/external/llvm-project/mlir/test/Examples/Toy/Ch7/ |
D | shape_inference.mlir | 16 …%4 = toy.generic_call @multiply_transpose(%1, %3) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*… 17 …%5 = toy.generic_call @multiply_transpose(%3, %1) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*…
|
D | codegen.toy | 28 # CHECK-NEXT: [[VAL_9:%.*]] = toy.generic_call @multiply_transpose([[VAL_6]], [[VAL_8]]) : (tens… 29 # CHECK-NEXT: [[VAL_10:%.*]] = toy.generic_call @multiply_transpose([[VAL_8]], [[VAL_6]]) : (ten…
|
D | struct-codegen.toy | 35 # CHECK-NEXT: [[VAL_7:%.*]] = toy.generic_call @multiply_transpose([[VAL_6]]) : (!toy.struct<t…
|
/external/llvm-project/mlir/test/Examples/Toy/Ch4/ |
D | shape_inference.mlir | 16 …%4 = toy.generic_call @multiply_transpose(%1, %3) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*… 17 …%5 = toy.generic_call @multiply_transpose(%3, %1) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*…
|
D | codegen.toy | 28 # CHECK-NEXT: [[VAL_9:%.*]] = toy.generic_call @multiply_transpose([[VAL_6]], [[VAL_8]]) : (tens… 29 # CHECK-NEXT: [[VAL_10:%.*]] = toy.generic_call @multiply_transpose([[VAL_8]], [[VAL_6]]) : (ten…
|
/external/llvm-project/mlir/test/Examples/Toy/Ch6/ |
D | shape_inference.mlir | 16 …%4 = toy.generic_call @multiply_transpose(%1, %3) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*… 17 …%5 = toy.generic_call @multiply_transpose(%3, %1) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*…
|
D | codegen.toy | 28 # CHECK-NEXT: [[VAL_9:%.*]] = toy.generic_call @multiply_transpose([[VAL_6]], [[VAL_8]]) : (tens… 29 # CHECK-NEXT: [[VAL_10:%.*]] = toy.generic_call @multiply_transpose([[VAL_8]], [[VAL_6]]) : (ten…
|
/external/llvm-project/mlir/test/Examples/Toy/Ch5/ |
D | shape_inference.mlir | 16 …%4 = toy.generic_call @multiply_transpose(%1, %3) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*… 17 …%5 = toy.generic_call @multiply_transpose(%3, %1) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*…
|
D | codegen.toy | 28 # CHECK-NEXT: [[VAL_9:%.*]] = toy.generic_call @multiply_transpose([[VAL_6]], [[VAL_8]]) : (tens… 29 # CHECK-NEXT: [[VAL_10:%.*]] = toy.generic_call @multiply_transpose([[VAL_8]], [[VAL_6]]) : (ten…
|
/external/llvm-project/mlir/test/Examples/Toy/Ch3/ |
D | codegen.toy | 28 # CHECK-NEXT: [[VAL_9:%.*]] = toy.generic_call @multiply_transpose([[VAL_6]], [[VAL_8]]) : (tens… 29 # CHECK-NEXT: [[VAL_10:%.*]] = toy.generic_call @multiply_transpose([[VAL_8]], [[VAL_6]]) : (ten…
|
D | transpose_transpose.toy | 20 # CHECK-NEXT: [[VAL_2:%.*]] = toy.generic_call @transpose_transpose([[VAL_1]]) : (tensor<2x3xf64…
|
/external/llvm-project/mlir/test/Examples/Toy/Ch2/ |
D | codegen.toy | 28 # CHECK-NEXT: [[VAL_9:%.*]] = toy.generic_call @multiply_transpose([[VAL_6]], [[VAL_8]]) : (tens… 29 # CHECK-NEXT: [[VAL_10:%.*]] = toy.generic_call @multiply_transpose([[VAL_8]], [[VAL_6]]) : (ten…
|
/external/python/cpython2/Modules/ |
D | flmodule.c | 169 generic_call(genericobject *g, void (*func)(FL_OBJECT *)) in generic_call() function 180 res = generic_call(g, fl_delete_object); in generic_delete_object() 189 return generic_call(g, fl_show_object); in generic_show_object() 195 return generic_call(g, fl_hide_object); in generic_hide_object() 201 return generic_call(g, fl_redraw_object); in generic_redraw_object() 213 return generic_call(g, fl_freeze_object); in generic_freeze_object() 219 return generic_call(g, fl_unfreeze_object); in generic_unfreeze_object() 227 return generic_call(g, fl_activate_object); in generic_activate_object() 233 return generic_call(g, fl_deactivate_object); in generic_deactivate_object() 577 return generic_call (g, fl_clear_browser); in clear_browser() [all …]
|
/external/llvm-project/mlir/docs/Tutorials/Toy/ |
D | Ch-4.md | 107 Next, we need to provide a way for the inliner to know that `toy.generic_call` 125 def GenericCallOp : Toy_Op<"generic_call", 168 …%4 = toy.generic_call @multiply_transpose(%1, %3) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*… 169 …%5 = toy.generic_call @multiply_transpose(%3, %1) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*… 178 the above, the operands to the generic_call are of type `tensor<2x3xf64>`, while
|
D | Ch-2.md | 539 …%4 = "toy.generic_call"(%1, %3) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>… 540 …%5 = "toy.generic_call"(%3, %1) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>… 670 …%4 = toy.generic_call @multiply_transpose(%1, %3) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*… 671 …%5 = toy.generic_call @multiply_transpose(%3, %1) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*…
|
D | Ch-7.md | 413 …%1 = toy.generic_call @multiply_transpose(%0) : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> ten…
|
/external/llvm-project/mlir/examples/toy/Ch2/include/toy/ |
D | Ops.td | 103 def GenericCallOp : Toy_Op<"generic_call"> { 112 %4 = toy.generic_call @my_func(%1, %3)
|
/external/llvm-project/mlir/examples/toy/Ch3/include/toy/ |
D | Ops.td | 102 def GenericCallOp : Toy_Op<"generic_call"> { 111 %4 = toy.generic_call @my_func(%1, %3)
|
/external/llvm-project/mlir/examples/toy/Ch5/include/toy/ |
D | Ops.td | 126 def GenericCallOp : Toy_Op<"generic_call", 136 %4 = toy.generic_call @my_func(%1, %3)
|
/external/llvm-project/mlir/examples/toy/Ch4/include/toy/ |
D | Ops.td | 126 def GenericCallOp : Toy_Op<"generic_call", 136 %4 = toy.generic_call @my_func(%1, %3)
|
/external/llvm-project/mlir/examples/toy/Ch6/include/toy/ |
D | Ops.td | 126 def GenericCallOp : Toy_Op<"generic_call", 136 %4 = toy.generic_call @my_func(%1, %3)
|
/external/llvm-project/mlir/examples/toy/Ch7/include/toy/ |
D | Ops.td | 139 def GenericCallOp : Toy_Op<"generic_call", 149 %4 = toy.generic_call @my_func(%1, %3)
|