1 // Copyright 2019 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "SpirvShader.hpp"
16
17 #include "System/Types.hpp"
18
19 // If enabled, each instruction will be printed before defining.
20 #define PRINT_EACH_DEFINED_DBG_INSTRUCTION 0
21 // If enabled, each instruction will be printed before emitting.
22 #define PRINT_EACH_EMITTED_INSTRUCTION 0
23 // If enabled, each instruction will be printed before executing.
24 #define PRINT_EACH_EXECUTED_INSTRUCTION 0
25 // If enabled, debugger variables will contain debug information (addresses,
26 // byte offset, etc).
27 #define DEBUG_ANNOTATE_VARIABLE_KEYS 0
28
29 #ifdef ENABLE_VK_DEBUGGER
30
31 # include "Vulkan/Debug/Context.hpp"
32 # include "Vulkan/Debug/File.hpp"
33 # include "Vulkan/Debug/Thread.hpp"
34 # include "Vulkan/Debug/Variable.hpp"
35 # include "Vulkan/Debug/EventListener.hpp"
36
37 # include "spirv/unified1/OpenCLDebugInfo100.h"
38 # include "spirv-tools/libspirv.h"
39
40 # include <algorithm>
41 # include <queue>
42
43 ////////////////////////////////////////////////////////////////////////////////
44 // namespace sw::SIMD
45 // Adds sw::SIMD::PerLane<> and typedefs for C++ versions of the Reactor SIMD
46 // types (sw::SIMD::Int, etc)
47 ////////////////////////////////////////////////////////////////////////////////
48 namespace sw {
49 namespace SIMD {
50
51 // PerLane is a SIMD vector that holds N vectors of width SIMD::Width.
52 // PerLane operator[] returns the elements of a single lane (a transpose of the
53 // storage arrays).
54 template<typename T, int N = 1>
55 struct PerLane
56 {
operator []sw::SIMD::PerLane57 sw::vec<T, N> operator[](int lane) const
58 {
59 sw::vec<T, N> out;
60 for(int i = 0; i < N; i++)
61 {
62 out[i] = elements[i][lane];
63 }
64 return out;
65 }
66 std::array<sw::vec<T, Width>, N> elements;
67 };
68
69 template<typename T>
70 struct PerLane<T, 1>
71 {
operator []sw::SIMD::PerLane72 const T &operator[](int lane) const { return data[lane]; }
73 std::array<T, Width> data;
74 };
75
76 using uint_t = PerLane<unsigned int>;
77 using uint2 = PerLane<unsigned int, 2>;
78 using uint3 = PerLane<unsigned int, 3>;
79 using uint4 = PerLane<unsigned int, 4>;
80
81 using int_t = PerLane<int>;
82 using int2 = PerLane<int, 2>;
83 using int3 = PerLane<int, 3>;
84 using int4 = PerLane<int, 4>;
85
86 using float_t = PerLane<float>;
87 using vec2 = PerLane<float, 2>;
88 using vec3 = PerLane<float, 3>;
89 using vec4 = PerLane<float, 4>;
90
91 } // namespace SIMD
92 } // namespace sw
93
94 ////////////////////////////////////////////////////////////////////////////////
95 // namespace ::(anonymous)
96 // Utility functions
97 ////////////////////////////////////////////////////////////////////////////////
98 namespace {
99
100 // vecElementName() returns the element name for the i'th vector element of
101 // size n.
102 // Vectors of size 4 or less use a [x,y,z,w] element naming scheme.
103 // Larger vectors use a number index naming scheme.
vecElementName(int i,int n)104 std::string vecElementName(int i, int n)
105 {
106 return (n > 4) ? std::to_string(i) : &"x\0y\0z\0w\0"[i * 2];
107 }
108
109 // laneName() returns a string describing values for the lane i.
laneName(int i)110 std::string laneName(int i)
111 {
112 return "Lane " + std::to_string(i);
113 }
114
115 // isEntryBreakpointForShaderType() returns true if name is equal to the
116 // special entry breakpoint name for the given shader type.
117 // This allows the IDE to request all shaders of the given type to break on
118 // entry.
isEntryBreakpointForShaderType(spv::ExecutionModel type,const std::string & name)119 bool isEntryBreakpointForShaderType(spv::ExecutionModel type, const std::string &name)
120 {
121 switch(type)
122 {
123 case spv::ExecutionModelGLCompute: return name == "ComputeShader";
124 case spv::ExecutionModelFragment: return name == "FragmentShader";
125 case spv::ExecutionModelVertex: return name == "VertexShader";
126 default: return false;
127 }
128 }
129
130 // makeDbgValue() returns a vk::dbg::Value that contains a copy of val.
131 template<typename T>
makeDbgValue(const T & val)132 std::shared_ptr<vk::dbg::Value> makeDbgValue(const T &val)
133 {
134 return vk::dbg::make_constant(val);
135 }
136
137 // makeDbgValue() returns a vk::dbg::Value that contains a copy of vec.
