/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | legacy_learning_rate_decay.py | 32 def exponential_decay(learning_rate, argument 99 learning_rate, decay_steps, decay_rate, staircase=staircase, name=name) 186 def polynomial_decay(learning_rate, argument 272 learning_rate, 287 def natural_exp_decay(learning_rate, argument 361 learning_rate, 375 def inverse_time_decay(learning_rate, argument 448 learning_rate, decay_steps, decay_rate, staircase=staircase, name=name) 458 def cosine_decay(learning_rate, global_step, decay_steps, alpha=0.0, name=None): argument 511 learning_rate, decay_steps, alpha=alpha, name=name) [all …]
|
D | adagrad_test.py | 85 learning_rate = lambda: 3.0 function 87 learning_rate = learning_rate() 89 ada_opt = adagrad.Adagrad(learning_rate) 136 learning_rate = 3.0 139 ada_opt = adagrad.Adagrad(learning_rate, decay=decay) 160 lr_np = learning_rate / (1 + decay * t) 178 learning_rate = 3.0 180 ada_opt = adagrad.Adagrad(learning_rate, epsilon=1.0) 218 learning_rate = 3.0 221 learning_rate, decay_steps=1.0, decay_rate=decay) [all …]
|
D | rmsprop_test.py | 106 for (dtype, learning_rate, rho, momentum, epsilon, centered) in _TESTPARAMS: 119 learning_rate=learning_rate, 163 var0_np, grads0_np, mg0_np, rms0_np, mom0_np, learning_rate, rho, 166 var1_np, grads1_np, mg1_np, rms1_np, mom1_np, learning_rate, rho, 193 learning_rate = 0.01 200 learning_rate=learning_rate, 236 lr = learning_rate / (1 + decay * t) 265 learning_rate = 0.01 272 learning_rate, decay_steps=1.0, decay_rate=decay) 274 learning_rate=lr_schedule, [all …]
|
D | gradient_descent_test.py | 94 learning_rate = 3.0 96 sgd = gradient_descent.SGD(learning_rate=learning_rate, decay=decay) 102 learning_rate = learning_rate_schedule.InverseTimeDecay( 104 sgd = gradient_descent.SGD(learning_rate=learning_rate) 110 learning_rate = learning_rate_schedule.InverseTimeDecay( 112 sgd = gradient_descent.SGD(learning_rate=learning_rate) 288 opt_2 = gradient_descent.SGD(learning_rate=0.1, lr=1.0) 289 opt_3 = gradient_descent.SGD(learning_rate=0.1) 314 learning_rate = 2.0 317 learning_rate=learning_rate, momentum=momentum) [all …]
|
D | adam_test.py | 219 learning_rate = lambda: 0.001 function 224 learning_rate = learning_rate() 229 opt = adam.Adam(learning_rate=learning_rate) 369 learning_rate = 0.001 376 learning_rate=learning_rate, 387 lr_np = learning_rate / (1 + decay * t) 414 learning_rate = 0.001 417 learning_rate, decay_steps=1.0, decay_rate=decay) 423 learning_rate=lr_schedule, 434 lr_np = learning_rate / (1 + decay * t) [all …]
|
D | optimizer_v2_test.py | 120 sgd.learning_rate = 0.5 131 sgd.learning_rate = learning_rate_schedule.InverseTimeDecay( 289 opt = gradient_descent.SGD(learning_rate=1.0) 342 opt = gradient_descent.SGD(learning_rate=1.0, clipvalue=1.0) 353 opt = gradient_descent.SGD(learning_rate=1.0, clipnorm=1.0) 366 opt = gradient_descent.SGD(learning_rate=1.0, global_clipnorm=2.0) 378 gradient_descent.SGD(learning_rate=1.0, clipnorm=-1.0) 385 opt = gradient_descent.SGD(learning_rate=1.0, **{clip_type: 2.0}) 393 gradient_descent.SGD(learning_rate=1.0, invalidkwargs=1.0) 398 opt1 = adam.Adam(learning_rate=1.0) [all …]
|
D | nadam.py | 68 learning_rate=0.001, argument 76 learning_rate = kwargs.get('lr', learning_rate) 77 if isinstance(learning_rate, learning_rate_schedule.LearningRateSchedule): 83 self._set_hyper('learning_rate', kwargs.get('lr', learning_rate))
|
/external/tensorflow/tensorflow/python/keras/benchmarks/keras_examples_benchmarks/ |
