |
4761 eCommandProcessMustBeLaunched) {}
4762
4763 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4764
DoExecute(Args & command,CommandReturnObject & result)4765 bool DoExecute(Args &command, CommandReturnObject &result) override {
4766 const size_t argc = command.GetArgumentCount();
4767 if (argc != 2) {
4768 result.AppendErrorWithFormat(
4769 "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4770 m_cmd_name.c_str());
4771 result.SetStatus(eReturnStatusFailed);
4772 return false;
4773 }
4774
4775 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4776 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4777 eLanguageTypeExtRenderScript));
4778
4779 const char *id_cstr = command.GetArgumentAtIndex(0);
4780 bool success = false;
4781 const uint32_t id =
4782 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
4783 if (!success) {
4784 result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4785 id_cstr);
4786 result.SetStatus(eReturnStatusFailed);
4787 return false;
4788 }
4789
4790 const char *path = command.GetArgumentAtIndex(1);
4791 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path,
4792 m_exe_ctx.GetFramePtr());
4793
4794 if (saved)
4795 result.SetStatus(eReturnStatusSuccessFinishResult);
4796 else
4797 result.SetStatus(eReturnStatusFailed);
4798
4799 return true;
4800 }
4801 };
4802
4803 class CommandObjectRenderScriptRuntimeAllocationRefresh
4804 : public CommandObjectParsed {
4805 public:
CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter & interpreter)4806 CommandObjectRenderScriptRuntimeAllocationRefresh(
4807 CommandInterpreter &interpreter)
4808 : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4809 "Recomputes the details of all allocations.",
4810 "renderscript allocation refresh",
4811 eCommandRequiresProcess |
4812 eCommandProcessMustBeLaunched) {}
4813
4814 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4815
DoExecute(Args & command,CommandReturnObject & result)4816 bool DoExecute(Args &command, CommandReturnObject &result) override {
4817 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4818 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4819 eLanguageTypeExtRenderScript));
4820
4821 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(),
4822 m_exe_ctx.GetFramePtr());
4823
4824 if (success) {
4825 result.SetStatus(eReturnStatusSuccessFinishResult);
4826 return true;
4827 } else {
4828 result.SetStatus(eReturnStatusFailed);
4829 return false;
4830 }
4831 }
4832 };
4833
4834 class CommandObjectRenderScriptRuntimeAllocation
4835 : public CommandObjectMultiword {
4836 public:
CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter & interpreter)4837 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4838 : CommandObjectMultiword(
4839 interpreter, "renderscript allocation",
4840 "Commands that deal with RenderScript allocations.", nullptr) {
4841 LoadSubCommand(
4842 "list",
4843 CommandObjectSP(
4844 new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4845 LoadSubCommand(
4846 "dump",
4847 CommandObjectSP(
4848 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4849 LoadSubCommand(
4850 "save",
4851 CommandObjectSP(
4852 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4853 LoadSubCommand(
4854 "load",
4855 CommandObjectSP(
4856 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4857 LoadSubCommand(
4858 "refresh",
4859 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(
4860 interpreter)));
4861 }
4862
4863 ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4864 };
4865
4866 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed {
4867 public:
CommandObjectRenderScriptRuntimeStatus(CommandInterpreter & interpreter)4868 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4869 : CommandObjectParsed(interpreter, "renderscript status",
4870 "Displays current RenderScript runtime status.",
4871 "renderscript status",
4872 eCommandRequiresProcess |
4873 eCommandProcessMustBeLaunched) {}
4874
4875 ~CommandObjectRenderScriptRuntimeStatus() override = default;
4876
DoExecute(Args & command,CommandReturnObject & result)4877 bool DoExecute(Args &command, CommandReturnObject &result) override {
4878 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4879 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4880 eLanguageTypeExtRenderScript));
4881 runtime->DumpStatus(result.GetOutputStream());
4882 result.SetStatus(eReturnStatusSuccessFinishResult);
4883 return true;
4884 }
4885 };
4886
4887 class CommandObjectRenderScriptRuntimeReduction
4888 : public CommandObjectMultiword {
4889 public:
CommandObjectRenderScriptRuntimeReduction(CommandInterpreter & interpreter)4890 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter)
4891 : CommandObjectMultiword(interpreter, "renderscript reduction",
4892 "Commands that handle general reduction kernels",
4893 nullptr) {
4894 LoadSubCommand(
4895 "breakpoint",
4896 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint(
4897 interpreter)));
4898 }
4899 ~CommandObjectRenderScriptRuntimeReduction() override = default;
4900 };
4901
4902 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword {
4903 public:
CommandObjectRenderScriptRuntime(CommandInterpreter & interpreter)4904 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
4905 : CommandObjectMultiword(
4906 interpreter, "renderscript",
4907 "Commands for operating on the RenderScript runtime.",
4908 "renderscript <subcommand> [<subcommand-options>]") {
4909 LoadSubCommand(
4910 "module", CommandObjectSP(
4911 new CommandObjectRenderScriptRuntimeModule(interpreter)));
4912 LoadSubCommand(
4913 "status", CommandObjectSP(
4914 new CommandObjectRenderScriptRuntimeStatus(interpreter)));
4915 LoadSubCommand(
4916 "kernel", CommandObjectSP(
4917 new CommandObjectRenderScriptRuntimeKernel(interpreter)));
4918 LoadSubCommand("context",
4919 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(
4920 interpreter)));
4921 LoadSubCommand(
4922 "allocation",
4923 CommandObjectSP(
4924 new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
4925 LoadSubCommand("scriptgroup",
4926 NewCommandObjectRenderScriptScriptGroup(interpreter));
4927 LoadSubCommand(
4928 "reduction",
4929 CommandObjectSP(
4930 new CommandObjectRenderScriptRuntimeReduction(interpreter)));
4931 }
4932
4933 ~CommandObjectRenderScriptRuntime() override = default;
4934 };
4935
Initiate()4936 void RenderScriptRuntime::Initiate() { assert(!m_initiated); }
4937
RenderScriptRuntime(Process * process)4938 RenderScriptRuntime::RenderScriptRuntime(Process *process)
4939 : lldb_private::CPPLanguageRuntime(process), m_initiated(false),
4940 m_debuggerPresentFlagged(false), m_breakAllKernels(false),
4941 m_ir_passes(nullptr) {
4942 ModulesDidLoad(process->GetTarget().GetImages());
4943 }
4944
GetCommandObject(lldb_private::CommandInterpreter & interpreter)4945 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject(
4946 lldb_private::CommandInterpreter &interpreter) {
4947 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
4948 }
4949
4950 RenderScriptRuntime::~RenderScriptRuntime() = default;
4951