138 template<typename T, int N>
makeDbgValue(const sw::vec<T,N> & vec)139 std::shared_ptr<vk::dbg::Value> makeDbgValue(const sw::vec<T, N> &vec)
140 {
141 return vk::dbg::Struct::create("vec" + std::to_string(N), [&](auto &vc) {
142 for(int i = 0; i < N; i++)
143 {
144 vc->put(vecElementName(i, N), makeDbgValue<T>(vec[i]));
145 }
146 });
147 }
148
149 // NullptrValue is an implementation of vk::dbg::Value that simply displays
150 // "<null>" for the given type.
151 class NullptrValue : public vk::dbg::Value
152 {
153 public:
NullptrValue(const std::string & ty)154 NullptrValue(const std::string &ty)
155 : ty(ty)
156 {}
type()157 std::string type() override { return ty; }
get(const vk::dbg::FormatFlags &)158 std::string get(const vk::dbg::FormatFlags &) { return "<null>"; }
159
160 private:
161 std::string ty;
162 };
163
164 // store() emits a store instruction to copy val into ptr.
165 template<typename T>
store(const rr::RValue<rr::Pointer<rr::Byte>> & ptr,const rr::RValue<T> & val)166 void store(const rr::RValue<rr::Pointer<rr::Byte>> &ptr, const rr::RValue<T> &val)
167 {
168 *rr::Pointer<T>(ptr) = val;
169 }
170
171 // store() emits a store instruction to copy val into ptr.
172 template<typename T>
store(const rr::RValue<rr::Pointer<rr::Byte>> & ptr,const T & val)173 void store(const rr::RValue<rr::Pointer<rr::Byte>> &ptr, const T &val)
174 {
175 *rr::Pointer<T>(ptr) = val;
176 }
177
178 // clang-format off
179 template<typename T> struct ReactorTypeSize {};
180 template<> struct ReactorTypeSize<rr::Int> { static constexpr const int value = 4; };
181 template<> struct ReactorTypeSize<rr::Float> { static constexpr const int value = 4; };
182 template<> struct ReactorTypeSize<rr::Int4> { static constexpr const int value = 16; };
183 template<> struct ReactorTypeSize<rr::Float4> { static constexpr const int value = 16; };
184 // clang-format on
185
186 // store() emits a store instruction to copy val into ptr.
187 template<typename T, std::size_t N>
store(const rr::RValue<rr::Pointer<rr::Byte>> & ptr,const std::array<T,N> & val)188 void store(const rr::RValue<rr::Pointer<rr::Byte>> &ptr, const std::array<T, N> &val)
189 {
190 for(std::size_t i = 0; i < N; i++)
191 {
192 store<T>(ptr + i * ReactorTypeSize<T>::value, val[i]);
193 }
194 }
195
196 // ArgTy<F>::type resolves to the single argument type of the function F.
197 template<typename F>
198 struct ArgTy
199 {
200 using type = typename ArgTy<decltype(&F::operator())>::type;
201 };
202
203 // ArgTy<F>::type resolves to the single argument type of the template method.
204 template<typename R, typename C, typename Arg>
205 struct ArgTy<R (C::*)(Arg) const>
206 {
207 using type = typename std::decay<Arg>::type;
208 };
209
210 // ArgTyT resolves to the single argument type of the template function or
211 // method F.
212 template<typename F>
213 using ArgTyT = typename ArgTy<F>::type;
214
215 // getOrCreate() searchs the map for the given key. If the map contains an entry
216 // with the given key, then the value is returned. Otherwise, create() is called
217 // and the returned value is placed into the map with the given key, and this
218 // value is returned.
219 // create is a function with the signature:
220 // V()
221 template<typename K, typename V, typename CREATE, typename HASH>
getOrCreate(std::unordered_map<K,V,HASH> & map,const K & key,CREATE && create)222 V getOrCreate(std::unordered_map<K, V, HASH> &map, const K &key, CREATE &&create)
223 {
224 auto it = map.find(key);
225 if(it != map.end())
226 {
227 return it->second;
228 }
229 auto val = create();
230 map.emplace(key, val);
231 return val;
232 }
233
234 // HoversFromLocals is an implementation of vk::dbg::Variables that is used to
235 // provide a scope's 'hover' variables - those that appear when you place the
236 // cursor over a variable in an IDE.
237 // Unlike the top-level SIMD lane grouping of variables in Frame::locals,
238 // Frame::hovers displays each variable as a value per SIMD lane.
239 // Instead maintaining another collection of variables per scope,
240 // HoversFromLocals dynamically builds the hover information from the locals.
241 class HoversFromLocals : public vk::dbg::Variables
242 {
243 public:
HoversFromLocals(const std::shared_ptr<vk::dbg::Variables> & locals)244 HoversFromLocals(const std::shared_ptr<vk::dbg::Variables> &locals)
245 : locals(locals)
246 {}
247
foreach(size_t startIndex,size_t count,const ForeachCallback & cb)248 void foreach(size_t startIndex, size_t count, const ForeachCallback &cb) override
249 {
250 // No op - hovers are only searched, never iterated.