D | mnist_irnn_benchmark_test.py | 32 self.learning_rate = 1e-6 72 optimizer=tf.keras.optimizers.RMSprop(learning_rate=self.learning_rate), 88 optimizer=tf.keras.optimizers.RMSprop(learning_rate=self.learning_rate), 104 optimizer=tf.keras.optimizers.RMSprop(learning_rate=self.learning_rate), 125 optimizer=tf.keras.optimizers.RMSprop(learning_rate=self.learning_rate),
|
D | cifar10_cnn_benchmark_test.py | 81 optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0001, decay=1e-6), 98 optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0001, decay=1e-6), 115 optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0001, decay=1e-6), 137 optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0001, decay=1e-6),
|
/external/tensorflow/tensorflow/python/training/ |
D | momentum.py | 46 def __init__(self, learning_rate, momentum, argument 81 self._learning_rate = learning_rate 90 learning_rate = self._learning_rate 91 if callable(learning_rate): 92 learning_rate = learning_rate() 93 self._learning_rate_tensor = ops.convert_to_tensor(learning_rate,
|
D | gradient_descent.py | 34 def __init__(self, learning_rate, use_locking=False, name="GradientDescent"): argument 52 self._learning_rate = learning_rate 80 learning_rate = self._call_if_callable(self._learning_rate) 82 learning_rate, name="learning_rate")
|
D | rmsprop_test.py | 95 for (dtype, learning_rate, decay, momentum, 113 learning_rate=learning_rate, 151 var0_np, grads0_np, mg0_np, rms0_np, mom0_np, learning_rate, 154 var1_np, grads1_np, mg1_np, rms1_np, mom1_np, learning_rate, 177 learning_rate=1.0, 201 learning_rate=1.0, 219 for (dtype, learning_rate, decay, 239 learning_rate=learning_rate, 277 learning_rate, decay, momentum, epsilon, centered) 280 learning_rate, decay, momentum, epsilon, centered) [all …]
|
D | adagrad.py | 41 def __init__(self, learning_rate, initial_accumulator_value=0.1, argument 67 self._learning_rate = learning_rate 93 learning_rate = self._call_if_callable(self._learning_rate) 95 learning_rate, name="learning_rate")
|
D | momentum_test.py | 61 learning_rate = lambda: 2.0 function 64 learning_rate = learning_rate() 67 learning_rate=learning_rate, momentum=momentum) 181 learning_rate=2.0, momentum=0.9, use_nesterov=True) 215 learning_rate=2.0, momentum=0.9, use_nesterov=True) 255 opt = momentum_lib.MomentumOptimizer(learning_rate=1.0, momentum=0.0) 280 opt = momentum_lib.MomentumOptimizer(learning_rate=1.0, momentum=0.0) 295 learning_rate=constant_op.constant(2.0), 454 mom_opt = momentum_lib.MomentumOptimizer(learning_rate=0.1, momentum=0.1) 474 learning_rate=2.0, momentum=0.9) [all …]
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_embedding.py | 72 learning_rate=None, argument 133 if learning_rate is not None and learning_rate_fn is not None: 136 learning_rate, learning_rate_fn)) 147 combiner, hot_id_replication, learning_rate, 372 learning_rate: float, 381 self.learning_rate = learning_rate 419 learning_rate: float, 449 learning_rate=learning_rate, 475 learning_rate: float, 511 learning_rate=learning_rate, [all …]
|
D | tpu_embedding_v2_utils.py | 55 learning_rate: Union[float, Callable[[], float]], 63 self.learning_rate = learning_rate 216 learning_rate: Union[float, Callable[[], float]] = 0.01, 247 learning_rate, use_gradient_accumulation, clip_weight_min, 318 learning_rate: float = 0.001, 354 learning_rate, use_gradient_accumulation, clip_weight_min, 433 learning_rate: Union[float, Callable[[], float]] = 0.001, 486 learning_rate, use_gradient_accumulation, clip_weight_min,
