Searched refs:exponential (Results 1 – 25 of 378) sorted by relevance
12345678910>>...16
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | exponential_test.py | 29 from tensorflow.python.ops.distributions import exponential as exponential_lib 54 exponential = exponential_lib.Exponential(rate=lam) 56 log_pdf = exponential.log_prob(x) 59 pdf = exponential.prob(x) 71 exponential = exponential_lib.Exponential(rate=rate) 72 log_pdf = exponential.log_prob(0.) 81 exponential = exponential_lib.Exponential(rate=lam) 83 cdf = exponential.cdf(x) 97 exponential = exponential_lib.Exponential(rate=lam) 99 log_survival = exponential.log_survival_function(x) [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_Exp.pbtxt | 3 summary: "Computes exponential of x element-wise. \\\\(y = e^x\\\\)." 5 This function computes the exponential of every element in the input tensor. 18 For complex numbers, the exponential value is calculated as follows:
|
D | api_def_Elu.pbtxt | 3 summary: "Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise."
|
D | api_def_Selu.pbtxt | 3 summary: "Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)`"
|
/external/mesa3d/.gitlab-ci/ |
D | deqp-lima-fails.txt | 42 dEQP-GLES2.functional.shaders.random.exponential.fragment.11,Fail 43 dEQP-GLES2.functional.shaders.random.exponential.fragment.12,Fail 44 dEQP-GLES2.functional.shaders.random.exponential.fragment.14,Fail 45 dEQP-GLES2.functional.shaders.random.exponential.fragment.37,Fail 46 dEQP-GLES2.functional.shaders.random.exponential.fragment.5,Fail 47 dEQP-GLES2.functional.shaders.random.exponential.fragment.74,Fail
|
/external/tensorflow/tensorflow/compiler/mlir/xla/tests/translate/ |
D | if_conditional.hlotxt | 15 …%exponential.14 = f32[] exponential(%get-tuple-element.13), metadata={op_type="Exp" op_name="cond/… 16 ROOT %tuple.15 = (f32[]) tuple(%exponential.14), metadata={op_name="XLA_Retvals"} 41 // CHECK: [[R8:%.+]] = "mhlo.exponential"([[R7]])
|
D | if.mlir | 23 // CHECK: %[[VAL1:.+]] = f32[] exponential(f32[] %[[VAL0]]) 24 %1 = "mhlo.exponential"(%0) : (tensor<f32>) -> tensor<f32> 53 %7 = "mhlo.exponential"(%6) : (tensor<f32>) -> tensor<f32>
|
/external/oboe/apps/OboeTester/app/src/main/java/com/google/sample/oboe/manualtest/ |
D | ExponentialTaper.java | 64 public double exponentialToLinear(double exponential) { in exponentialToLinear() argument 65 return Math.log((exponential + offset) / a) / (b * Math.log(ROOT)); in exponentialToLinear()
|
/external/tensorflow/tensorflow/compiler/mlir/hlo/tests/ |
D | inlining.mlir | 8 // CHECK: "mhlo.exponential" 26 %0 = "mhlo.exponential"(%arg0) : (tensor<f32>) -> tensor<f32>
|
D | legalize-control-flow.mlir | 50 // CHECK: [[VAL5:%.+]] = "mhlo.exponential"([[VAL4]]) : (tensor<f32>) -> tensor<f32> 52 %2 = "mhlo.exponential"(%arg1) : (tensor<f32>) -> tensor<f32> 129 // CHECK: %5 = "mhlo.exponential"(%4) : (tensor<f32>) -> tensor<f32> 142 %2 = "mhlo.exponential"(%arg2) : (tensor<f32>) -> tensor<f32>
|
D | lower-complex.mlir | 196 // CHECK-DAG: [[EXP:%.+]] = "mhlo.exponential"(%arg0) 201 %1 = "mhlo.exponential"(%0) : (tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>) 214 // CHECK-DAG: [[EXP:%.+]] = "mhlo.exponential"([[REAL]]) 220 %0 = "mhlo.exponential"(%arg0) : (tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>) 230 // CHECK-DAG: [[EXP:%.+]] = "mhlo.exponential"([[REAL]]) 236 %0 = "mhlo.exponential"(%arg0) : (tensor<*xcomplex<f32>>) -> (tensor<*xcomplex<f32>>)
|
/external/perfetto/docs/design-docs/ |
D | heapprofd-sampling.md | 41 then repeatedly draw from the exponential distribution (which is the 43 above 0. The amount of times we had to draw from the exponential 53 exponential draw approach, as for a non-sample, we only need to decrement a 55 from exponential for every sample) is more expensive. 70 Because the exponential distribution is memoryless, we can add together 87 sum. This is because the exponential distribution we use is memoryless. 122 estimating the geometric distribution using an exponential distribution, as its 126 Draw sample from exponential distribution with p = 1 / 32000: 163 time, then the memorylessness property of the exponential distribution would