251 }
252
get(const std::string & name)253 std::shared_ptr<vk::dbg::Value> get(const std::string &name) override
254 {
255 // Is the hover variable a SIMD-common variable? If so, just return
256 // that.
257 if(auto val = locals->get(name))
258 {
259 return val;
260 }
261
262 // Search each of the lanes for the named variable.
263 // Collect them all up, and return that in a new Struct value.
264 bool found = false;
265 auto str = vk::dbg::Struct::create("", [&](auto &vc) {
266 for(int lane = 0; lane < sw::SIMD::Width; lane++)
267 {
268 auto laneN = laneName(lane);
269 if(auto laneV = locals->get(laneN))
270 {
271 if(auto children = laneV->children())
272 {
273 if(auto val = children->get(name))
274 {
275 vc->put(laneN, val);
276 found = true;
277 }
278 }
279 }
280 }
281 });
282
283 if(found)
284 {
285 // The value returned will be returned to the debug client by
286 // identifier. As the value is a Struct, the server will include
287 // a handle to the Variables, which needs to be kept alive so the
288 // client can send a request for its members.
289 // lastFind keeps any nested Variables alive long enough for them to
290 // be requested.
291 lastFind = str;
292 return str;
293 }
294
295 return nullptr;
296 }
297
298 private:
299 std::shared_ptr<vk::dbg::Variables> locals;
300 std::shared_ptr<vk::dbg::Struct> lastFind;
301 };
302
303 } // anonymous namespace
304
305 namespace spvtools {
306
307 // Function implemented in third_party/SPIRV-Tools/source/disassemble.cpp
308 // but with no public header.
309 // This is a C++ function, so the name is mangled, and signature changes will
310 // result in a linker error instead of runtime signature mismatches.
311 extern std::string spvInstructionBinaryToText(const spv_target_env env,
312 const uint32_t *inst_binary,
313 const size_t inst_word_count,
314 const uint32_t *binary,
315 const size_t word_count,
316 const uint32_t options);
317
318 } // namespace spvtools
319
320 ////////////////////////////////////////////////////////////////////////////////
321 // namespace ::(anonymous)::debug
322 // OpenCL.Debug.100 data structures
323 ////////////////////////////////////////////////////////////////////////////////
324 namespace {
325 namespace debug {
326
327 struct Declare;
328 struct LocalVariable;
329 struct Member;
330 struct Value;
331
332 // Object is the common base class for all the OpenCL.Debug.100 data structures.
333 struct Object
334 {
335 enum class Kind
336 {
337 Object,
338 Declare,
339 Expression,
340 Function,
341 InlinedAt,
342 GlobalVariable,
343 LocalVariable,
344 Member,
345 Operation,
346 Source,
347 SourceScope,
348 Value,
349 TemplateParameter,
350
351 // Scopes
352 CompilationUnit,
353 LexicalBlock,
354
355 // Types
356 BasicType,
357 ArrayType,
358 VectorType,
359 FunctionType,
360 CompositeType,
361 TemplateType,
362 };
363
364 using ID = sw::SpirvID<Object>;
365 static constexpr auto KIND = Kind::Object;
Object__anon476f5b010411::debug::Object366 inline Object(Kind kind)
367 : kind(kind)
368 {
369 (void)KIND; // Used in debug builds. Avoid unused variable warnings in NDEBUG builds.
370 }
371 const Kind kind;
372
373 // kindof() returns true iff kind is of this type, or any type deriving from
374 // this type.
kindof__anon476f5b010411::debug::Object375 static constexpr bool kindof(Object::Kind kind) { return true; }
376
377 virtual ~Object() = default;
378 };
379
380 // cstr() returns the c-string name of the given Object::Kind.
cstr(Object::Kind k)381 constexpr const char *cstr(Object::Kind k)
382 {
383 switch(k)
384 {
385 case Object::Kind::Object: return "Object";
386 case Object::Kind::Declare: return "Declare";
387 case Object::Kind::Expression: return "Expression";
388 case Object::Kind::Function: return "Function";
389 case Object::Kind::InlinedAt: return "InlinedAt";
390 case Object::Kind::GlobalVariable: return "GlobalVariable";
391 case Object::Kind::LocalVariable: return "LocalVariable";
392 case Object::Kind::Member: return "Member";
393 case Object::Kind::Operation: return "Operation";
394 case Object::Kind::Source: return "Source";
395 case Object::Kind::SourceScope: return "SourceScope";
396 case Object::Kind::Value: return "Value";
397 case Object::Kind::TemplateParameter: return "TemplateParameter";
398 case Object::Kind::CompilationUnit: return "CompilationUnit";
399 case Object::Kind::LexicalBlock: return "LexicalBlock";
400 case Object::Kind::BasicType: return "BasicType";
401 case Object::Kind::ArrayType: return "ArrayType";
402 case Object::Kind::VectorType: return "VectorType";
403 case Object::Kind::FunctionType: return "FunctionType";
404 case Object::Kind::CompositeType: return "CompositeType";
405 case Object::Kind::TemplateType: return "TemplateType";
406 }
407 return "<unknown>";
408 }
409
410 // ObjectImpl is a helper template struct which simplifies deriving from Object.
