/external/tensorflow/tensorflow/python/ops/ |
D | gradients_impl.py | 377 def hessians(ys, function 415 hessians = [] 439 hessians.append(_reshaped_hessian) 440 return hessians 473 return hessians(
|
D | gradients.py | 28 from tensorflow.python.ops.gradients_impl import hessians
|
D | gradients_test.py | 756 hess = gradients.hessians(x_mat_x, x)[0] 776 hessians = gradients.hessians(xs_mats_xs, xs) 777 hessians_actual = [hess.eval() for hess in hessians] 788 gradients.hessians(x, x) 803 hess = gradients.hessians(x_square, x)[0] 823 hess = gradients.hessians(x_square, x)[0]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_BoostedTreesMakeStatsSummary.pbtxt | 17 name: "hessians" 19 float32; Rank 2 Tensor (shape=[#examples, 1]) for hessians. 31 … node and bucket. The first index of 4th dimension refers to gradients, and the second to hessians. 54 The summary stats contains gradients and hessians accumulated into the corresponding node and bucke…
|
D | api_def_BoostedTreesAggregateStats.pbtxt | 17 name: "hessians" 19 float32; Rank 2 Tensor (shape=[batch_size, hessian_dimension]) with hessians for each example. 49 The summary stats contains gradients and hessians accumulated for each node, feature dimension id a…
|
D | api_def_BoostedTreesSparseAggregateStats.pbtxt | 17 name: "hessians" 19 float32; Rank 2 Tensor (shape=[batch_size, hessian_dimension]) with hessians for each example. 85 The summary stats contains gradients and hessians accumulated for each node, bucket and dimension i…
|
D | api_def_BoostedTreesCenterBias.pbtxt | 19 A tensor with shape=[logits_dimension] mean of hessians for a first node.
|
D | api_def_BoostedTreesCalculateBestFeatureSplit.pbtxt | 38 minimum avg of hessians in a node before required for the node to be considered for splitting.
|
D | api_def_BoostedTreesSparseCalculateBestFeatureSplit.pbtxt | 50 minimum avg of hessians in a node before required for the node to be considered for splitting.
|
D | api_def_BoostedTreesCalculateBestGainsPerFeature.pbtxt | 37 minimum avg of hessians in a node before required for the node to be considered for splitting.
|
D | api_def_BoostedTreesCalculateBestFeatureSplitV2.pbtxt | 50 minimum avg of hessians in a node before required for the node to be considered for splitting.
|
/external/tensorflow/tensorflow/python/kernel_tests/boosted_trees/ |
D | stats_ops_test.py | 1335 hessians=[[5.], [6.], [7.], [8.]], 1354 hessians=[[5.], [6.], [7.], [8.]], 1366 hessians = [[.2], [.3], [.4], [.5], [.06], [.07], [.08], [.09]] 1371 node_ids, gradients, hessians, bucketized_features, max_splits, 1387 hessians = [[.2], [.3], [.4], [.5], [.06], [.07], [.08], [.09]] 1392 node_ids, gradients, hessians, bucketized_features, max_splits, 1411 hessians = [[.2], [.3], [.4], [.5], [.06], [.07], [.08], [.09]] 1417 node_ids, gradients, hessians, bucketized_features, max_splits, 1437 hessians = [[.2], [.3], [.4], [.5], [.06], [.07], [.08], [.09]] 1443 node_ids, gradients, hessians, bucketized_features, max_splits, [all …]
|
D | training_ops_test.py | 509 hessians = np.array([[24.]], dtype=np.float32) 515 mean_hessians=hessians,
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v2/ |
D | BoostedTreesAggregateStats.pbtxt | 12 name: "hessians"
|
D | BoostedTreesMakeStatsSummary.pbtxt | 12 name: "hessians"
|
D | BoostedTreesSparseAggregateStats.pbtxt | 12 name: "hessians"
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
D | BoostedTreesAggregateStats.pbtxt | 12 name: "hessians"
|
D | BoostedTreesMakeStatsSummary.pbtxt | 12 name: "hessians"
|
D | BoostedTreesSparseAggregateStats.pbtxt | 12 name: "hessians"
|
/external/tensorflow/tensorflow/core/kernels/boosted_trees/ |
D | stats_ops.cc | 1263 const auto hessians = hessians_t->matrix<float>(); in Compute() local 1287 temp_stats_double(feature_idx, node, bucket, 1) += hessians(i, 0); in Compute() 1332 const auto hessians = hessians_t->matrix<float>(); in Compute() local 1369 hessians(i, stat_dim - logits_dims); in Compute() 1470 const TTypes<float>::ConstMatrix& hessians, in AddInstanceStatsToMap() argument 1482 stats[stat_dim] += hessians(instance, stat_dim - logits_dims); in AddInstanceStatsToMap() 1494 const TTypes<float>::ConstMatrix& hessians, in AddRangeStats() argument 1509 stats_map, gradients, hessians, node_ids); in AddRangeStats() 1537 const auto hessians = hessians_t->matrix<float>(); in Compute() local 1593 gradients, hessians, node_ids, feature_dims, in Compute() [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.pbtxt | 720 name: "hessians" 721 …n_method\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'None\', \'hessians\'], "
|
D | tensorflow.raw_ops.pbtxt | 537 …argspec: "args=[\'node_ids\', \'gradients\', \'hessians\', \'feature\', \'max_splits\', \'num_buck… 593 …argspec: "args=[\'node_ids\', \'gradients\', \'hessians\', \'bucketized_features_list\', \'max_spl… 625 …argspec: "args=[\'node_ids\', \'gradients\', \'hessians\', \'feature_indices\', \'feature_values\'…
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.pbtxt | 1440 name: "hessians" 1441 …ts\', \'aggregation_method\'], varargs=None, keywords=None, defaults=[\'hessians\', \'False\', \'F…
|
D | tensorflow.raw_ops.pbtxt | 537 …argspec: "args=[\'node_ids\', \'gradients\', \'hessians\', \'feature\', \'max_splits\', \'num_buck… 593 …argspec: "args=[\'node_ids\', \'gradients\', \'hessians\', \'bucketized_features_list\', \'max_spl… 625 …argspec: "args=[\'node_ids\', \'gradients\', \'hessians\', \'feature_indices\', \'feature_values\'…
|
/external/tensorflow/tensorflow/go/op/ |
D | wrappers.go | 3429 func BoostedTreesAggregateStats(scope *Scope, node_ids tf.Output, gradients tf.Output, hessians tf.… 3437 node_ids, gradients, hessians, feature, 3458 func BoostedTreesMakeStatsSummary(scope *Scope, node_ids tf.Output, gradients tf.Output, hessians t… 3466 node_ids, gradients, hessians, tf.OutputList(bucketized_features_list), 9774 …seAggregateStats(scope *Scope, node_ids tf.Output, gradients tf.Output, hessians tf.Output, featur… 9782 node_ids, gradients, hessians, feature_indices, feature_values, feature_shape,
|