Searched refs:learning_phase (Results 1 – 23 of 23) sorted by relevance
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | image_preprocessing.py | 228 training = K.learning_phase() 405 training = K.learning_phase() 533 training = K.learning_phase() 822 training = K.learning_phase() 957 training = K.learning_phase() 1097 training = K.learning_phase() 1180 training = K.learning_phase() 1277 training = K.learning_phase()
|
/external/tensorflow/tensorflow/python/keras/ |
D | backend_test.py | 181 initial_learning_phase = backend.learning_phase() 183 self.assertEqual(backend.learning_phase(), 1) 184 self.assertEqual(backend.learning_phase(), initial_learning_phase) 186 self.assertEqual(backend.learning_phase(), 0) 187 self.assertEqual(backend.learning_phase(), initial_learning_phase) 191 self.assertEqual(backend.learning_phase(), initial_learning_phase) 195 self.assertEqual(backend.learning_phase(), new_learning_phase) 197 self.assertEqual(backend.learning_phase(), 1) 198 self.assertEqual(backend.learning_phase(), new_learning_phase) 201 initial_learning_phase_outside_graph = backend.learning_phase() [all …]
|
D | callbacks_v1.py | 455 if not isinstance(K.learning_phase(), int): 456 feed_dict[K.learning_phase()] = False
|
D | backend.py | 347 def learning_phase(): function 361 learning_phase = symbolic_learning_phase() 371 learning_phase = _GRAPH_LEARNING_PHASES[None] 372 _mark_func_graph_as_unsaveable(graph, learning_phase) 373 return learning_phase 380 def _mark_func_graph_as_unsaveable(graph, learning_phase): argument 391 if graph.building_function and is_placeholder(learning_phase): 582 previous_value = learning_phase() 4729 training = learning_phase()
|
/external/tensorflow/tensorflow/python/keras/feature_column/ |
D | dense_features.py | 156 training = backend.learning_phase()
|
D | sequence_feature_column.py | 148 training = backend.learning_phase()
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_distributed_v1.py | 178 strategy=current_strategy, learning_phase=1) 320 strategy=current_strategy, learning_phase=0) 473 strategy=current_strategy, learning_phase=0)
|
D | training_arrays_v1.py | 150 learning_phase=(1 if mode == ModeKeys.TRAIN else 0))
|
D | base_layer_v1.py | 727 training_value = backend.learning_phase() 732 training_value = backend.learning_phase()
|
D | base_layer.py | 1087 training_value = backend.learning_phase() 1221 training_mode = backend.learning_phase()
|
D | training_v1.py | 2615 training = K.learning_phase()
|
D | base_layer_test.py | 381 training = backend.learning_phase()
|
D | training_test.py | 3559 training = backend.learning_phase()
|
/external/tensorflow/tensorflow/python/keras/saving/saved_model/ |
D | utils.py | 160 training = default_training_value or K.learning_phase()
|
D | saved_model_test.py | 76 training = keras.backend.learning_phase()
|
/external/tensorflow/tensorflow/python/keras/premade/ |
D | wide_deep.py | 102 training = K.learning_phase()
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | dense_attention.py | 135 training = K.learning_phase()
|
D | normalization.py | 730 training = K.learning_phase()
|
D | core.py | 220 training = K.learning_phase()
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | distributed_training_utils_v1.py | 1088 def distributed_scope(strategy, learning_phase): argument 1089 with strategy.scope(), K.learning_phase_scope(learning_phase):
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | saved_model_experimental_test.py | 212 training = keras.backend.learning_phase()
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.backend.pbtxt | 256 name: "learning_phase"
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.backend.pbtxt | 264 name: "learning_phase"
|