411 // ObjectImpl passes down the KIND to the Object constructor, and implements
412 // kindof().
413 template<typename TYPE, typename BASE, Object::Kind KIND>
414 struct ObjectImpl : public BASE
415 {
416 using ID = sw::SpirvID<TYPE>;
417 static constexpr auto Kind = KIND;
418
ObjectImpl__anon476f5b010411::debug::ObjectImpl419 ObjectImpl()
420 : BASE(Kind)
421 {}
422 static_assert(BASE::kindof(KIND), "BASE::kindof() returned false");
423
424 // kindof() returns true iff kind is of this type, or any type deriving from
425 // this type.
kindof__anon476f5b010411::debug::ObjectImpl426 static constexpr bool kindof(Object::Kind kind) { return kind == Kind; }
427 };
428
429 // cast() casts the debug type pointer obj to TO.
430 // If obj is null or not of the type TO, then nullptr is returned.
431 template<typename TO, typename FROM>
cast(FROM * obj)432 TO *cast(FROM *obj)
433 {
434 if(obj == nullptr) { return nullptr; } // None
435 return (TO::kindof(obj->kind)) ? static_cast<TO *>(obj) : nullptr;
436 }
437
438 // cast() casts the debug type pointer obj to TO.
439 // If obj is null or not of the type TO, then nullptr is returned.
440 template<typename TO, typename FROM>
cast(const FROM * obj)441 const TO *cast(const FROM *obj)
442 {
443 if(obj == nullptr) { return nullptr; } // None
444 return (TO::kindof(obj->kind)) ? static_cast<const TO *>(obj) : nullptr;
445 }
446
447 // Scope is the base class for all OpenCL.DebugInfo.100 scope objects.
448 struct Scope : public Object
449 {
450 using ID = sw::SpirvID<Scope>;
Scope__anon476f5b010411::debug::Scope451 inline Scope(Kind kind)
452 : Object(kind)
453 {}
454
455 // kindof() returns true iff kind is of this type, or any type deriving from
456 // this type.
kindof__anon476f5b010411::debug::Scope457 static constexpr bool kindof(Kind kind)
458 {
459 return kind == Kind::CompilationUnit ||
460 kind == Kind::Function ||
461 kind == Kind::LexicalBlock;
462 }
463
464 struct Source *source = nullptr;
465 Scope *parent = nullptr;
466 };
467
468 // Type is the base class for all OpenCL.DebugInfo.100 type objects.
469 struct Type : public Object
470 {
471 using ID = sw::SpirvID<Type>;
472
473 struct Member
474 {
475 Type *type;
476 std::string name;
477 };
478
Type__anon476f5b010411::debug::Type479 inline Type(Kind kind)
480 : Object(kind)
481 {}
482
483 // kindof() returns true iff kind is of this type, or any type deriving from
484 // this type.
kindof__anon476f5b010411::debug::Type485 static constexpr bool kindof(Kind kind)
486 {
487 return kind == Kind::BasicType ||
488 kind == Kind::ArrayType ||
489 kind == Kind::VectorType ||
490 kind == Kind::FunctionType ||
491 kind == Kind::CompositeType ||
492 kind == Kind::TemplateType;
493 }
494
495 // name() returns the type name.
496 virtual std::string name() const = 0;
497
498 // sizeInBytes() returns the number of bytes of the given debug type.
499 virtual uint32_t sizeInBytes() const = 0;
500
501 // value() returns a shared pointer to a vk::dbg::Value that views the data
502 // at ptr of this type.
503 virtual std::shared_ptr<vk::dbg::Value> value(void *ptr, bool interleaved) const = 0;
504
505 // numMembers() returns the number of members for the given type.
506 virtual size_t numMembers() const = 0;
507
508 // getMember() returns the member by index.
509 virtual Member getMember(size_t) const = 0;
510
511 // undefined() returns a shared pointer to a vk::dbg::Value that represents
512 // an undefined value of this type.
undefined__anon476f5b010411::debug::Type513 std::shared_ptr<vk::dbg::Value> undefined() const
514 {
515 struct Undef : public vk::dbg::Value
516 {
517 Undef(const std::string &ty)
518 : ty(ty)
519 {}
520 const std::string ty;
521 std::string type() override { return ty; }
522 std::string get(const vk::dbg::FormatFlags &) override { return "<undefined>"; }
523 };
524 return std::make_shared<Undef>(name());
525 }
526 };
527
528 // CompilationUnit represents the OpenCL.DebugInfo.100 DebugCompilationUnit
529 // instruction.
