/external/tensorflow/tensorflow/python/tools/ |
D | print_selective_registration_header_test.py | 87 def WriteGraphFiles(self, graphs): argument 89 for i, graph in enumerate(graphs): 104 graphs = [ 110 'rawproto', self.WriteGraphFiles(graphs), default_ops) 126 graphs[0].node[0].ClearField('device') 127 graphs[0].node[2].ClearField('device') 129 'rawproto', self.WriteGraphFiles(graphs), default_ops) 198 graphs = [ 203 'rawproto', self.WriteGraphFiles(graphs), default_ops) 222 self.WriteGraphFiles(graphs), 'rawproto', default_ops).split('\n')) [all …]
|
D | print_selective_registration_header.py | 48 graphs = FLAGS.graphs.split(',') 50 selective_registration_header_lib.get_header(graphs,
|
D | selective_registration_header_lib.py | 194 def get_header(graphs, argument 211 ops_and_kernels = get_ops_and_kernels(proto_fileformat, graphs, default_ops)
|
/external/tensorflow/tensorflow/python/training/ |
D | sync_replicas_optimizer_test.py | 37 graphs = [] 81 graphs.append(graph) 84 return sessions, graphs, train_ops 101 sessions, graphs, train_ops = get_workers(num_workers, 105 var_0_g_0 = graphs[0].get_tensor_by_name("v0:0") 106 var_1_g_0 = graphs[0].get_tensor_by_name("v1:0") 107 local_step_0 = graphs[0].get_tensor_by_name("sync_rep_local_step:0") 113 var_0_g_1 = graphs[1].get_tensor_by_name("v0:0") 114 var_1_g_1 = graphs[1].get_tensor_by_name("v1:0") 115 var_sparse_g_1 = graphs[1].get_tensor_by_name("v_sparse:0") [all …]
|
/external/llvm-project/libcxx/utils/ |
D | graph_header_deps.py | 118 graphs = [] 124 graphs += [g] 126 return graphs 128 def build_canonical_names(graphs): argument 131 for g in graphs: 142 def __init__(self, graphs): argument 143 self.graphs = list(graphs) 144 self.canonical_names = build_canonical_names(graphs) 151 for g in self.graphs: 184 graphs = post_process_outputs(outputs, args.libcxx_only) [all …]
|
/external/tensorflow/tensorflow/python/grappler/ |
D | arithmetic_optimizer_test.py | 41 with context.collect_graphs(optimized=True) as graphs: 43 self.assertLen(graphs, 1) 44 self.assertLen(graphs[0].node, 4) 45 self.assertEqual(graphs[0].node[2].name,
|
D | constant_folding_test.py | 95 with context.collect_graphs(optimized=True) as graphs: 97 self.assertLen(graphs, 1) 99 for node in graphs[0].node: 107 self.assertLen(graphs[0].node, 11)
|
/external/tensorflow/tensorflow/python/eager/ |
D | context_test.py | 85 with context.collect_graphs() as graphs: 88 self.assertLen(graphs, 1) 89 graph, = graphs 100 with context.collect_graphs() as graphs: 104 self.assertLen(graphs, 1) 105 graph, = graphs
|
D | gradient_input_output_exclusions.py | 208 graphs = cfg.build(node) 211 node = reaching_fndefs.resolve(node, ctx, graphs) 212 node = liveness.resolve(node, ctx, graphs)
|
/external/tensorflow/tensorflow/python/autograph/pyct/static_analysis/ |
D | reaching_fndefs.py | 122 def __init__(self, source_info, graphs): argument 124 self.graphs = graphs 130 subgraph = self.graphs[node] 170 def resolve(node, source_info, graphs): argument 180 visitor = TreeAnnotator(source_info, graphs)
|
D | liveness.py | 114 def __init__(self, source_info, graphs, include_annotations): argument 118 self.graphs = graphs 134 analyzer = Analyzer(self.graphs[node], self.include_annotations) 206 def resolve(node, source_info, graphs, include_annotations=True): argument 218 node = TreeAnnotator(source_info, graphs, include_annotations).visit(node)
|
D | reaching_fndefs_test.py | 48 graphs = cfg.build(node) 49 node = reaching_definitions.resolve(node, ctx, graphs) 50 node = reaching_fndefs.resolve(node, ctx, graphs)
|
D | reaching_definitions.py | 181 def __init__(self, source_info, graphs, definition_factory): argument 185 self.graphs = graphs 191 subgraph = self.graphs[node] 279 def resolve(node, source_info, graphs, definition_factory=Definition): argument 290 visitor = TreeAnnotator(source_info, graphs, definition_factory)
|
