Home
last modified time | relevance | path

Searched refs:image_dim (Results 1 – 6 of 6) sorted by relevance

/external/mesa3d/src/compiler/nir/
Dnir_lower_input_attachments.c86 enum glsl_sampler_dim image_dim = glsl_get_sampler_dim(deref->type); in try_lower_input_load() local
87 if (image_dim != GLSL_SAMPLER_DIM_SUBPASS && in try_lower_input_load()
88 image_dim != GLSL_SAMPLER_DIM_SUBPASS_MS) in try_lower_input_load()
91 const bool multisampled = (image_dim == GLSL_SAMPLER_DIM_SUBPASS_MS); in try_lower_input_load()
109 tex->sampler_dim = image_dim; in try_lower_input_load()
140 if (image_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) { in try_lower_input_load()
Dnir.h2075 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim) in INTRINSIC_IDX_ACCESSORS()
/external/mesa3d/src/gallium/frontends/lavapipe/
Dlvp_lower_input_attachments.c58 enum glsl_sampler_dim image_dim = glsl_get_sampler_dim(deref->type); in try_lower_input_load() local
59 if (image_dim != GLSL_SAMPLER_DIM_SUBPASS && in try_lower_input_load()
60 image_dim != GLSL_SAMPLER_DIM_SUBPASS_MS) in try_lower_input_load()
/external/tensorflow/tensorflow/core/kernels/
Dconv_grad_shape_utils.cc141 int image_dim = GetTensorSpatialDimIndex(num_dims, data_format, i); in ConvBackpropComputeDimensionsV2() local
144 padding_before = explicit_paddings[2 * image_dim]; in ConvBackpropComputeDimensionsV2()
145 padding_after = explicit_paddings[2 * image_dim + 1]; in ConvBackpropComputeDimensionsV2()
149 strides, padding, padding_before, padding_after, image_dim, i, in ConvBackpropComputeDimensionsV2()
/external/libaom/libaom/test/
Dcnn_test.cc2241 const int image_dim = 8; in TEST_F() local
2297 const float *input[3] = { input_, &input_[image_dim * image_dim], in TEST_F()
2298 &input_[2 * image_dim * image_dim] }; in TEST_F()
2492 RunMultiOutCNNTest(input, image_dim, image_dim, image_dim, &cnn_config, in TEST_F()
/external/tensorflow/tensorflow/python/grappler/
Dmemory_optimizer_test.py113 def _GetMetaGraph(self, batch_size=14, image_dim=12, optimizer_scope_name=''): argument
119 name='start', shape=[batch_size, image_dim, image_dim, 5])