530 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugCompilationUnit
531 struct CompilationUnit : ObjectImpl<CompilationUnit, Scope, Object::Kind::CompilationUnit>
532 {
533 };
534
535 // Source represents the OpenCL.DebugInfo.100 DebugSource instruction.
536 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugSource
537 struct Source : ObjectImpl<Source, Object, Object::Kind::Source>
538 {
539 spv::SourceLanguage language;
540 uint32_t version = 0;
541 std::string file;
542 std::string source;
543
544 std::shared_ptr<vk::dbg::File> dbgFile;
545 };
546
547 // BasicType represents the OpenCL.DebugInfo.100 DebugBasicType instruction.
548 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugBasicType
549 struct BasicType : ObjectImpl<BasicType, Type, Object::Kind::BasicType>
550 {
551 std::string name_;
552 uint32_t size = 0; // in bits.
553 OpenCLDebugInfo100DebugBaseTypeAttributeEncoding encoding = OpenCLDebugInfo100Unspecified;
554
name__anon476f5b010411::debug::BasicType555 std::string name() const override { return name_; }
sizeInBytes__anon476f5b010411::debug::BasicType556 uint32_t sizeInBytes() const override { return size / 8; }
numMembers__anon476f5b010411::debug::BasicType557 size_t numMembers() const override { return 0; }
getMember__anon476f5b010411::debug::BasicType558 Member getMember(size_t) const override { return {}; }
559
value__anon476f5b010411::debug::BasicType560 std::shared_ptr<vk::dbg::Value> value(void *ptr, bool interleaved) const override
561 {
562 if(ptr == nullptr) { return std::make_shared<NullptrValue>(name()); }
563
564 switch(encoding)
565 {
566 case OpenCLDebugInfo100Address:
567 // return vk::dbg::make_reference(*static_cast<void **>(ptr));
568 UNIMPLEMENTED("b/148401179 OpenCLDebugInfo100 OpenCLDebugInfo100Address BasicType");
569 return nullptr;
570 case OpenCLDebugInfo100Boolean:
571 return vk::dbg::make_reference(*static_cast<bool *>(ptr));
572 case OpenCLDebugInfo100Float:
573 return vk::dbg::make_reference(*static_cast<float *>(ptr));
574 case OpenCLDebugInfo100Signed:
575 return vk::dbg::make_reference(*static_cast<int32_t *>(ptr));
576 case OpenCLDebugInfo100SignedChar:
577 return vk::dbg::make_reference(*static_cast<int8_t *>(ptr));
578 case OpenCLDebugInfo100Unsigned:
579 return vk::dbg::make_reference(*static_cast<uint32_t *>(ptr));
580 case OpenCLDebugInfo100UnsignedChar:
581 return vk::dbg::make_reference(*static_cast<uint8_t *>(ptr));
582 default:
583 UNIMPLEMENTED("b/148401179 OpenCLDebugInfo100 encoding %d", int(encoding));
584 return nullptr;
585 }
586 }
587 };
588
589 // ArrayType represents the OpenCL.DebugInfo.100 DebugTypeArray instruction.
590 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugTypeArray
591 //
592 // Unlike OpenCL.DebugInfo.100's DebugTypeArray, ArrayType is always
593 // single-dimensional. Multi-dimensional arrays are transformed into multiple
594 // nested ArrayTypes. This is done to simplify logic.
595 struct ArrayType : ObjectImpl<ArrayType, Type, Object::Kind::ArrayType>
596 {
597 Type *base = nullptr;
598 bool ownsBase = false; // If true, base is owned by this ArrayType.
599 uint32_t size; // In elements
600
~ArrayType__anon476f5b010411::debug::ArrayType601 ~ArrayType()
602 {
603 if(ownsBase) { delete base; }
604 }
605
name__anon476f5b010411::debug::ArrayType606 std::string name() const override { return base->name() + "[]"; }
sizeInBytes__anon476f5b010411::debug::ArrayType607 uint32_t sizeInBytes() const override { return base->sizeInBytes() * size; }
numMembers__anon476f5b010411::debug::ArrayType608 size_t numMembers() const override { return size; }
getMember__anon476f5b010411::debug::ArrayType609 Member getMember(size_t i) const override { return { base, std::to_string(i) }; }
610
value__anon476f5b010411::debug::ArrayType611 std::shared_ptr<vk::dbg::Value> value(void *ptr, bool interleaved) const override
612 {
613 if(ptr == nullptr) { return std::make_shared<NullptrValue>(name()); }
614
615 auto members = std::make_shared<vk::dbg::VariableContainer>();
616
617 auto addr = static_cast<uint8_t *>(ptr);
618 for(size_t i = 0; i < size; i++)
619 {
620 auto member = getMember(i);
621
622 # if DEBUG_ANNOTATE_VARIABLE_KEYS
623 key += " (" + std::to_string(addr) + " +" + std::to_string(offset) + ", i: " + std::to_string(i) + ")" + (interleaved ? "I" : "F");
624 # endif
625 members->put(member.name, base->value(addr, interleaved));
626
627 addr += base->sizeInBytes() * (interleaved ? sw::SIMD::Width : 1);
628 }
629 return std::make_shared<vk::dbg::Struct>(name(), members);
630 }
631 };
632
633 // VectorType represents the OpenCL.DebugInfo.100 DebugTypeVector instruction.