|
/external/webrtc/rtc_base/ |
D | rolling_accumulator.h | 109 double ComputeWeightedMean(double learning_rate) const { in ComputeWeightedMean() argument 110 if (count() < 1 || learning_rate <= 0.0 || learning_rate >= 1.0) { in ComputeWeightedMean() 118 current_weight *= learning_rate; in ComputeWeightedMean()
|
/external/tensorflow/tensorflow/core/kernels/boosted_trees/ |
D | training_ops.cc | 79 const auto learning_rate = learning_rate_t->scalar<float>()(); in Compute() local 84 FindBestSplitsPerNode(context, learning_rate, node_ids_list, gains_list, in Compute() 170 OpKernelContext* const context, const float learning_rate, in FindBestSplitsPerNode() argument 200 learning_rate * left_node_contribs(candidate_idx, 0)); in FindBestSplitsPerNode() 202 learning_rate * right_node_contribs(candidate_idx, 0)); in FindBestSplitsPerNode() 281 const auto learning_rate = learning_rate_t->scalar<float>()(); in Compute() local 289 FindBestSplitsPerNode(context, learning_rate, node_ids_list, gains_list, in Compute() 390 OpKernelContext* const context, const float learning_rate, in FindBestSplitsPerNode() argument 427 learning_rate * left_node_contribs(candidate_idx, i)); in FindBestSplitsPerNode() 429 learning_rate * right_node_contribs(candidate_idx, i)); in FindBestSplitsPerNode()
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | rmsprop_test.py | 75 learning_rate = 3.0 76 rms_opt = rmsprop.RMSPropOptimizer(learning_rate, centered=centered) 108 learning_rate, 116 learning_rate,
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/ |
D | loss_scale_optimizer_test.py | 177 learning_rate = 2. 178 expected_gradient = variables.Variable(learning_rate / 182 opt = gradient_descent.SGD(learning_rate) 202 2 * learning_rate / strategy.num_replicas_in_sync)) 221 learning_rate = 2. 225 opt = gradient_descent.SGD(learning_rate, **{clip_type: 2.0}) 293 learning_rate = 2. 296 opt = gradient_descent.SGD(learning_rate) 398 opt = adam.Adam(learning_rate=1.0, beta_1=0.5, beta_2=0.9) 408 self.assertIs(lso.lr, lso.learning_rate) [all …]
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | keras_premade_models_test.py | 73 opt = gradient_descent.SGD(learning_rate=0.1) 88 linear_opt = gradient_descent.SGD(learning_rate=0.05) 89 dnn_opt = adagrad.Adagrad(learning_rate=0.1)
|
D | simple_models.py | 54 optimizer = gradient_descent.SGD(learning_rate=0.001) 79 optimizer = gradient_descent.SGD(learning_rate=0.001) 109 optimizer = gradient_descent.SGD(learning_rate=0.001)
|
/external/tensorflow/tensorflow/python/kernel_tests/boosted_trees/ |
D | training_ops_test.py | 72 learning_rate=0.1, 179 learning_rate=0.1, 288 learning_rate=0.1, 401 learning_rate=0.1, 615 learning_rate=0.1, 813 learning_rate=0.1, 1016 learning_rate=0.1, 1231 learning_rate=0.1, 1459 learning_rate=0.1, 1611 learning_rate=0.1, [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_eager_test.py | 83 optimizer = rmsprop.RMSprop(learning_rate=0.001) 155 optimizer = rmsprop.RMSprop(learning_rate=0.001) 179 model.compile(optimizer=rmsprop.RMSprop(learning_rate=0.001), 204 optimizer = rmsprop.RMSprop(learning_rate=0.001) 248 optimizer=rmsprop.RMSprop(learning_rate=0.001, **optimizer_kwargs), 269 optimizer=rmsprop.RMSprop(learning_rate=0.001, clipvalue=0.0), 291 optimizer=rmsprop.RMSprop(learning_rate=0.001),
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
D | BoostedTreesUpdateEnsembleV2.pbtxt | 51 name: "learning_rate" 115 name: "learning_rate" 187 name: "learning_rate"
|