D | type_inference.py | 594 def __init__(self, source_info, graphs, resolver): argument 596 self.graphs = graphs 600 subgraph = self.graphs[node] 614 def resolve(node, source_info, graphs, resolver): argument 626 visitor = FunctionVisitor(source_info, graphs, resolver)
|
/external/dagger2/java/dagger/internal/codegen/binding/ |
D | LegacyBindingGraph.java | 71 ImmutableList<LegacyBindingGraph> graphs) { in checkForDuplicates() argument 74 Multimaps.index(graphs, graph -> graph.componentDescriptor().typeElement()).asMap(), in checkForDuplicates() 79 return graphs; in checkForDuplicates()
|
/external/conscrypt/ |
D | settings.gradle | 8 include ":conscrypt-benchmark-graphs" 22 project(':conscrypt-benchmark-graphs').projectDir = "$rootDir/benchmark-graphs" as File
|
/external/tensorflow/tensorflow/lite/toco/ |
D | README.md | 3 The TensorFlow Lite Converter converts TensorFlow graphs into 4 TensorFlow Lite graphs. There are additional usages that are also detailed in 22 frozen graphs (models generated via
|
/external/tensorflow/tensorflow/python/autograph/pyct/ |
D | cfg_test.py | 58 graphs, node = self._build_cfg(test_fn) 59 graph, = graphs.values() 80 graphs, node = self._build_cfg(test_fn) 81 graph, = graphs.values() 1035 graphs = self._build_cfg(test_fn) 1036 for k, v in graphs.items(): 1064 graphs = self._build_cfg(test_fn) 1065 for k, v in graphs.items(): 1093 graphs = self._build_cfg(test_fn) 1094 for k, v in graphs.items(): [all …]
|
/external/tensorflow/tensorflow/c/ |
D | generate-pc.sh | 70 Description: Library for computation using data flow graphs for scalable machine learning 84 Description: Library for computation using data flow graphs for scalable machine learning
|
/external/tensorflow/tensorflow/python/ops/ |
D | custom_gradient.py | 355 graphs = {getattr(o, "graph", None) for o in flat_result} 359 graphs.discard(None) # Discard non-graph outputs 360 if graphs: 361 if len(graphs) > 1: 364 output_graph = graphs.pop()
|
D | cond_v2.py | 764 def _check_same_outputs(op_type, graphs): argument 781 b0_out=graphs[0].structured_outputs, 782 bn_out=graphs[branch_idx].structured_outputs, 785 for b in range(1, len(graphs)): 788 graphs[0].structured_outputs, 789 graphs[b].structured_outputs, 795 if len(graphs[0].outputs) != len(graphs[b].outputs): 800 len_0=len(graphs[0].outputs), 802 len_b=len(graphs[b].outputs))) 803 for b0_out, bn_out in zip(graphs[0].outputs, graphs[b].outputs):
|
/external/perfetto/infra/perfetto.dev/src/assets/ |
D | script.js | 219 const graphs = document.querySelectorAll('.mermaid'); 222 if (!graphs.length) 246 for (const graph of graphs) {
|
/external/tensorflow/ |
D | SECURITY.md | 14 [**graphs**](https://developers.google.com/machine-learning/glossary/#graph). 41 Python code that generates TensorFlow graphs. 51 It is easily possible to create computation graphs in which malicious 58 In other words, graphs can contain vulnerabilities of their own. To allow users 92 from anywhere, and executes the graphs it is sent without performing any checks. 108 graphs known to the `ModelServer`. This means that an attacker may run 109 graphs using untrusted inputs as described above, but they would not be able to 110 execute arbitrary graphs. It is possible to safely expose a `ModelServer` 111 directly to an untrusted network, **but only if the graphs it is configured to 131 Given TensorFlow's flexibility, it is possible to specify computation graphs
|
/external/llvm-project/llvm/docs/DependenceGraphs/ |
D | index.rst | 10 Dependence graphs are useful tools in compilers for analyzing relationships 12 behind these graphs are described in papers [1]_ and [2]_. 71 The DDG and the PDG are both directed graphs and they extend the 98 Notice that the common code for building the two types of graphs are 113 - Builder allows us to create DDG and PDG as separate graphs.
|
/external/tensorflow/tensorflow/core/protobuf/ |
D | worker_service.proto | 30 // graphs on a set of local devices, on behalf of a MasterService. 32 // A worker service keeps track of multiple "registered graphs". Each
|