634 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugTypeVector
635 struct VectorType : ObjectImpl<VectorType, Type, Object::Kind::VectorType>
636 {
637 Type *base = nullptr;
638 uint32_t components = 0;
639
name__anon476f5b010411::debug::VectorType640 std::string name() const override { return "vec" + std::to_string(components) + "<" + base->name() + ">"; }
sizeInBytes__anon476f5b010411::debug::VectorType641 uint32_t sizeInBytes() const override { return base->sizeInBytes() * components; }
numMembers__anon476f5b010411::debug::VectorType642 size_t numMembers() const override { return components; }
getMember__anon476f5b010411::debug::VectorType643 Member getMember(size_t i) const override { return { base, vecElementName(i, components) }; }
644
value__anon476f5b010411::debug::VectorType645 std::shared_ptr<vk::dbg::Value> value(void *ptr, bool interleaved) const override
646 {
647 if(ptr == nullptr) { return std::make_shared<NullptrValue>(name()); }
648
649 const auto elSize = base->sizeInBytes();
650 auto members = std::make_shared<vk::dbg::VariableContainer>();
651 for(uint32_t i = 0; i < components; i++)
652 {
653 auto offset = elSize * i * (interleaved ? sw::SIMD::Width : 1);
654 auto elPtr = static_cast<uint8_t *>(ptr) + offset;
655 # if DEBUG_ANNOTATE_VARIABLE_KEYS
656 elKey += " (" + std::to_string(elPtr) + " +" + std::to_string(offset) + ")" + (interleaved ? "I" : "F");
657 # endif
658 members->put(getMember(i).name, base->value(elPtr, interleaved));
659 }
660 return std::make_shared<vk::dbg::Struct>(name(), members);
661 }
662 };
663
664 // FunctionType represents the OpenCL.DebugInfo.100 DebugTypeFunction
665 // instruction.
666 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugTypeFunction
667 struct FunctionType : ObjectImpl<FunctionType, Type, Object::Kind::FunctionType>
668 {
669 uint32_t flags = 0; // OR'd from OpenCLDebugInfo100DebugInfoFlags
670 Type *returnTy = nullptr;
671 std::vector<Type *> paramTys;
672
name__anon476f5b010411::debug::FunctionType673 std::string name() const override { return "function"; }
sizeInBytes__anon476f5b010411::debug::FunctionType674 uint32_t sizeInBytes() const override { return 0; }
numMembers__anon476f5b010411::debug::FunctionType675 size_t numMembers() const override { return 0; }
getMember__anon476f5b010411::debug::FunctionType676 Member getMember(size_t i) const override { return {}; }
value__anon476f5b010411::debug::FunctionType677 std::shared_ptr<vk::dbg::Value> value(void *ptr, bool interleaved) const override { return nullptr; }
678 };
679
680 // Member represents the OpenCL.DebugInfo.100 DebugTypeMember instruction.
681 // Despite the instruction name, this is not a type - rather a member of a type.
682 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugTypeMember
683 struct Member : ObjectImpl<Member, Object, Object::Kind::Member>
684 {
685 std::string name;
686 Type *type = nullptr;
687 Source *source = nullptr;
688 uint32_t line = 0;
689 uint32_t column = 0;
690 struct CompositeType *parent = nullptr;
691 uint32_t offset = 0; // in bits
692 uint32_t size = 0; // in bits
693 uint32_t flags = 0; // OR'd from OpenCLDebugInfo100DebugInfoFlags
694 };
695
696 // CompositeType represents the OpenCL.DebugInfo.100 DebugTypeComposite
697 // instruction.
698 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugTypeComposite
699 struct CompositeType : ObjectImpl<CompositeType, Type, Object::Kind::CompositeType>
700 {
701 std::string name_;
702 OpenCLDebugInfo100DebugCompositeType tag = OpenCLDebugInfo100Class;
703 Source *source = nullptr;
704 uint32_t line = 0;
705 uint32_t column = 0;
706 Object *parent = nullptr;
707 std::string linkage;
708 uint32_t size = 0; // in bits.