|
/external/icu/icu4c/source/data/locales/ |
D | gd.txt | 30 exponential{"E"} 47 exponential{"اس"} 64 exponential{"×۱۰^"} 81 exponential{"E"} 98 exponential{"E"} 115 exponential{"E"} 132 exponential{"E"} 149 exponential{"E"} 167 exponential{"E"} 347 exponential{"E"} [all …]
|
D | zh_Hant.txt | 106 exponential{"اس"} 133 exponential{"×۱۰^"} 160 exponential{"E"} 187 exponential{"E"} 214 exponential{"E"} 241 exponential{"E"} 268 exponential{"E"} 296 exponential{"E"} 324 exponential{"E"} 351 exponential{"E"} [all …]
|
D | en_SI.txt | 13 exponential{"e"}
|
/external/eigen/unsupported/Eigen/ |
D | MatrixFunctions | 35 * - \ref matrixbase_exp "MatrixBase::exp()", for computing the matrix exponential 112 Compute the matrix exponential. 118 \param[in] M matrix whose exponential is to be computed. 119 \returns expression representing the matrix exponential of \p M. 121 The matrix exponential of \f$ M \f$ is defined by 123 The matrix exponential can be used to solve linear ordinary 128 The matrix exponential is different from applying the exp function to all the entries in the matrix. 135 The matrix exponential is computed using the scaling-and-squaring 137 rescaled, then the exponential of the reduced matrix is computed 144 scaling and squaring method for the matrix exponential revisited," [all …]
|
/external/python/cpython3/Doc/library/ |
D | xml.rst | 82 billion laughs / exponential entity expansion 83 The `Billion Laughs`_ attack -- also known as exponential entity expansion -- 86 The exponential expansion results in several gigabytes of text and 93 efficient as the exponential case but it avoids triggering parser countermeasures
|
/external/tensorflow/tensorflow/compiler/mlir/xla/tests/ |
D | legalize-tf-control-flow.mlir | 33 %0 = "mhlo.exponential"(%arg1) : (tensor<f32>) -> tensor<f32> 63 // CHECK: [[VAL6:%.+]] = "mhlo.exponential"([[VAL5]]) 64 %2 = "mhlo.exponential"(%arg1) : (tensor<f32>) -> tensor<f32> 79 …%0:2 = "tf.Case"(%index, %arg0, %arg1) {branches = [@exponential, @log, @floor], is_stateless = tr… 85 …// CHECK: %[[CALL_EXP:.*]]:2 = call @exponential(%[[TUPLE_ELEMENT_0]], %[[TUPLE_ELEMENT_1]]) :… 104 func @exponential(%arg0: tensor<f32>, %arg1: tensor<f32>) -> (tensor<f32>, tensor<f32>) { 105 %0 = "mhlo.exponential"(%arg1) : (tensor<f32>) -> tensor<f32> 130 // CHECK: [[VAL5:%.+]] = "mhlo.exponential"([[VAL4]]) 131 %1 = "mhlo.exponential"(%arg1) : (tensor<f32>) -> tensor<f32>
|
/external/snakeyaml/src/test/resources/pyyaml/ |
D | spec-02-20.data | 2 exponential: 12.3015e+02
|
D | construct-float.data | 2 exponential: 685.230_15e+03
|
/external/python/cpython2/Doc/library/ |
D | xml.rst | 76 billion laughs / exponential entity expansion 77 The `Billion Laughs`_ attack -- also known as exponential entity expansion -- 80 the small string is expanded to several gigabytes. The exponential expansion 87 efficient as the exponential case but it avoids triggering countermeasures of
|
/external/llvm/test/YAMLParser/ |
D | spec-02-20.test | 4 exponential: 12.3015e+02
|
D | construct-float.test | 4 exponential: 685.230_15e+03
|
/external/llvm-project/llvm/test/YAMLParser/ |
D | construct-float.test | 4 exponential: 685.230_15e+03
|
/external/swiftshader/tests/regres/testlists/ |
D | gles2-master.txt | 5096 dEQP-GLES2.functional.shaders.operator.exponential.pow.mediump_float_vertex 5097 dEQP-GLES2.functional.shaders.operator.exponential.pow.mediump_float_fragment 5098 dEQP-GLES2.functional.shaders.operator.exponential.pow.highp_float_vertex 5099 dEQP-GLES2.functional.shaders.operator.exponential.pow.highp_float_fragment 5100 dEQP-GLES2.functional.shaders.operator.exponential.pow.mediump_vec2_vertex 5101 dEQP-GLES2.functional.shaders.operator.exponential.pow.mediump_vec2_fragment 5102 dEQP-GLES2.functional.shaders.operator.exponential.pow.highp_vec2_vertex 5103 dEQP-GLES2.functional.shaders.operator.exponential.pow.highp_vec2_fragment 5104 dEQP-GLES2.functional.shaders.operator.exponential.pow.mediump_vec3_vertex 5105 dEQP-GLES2.functional.shaders.operator.exponential.pow.mediump_vec3_fragment [all …]
|
12345678910>>...16