Searched refs:linear_model (Results 1 – 11 of 11) sorted by relevance
/external/tensorflow/tensorflow/python/keras/premade/ |
D | wide_deep_test.py | 43 linear_model = linear.LinearModel(units=1) 45 wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) 60 linear_model = linear.LinearModel(units=1, kernel_initializer='zeros') 63 wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) 79 self.evaluate(wide_deep_model.linear_model.dense_layers[0].kernel)) 85 linear_model = linear.LinearModel(units=1) 87 wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) 101 linear_model = training.Model(inp, [l1, l2]) 102 linear_model.set_weights([np.asarray([[0.5, 0.3]])]) 107 wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model) [all …]
|
D | wide_deep.py | 74 def __init__(self, linear_model, dnn_model, activation=None, **kwargs): argument 89 self.linear_model = linear_model 98 linear_output = self.linear_model(linear_inputs) 123 linear_vars = self.linear_model.trainable_variables 167 params=self.linear_model.trainable_weights, # pylint: disable=protected-access 197 linear_config = generic_utils.serialize_keras_object(self.linear_model) 210 linear_model = layer_module.deserialize(linear_config, custom_objects) 216 linear_model=linear_model,
|
D | linear_test.py | 167 linear_model = linear.LinearModel( 169 combined = sequential.Sequential([dense_feature_layer, linear_model]) 178 linear_model = linear.LinearModel(units=3, use_bias=True) 179 config = linear_model.get_config() 181 self.assertEqual(linear_model.units, cloned_linear_model.units)
|
/external/tensorflow/tensorflow/python/feature_column/ |
D | feature_column_v2_test.py | 438 predictions = fc_old.linear_model(features, [price]) 668 predictions = fc_old.linear_model(features, [bucketized_price]) 696 predictions = fc_old.linear_model(features, [bucketized_price]) 725 predictions = fc_old.linear_model(features, [bucketized_price]) 965 predictions = fc_old.linear_model({ 1233 predictions = fc_old.linear_model({ 1316 fc_old.linear_model({ 1343 predictions = fc_old.linear_model({ 1412 fc_old.linear_model(features={}, feature_columns=[]) 1416 fc_old.linear_model(features={'a': [[0]]}, feature_columns='NotSupported') [all …]
|
D | feature_column_test.py | 355 predictions = fc.linear_model(features, [price]) 549 predictions = fc.linear_model(features, [bucketized_price]) 577 predictions = fc.linear_model(features, [bucketized_price]) 853 predictions = fc.linear_model({ 1113 predictions = fc.linear_model({ 1170 fc.linear_model({ 1311 fc.linear_model(features={}, feature_columns=[]) 1315 fc.linear_model(features={'a': [[0]]}, feature_columns='NotSupported') 1334 fc.linear_model( 1340 fc.linear_model( [all …]
|
D | feature_column.py | 369 def linear_model(features, function
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | keras_premade_models_test.py | 85 linear_model = linear.LinearModel(units=1) 87 wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.feature_column.pbtxt | 40 name: "linear_model"
|
D | tensorflow.keras.experimental.-wide-deep-model.pbtxt | 154 …argspec: "args=[\'self\', \'linear_model\', \'dnn_model\', \'activation\'], varargs=None, keywords…
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.experimental.-wide-deep-model.pbtxt | 154 …argspec: "args=[\'self\', \'linear_model\', \'dnn_model\', \'activation\'], varargs=None, keywords…
|
/external/tensorflow/tensorflow/python/training/ |
D | warm_starting_util_test.py | 106 fc.linear_model( 1147 fc.linear_model(
|