709 uint32_t flags = 0; // OR'd from OpenCLDebugInfo100DebugInfoFlags
710 std::vector<debug::Member *> members_;
711
name__anon476f5b010411::debug::CompositeType712 std::string name() const override { return name_; }
sizeInBytes__anon476f5b010411::debug::CompositeType713 uint32_t sizeInBytes() const override { return size / 8; }
numMembers__anon476f5b010411::debug::CompositeType714 size_t numMembers() const override { return members_.size(); }
getMember__anon476f5b010411::debug::CompositeType715 Member getMember(size_t i) const override { return { members_[i]->type, members_[i]->name }; }
716
value__anon476f5b010411::debug::CompositeType717 std::shared_ptr<vk::dbg::Value> value(void *ptr, bool interleaved) const override
718 {
719 auto fields = std::make_shared<vk::dbg::VariableContainer>();
720 for(auto &member : members_)
721 {
722 auto offset = (member->offset / 8) * (interleaved ? sw::SIMD::Width : 1);
723 auto elPtr = static_cast<uint8_t *>(ptr) + offset;
724 auto elKey = member->name;
725 # if DEBUG_ANNOTATE_VARIABLE_KEYS
726 // elKey += " (" + std::to_string(elPtr) + " +" + std::to_string(offset) + ")" + (interleaved ? "I" : "F");
727 # endif
728 fields->put(elKey, member->type->value(elPtr, interleaved));
729 }
730 return std::make_shared<vk::dbg::Struct>(name_, fields);
731 }
732 };
733
734 // TemplateParameter represents the OpenCL.DebugInfo.100
735 // DebugTypeTemplateParameter instruction.
736 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugTypeTemplateParameter
737 struct TemplateParameter : ObjectImpl<TemplateParameter, Object, Object::Kind::TemplateParameter>
738 {
739 std::string name;
740 Type *type = nullptr;
741 uint32_t value = 0;
742 Source *source = nullptr;
743 uint32_t line = 0;
744 uint32_t column = 0;
745 };
746
747 // TemplateType represents the OpenCL.DebugInfo.100 DebugTypeTemplate
748 // instruction.
749 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugTypeTemplate
750 struct TemplateType : ObjectImpl<TemplateType, Type, Object::Kind::TemplateType>
751 {
752 Type *target = nullptr; // Class, struct or function.
753 std::vector<TemplateParameter *> parameters;
754
name__anon476f5b010411::debug::TemplateType755 std::string name() const override { return "template<>"; }
sizeInBytes__anon476f5b010411::debug::TemplateType756 uint32_t sizeInBytes() const override { return target->sizeInBytes(); }
numMembers__anon476f5b010411::debug::TemplateType757 size_t numMembers() const override { return 0; }
getMember__anon476f5b010411::debug::TemplateType758 Member getMember(size_t i) const override { return {}; }
value__anon476f5b010411::debug::TemplateType759 std::shared_ptr<vk::dbg::Value> value(void *ptr, bool interleaved) const override
760 {
761 return target->value(ptr, interleaved);
762 }
763 };
764
765 // LexicalBlock represents the OpenCL.DebugInfo.100 DebugLexicalBlock instruction.
766 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugLexicalBlock
767 struct LexicalBlock : Scope
768 {
769 using ID = sw::SpirvID<LexicalBlock>;
770 static constexpr auto Kind = Object::Kind::LexicalBlock;
771
LexicalBlock__anon476f5b010411::debug::LexicalBlock772 inline LexicalBlock(Object::Kind kind = Kind)
773 : Scope(kind)
774 {}
775
776 uint32_t line = 0;
777 uint32_t column = 0;
778 std::string name;
779
780 std::vector<LocalVariable *> variables;
781
kindof__anon476f5b010411::debug::LexicalBlock782 static constexpr bool kindof(Object::Kind kind) { return kind == Kind || kind == Object::Kind::Function; }
783 };
784
785 // Function represents the OpenCL.DebugInfo.100 DebugFunction instruction.
786 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugFunction
787 struct Function : ObjectImpl<Function, LexicalBlock, Object::Kind::Function>
788 {
789 std::string name;
790 FunctionType *type = nullptr;
791 uint32_t declLine = 0;
792 uint32_t declColumn = 0;
793 std::string linkage;
794 uint32_t flags = 0; // OR'd from OpenCLDebugInfo100DebugInfoFlags
795 sw::SpirvShader::Function::ID function;
796 };
797
798 // InlinedAt represents the OpenCL.DebugInfo.100 DebugInlinedAt instruction.
799 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugInlinedAt
800 struct InlinedAt : ObjectImpl<InlinedAt, Object, Object::Kind::InlinedAt>
801 {
802 uint32_t line = 0;
803 Scope *scope = nullptr;
804 InlinedAt *inlined = nullptr;
805 };
806
807 // SourceScope represents the OpenCL.DebugInfo.100 DebugScope instruction.
808 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugScope
809 struct SourceScope : ObjectImpl<SourceScope, Object, Object::Kind::SourceScope>
810 {
811 Scope *scope = nullptr;
812 InlinedAt *inlinedAt = nullptr;
813 };
814
815 // GlobalVariable represents the OpenCL.DebugInfo.100 DebugGlobalVariable instruction.
