/external/tensorflow/tensorflow/python/ops/parallel_for/ |
D | gradients.py | 48 flat_inputs = nest.flatten(inputs) 55 return gradient_ops.gradients(y, flat_inputs) 68 [output.dtype] * len(flat_inputs), 77 out.set_shape(output_tensor_shape.concatenate(flat_inputs[i].shape))
|
/external/tensorflow/tensorflow/python/compiler/xla/ |
D | xla.py | 341 flat_inputs = nest.flatten(inputs) 343 flat_inputs = [ops.convert_to_tensor(x) for x in flat_inputs] 353 flat_inputs = [ 355 for i, x in enumerate(flat_inputs) 360 structure=inputs, flat_sequence=flat_inputs)
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | data_adapter.py | 238 flat_inputs = nest.flatten(x) 240 flat_inputs += nest.flatten(y) 251 return all(_is_tensor(v) for v in flat_inputs) 442 flat_inputs = nest.flatten(x) 444 flat_inputs += nest.flatten(y) 457 return all(_is_array_like(v) for v in flat_inputs) 485 flat_inputs = nest.flatten(inputs) 491 flat_dtypes = [inp.dtype for inp in flat_inputs] 505 return [slice_array(inp) for inp in flat_inputs] 508 for v, original_inp in zip(flat_out, flat_inputs): [all …]
|
D | training_generator_v1.py | 538 flat_inputs = nest.flatten(data) 539 if hasattr(flat_inputs[0], 'shape'): 540 return int(flat_inputs[0].shape[0]), False
|
D | training_v1.py | 2382 flat_inputs = nest.flatten(x, expand_composites=False) 2385 for (a, b) in zip(flat_inputs, flat_expected_inputs): 2402 flat_inputs = nest.flatten(x_shapes, expand_composites=False) 2404 for (a, b) in zip(flat_inputs, flat_expected_inputs):
|
D | training.py | 2492 flat_inputs = nest.flatten(inputs) 2494 for name, tensor in zip(input_names, flat_inputs):
|
D | base_layer.py | 2639 flat_inputs = nest.flatten((args, kwargs)) 2640 input_ids_set = {id(i) for i in flat_inputs}
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_embedding_v2.py | 936 flat_inputs: List[internal_types.NativeObject], 960 for inp in flat_inputs: 999 flat_inputs, flat_weights, flat_features): 1253 flat_inputs = nest.flatten(features) 1254 flat_weights = [None] * len(flat_inputs) 1279 flat_inputs, flat_weights, flat_features, device_ordinal=-1, 1301 flat_inputs) 1327 flat_inputs, flat_weights, flat_features, 1573 flat_inputs = nest.flatten(inputs) 1574 flat_weights = [None] * len(flat_inputs) [all …]
|
D | tpu.py | 1292 flat_inputs = [] 1294 flat_inputs.append([ 1300 flat_input_types = [x.dtype for x in flat_inputs[0]] 1309 types = [x.dtype for x in flat_inputs[i]] 1358 nest.assert_same_structure(flat_inputs[0], flat_maximum_shapes, 1361 unpadded_inputs = flat_inputs 1362 flat_inputs, padding_maps = _pad_all_input(unpadded_inputs, 1378 for i in range(0, len(flat_inputs[0])): 1379 replicas = [flat_inputs[replica][i] for replica in xrange(num_replicas)]
|
/external/tensorflow/tensorflow/python/eager/ |
D | function.py | 2746 inputs, flat_inputs, filtered_flat_inputs = _convert_numpy_inputs(inputs) 2748 return (inputs, kwargs, flat_inputs + flat_kwargs, 2752 inputs, flat_inputs, filtered_flat_inputs = _convert_inputs_to_signature( 2754 return inputs, {}, flat_inputs, filtered_flat_inputs 2786 flat_inputs = nest.flatten(inputs, expand_composites=True) 2794 for index, value in enumerate(flat_inputs): 2806 flat_inputs[index] = constant_op.constant(a) 2807 filtered_flat_inputs.append(flat_inputs[index]) 2811 structure=inputs, flat_sequence=flat_inputs, 2812 expand_composites=True), flat_inputs, filtered_flat_inputs) [all …]
|
/external/mesa3d/src/compiler/nir/ |
D | nir_lower_io_to_vector.c | 385 bool flat_inputs[MAX_SLOTS] = {0}; in nir_lower_io_to_vector_impl() local 396 new_inputs, flat_inputs)) in nir_lower_io_to_vector_impl() 449 flat_inputs[loc] : flat_outputs[loc]; in nir_lower_io_to_vector_impl()
|
/external/tensorflow/tensorflow/python/ops/ |
D | rnn.py | 1337 flat_inputs = nest.flatten(inputs) 1338 for flat_input in flat_inputs:
|
D | control_flow_ops.py | 423 flat_inputs = [nest.flatten(v, expand_composites=True) for v in inputs] 426 for component in zip(*flat_inputs)
|
/external/tensorflow/tensorflow/python/distribute/ |
D | custom_training_loop_input_test.py | 757 flat_inputs = array_ops.reshape(inputs, [-1]) 758 embeddings = array_ops.gather(embedding_weights, flat_inputs)
|
/external/mesa3d/src/intel/blorp/ |
D | blorp_genX_exec.h | 730 sbe.ConstantInterpolationEnable = prog_data->flat_inputs; in blorp_emit_sf_config() 763 sbe.ConstantInterpolationEnable = prog_data->flat_inputs; in blorp_emit_sf_config() 783 sf.ConstantInterpolationEnable = prog_data->flat_inputs; in blorp_emit_sf_config()
|
/external/mesa3d/src/intel/compiler/ |
D | brw_compiler.h | 849 uint32_t flat_inputs; member
|
D | brw_fs.cpp | 8552 prog_data->flat_inputs = 0; in brw_compute_flat_inputs() 8564 prog_data->flat_inputs |= 1 << input_index; in brw_compute_flat_inputs()
|
/external/tensorflow/tensorflow/python/keras/ |
D | backend.py | 6577 flat_inputs = nest.flatten(inputs) 6579 isinstance(i, ragged_tensor.RaggedTensor) for i in flat_inputs) 6587 nested_row_lengths = math_ops.cast(flat_inputs[0].nested_row_lengths()[0],
|
/external/mesa3d/src/mesa/drivers/dri/i965/ |
D | genX_state_upload.c | 1726 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs; 3522 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
|
/external/mesa3d/src/intel/vulkan/ |
D | genX_pipeline.c | 347 .ConstantInterpolationEnable = wm_prog_data->flat_inputs, in emit_3dstate_sbe()
|
/external/mesa3d/src/gallium/drivers/iris/ |
D | iris_state.c | 4135 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs; in iris_emit_sbe()
|