816 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugGlobalVariable
817 struct GlobalVariable : ObjectImpl<GlobalVariable, Object, Object::Kind::GlobalVariable>
818 {
819 std::string name;
820 Type *type = nullptr;
821 Source *source = nullptr;
822 uint32_t line = 0;
823 uint32_t column = 0;
824 Scope *parent = nullptr;
825 std::string linkage;
826 sw::SpirvShader::Object::ID variable;
827 uint32_t flags = 0; // OR'd from OpenCLDebugInfo100DebugInfoFlags
828 };
829
830 // LocalVariable represents the OpenCL.DebugInfo.100 DebugLocalVariable
831 // instruction.
832 // Local variables are essentially just a scoped variable name.
833 // Their value comes from either a DebugDeclare (which has an immutable pointer
834 // to the actual data), or from a number of DebugValues (which can change
835 // any nested members of the variable over time).
836 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugLocalVariable
837 struct LocalVariable : ObjectImpl<LocalVariable, Object, Object::Kind::LocalVariable>
838 {
839 static constexpr uint32_t NoArg = ~uint32_t(0);
840
841 enum class Definition
842 {
843 Undefined, // Variable has no defined value
844 Declaration, // Variable value comes from definition
845 Values // Variable value comes from values
846 };
847
848 std::string name;
849 Type *type = nullptr;
850 Source *source = nullptr;
851 uint32_t line = 0;
852 uint32_t column = 0;
853 Scope *parent = nullptr;
854 uint32_t arg = NoArg;
855
856 Definition definition = Definition::Undefined;
857 Declare *declaration = nullptr; // Used if definition == Definition::Declaration
858
859 // ValueNode is a tree node of debug::Value definitions.
860 // Each node in the tree represents an element in the type tree.
861 struct ValueNode
862 {
863 // NoDebugValueIndex indicates that this node is never assigned a value.
864 static constexpr const uint32_t NoDebugValueIndex = ~0u;
865
866 uint32_t debugValueIndex = NoDebugValueIndex; // Index into State::lastReachedDebugValues
867 std::unordered_map<uint32_t, std::unique_ptr<ValueNode>> children;
868 };
869 ValueNode values; // Used if definition == Definition::Values
870 };
871
872 // Operation represents the OpenCL.DebugInfo.100 DebugOperation instruction.
873 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugOperation
874 struct Operation : ObjectImpl<Operation, Object, Object::Kind::Operation>
875 {
876 uint32_t opcode = 0;
877 std::vector<uint32_t> operands;
878 };
879
880 // Expression represents the OpenCL.DebugInfo.100 DebugExpression instruction.
881 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugExpression
882 struct Expression : ObjectImpl<Expression, Object, Object::Kind::Expression>
883 {
884 std::vector<Operation *> operations;
885 };
886
887 // Declare represents the OpenCL.DebugInfo.100 DebugDeclare instruction.
888 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugDeclare
889 struct Declare : ObjectImpl<Declare, Object, Object::Kind::Declare>
890 {
891 LocalVariable *local = nullptr;
892 sw::SpirvShader::Object::ID variable;
893 Expression *expression = nullptr;
894 };
895
896 // Value represents the OpenCL.DebugInfo.100 DebugValue instruction.
897 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugValue
898 struct Value : ObjectImpl<Value, Object, Object::Kind::Value>
899 {
900 LocalVariable *local = nullptr;
901 sw::SpirvShader::Object::ID value;
902 Expression *expression = nullptr;
903 std::vector<uint32_t> indexes;
904 };
905
906 // find<T>() searches the nested scopes, returning for the first scope that is
907 // castable to type T. If no scope can be found of type T, then nullptr is
908 // returned.
909 template<typename T>
find(Scope * scope)910 T *find(Scope *scope)
911 {
912 if(auto out = cast<T>(scope)) { return out; }
913 return scope->parent ? find<T>(scope->parent) : nullptr;
914 }
915
tostring(LocalVariable::Definition def)916 inline const char *tostring(LocalVariable::Definition def)
917 {
918 switch(def)
919 {
920 case LocalVariable::Definition::Undefined: return "Undefined";
921 case LocalVariable::Definition::Declaration: return "Declaration";
922 case LocalVariable::Definition::Values: return "Values";
923 default: return "<unknown>";
924 }
925 }
926
927 } // namespace debug
928 } // anonymous namespace
929
930 ////////////////////////////////////////////////////////////////////////////////
931 // namespace ::sw
932 //
933 // Implementations for:
934 // sw::SpirvShader::Impl::Debugger
935 // sw::SpirvShader::Impl::Debugger::LocalVariableValue
936 // sw::SpirvShader::Impl::Debugger::State
937 // sw::SpirvShader::Impl::Debugger::State::Data
938 ////////////////////////////////////////////////////////////////////////////////
939 namespace sw {
940
941 ////////////////////////////////////////////////////////////////////////////////
942 // sw::SpirvShader::Impl::Debugger
943 //
944 // SpirvShader-private struct holding compile-time-mutable and
945 // execution-time-immutable debugger information.
946 //
947 // There is an instance of this class per shader program.
948 ////////////////////////////////////////////////////////////////////////////////
949 struct SpirvShader::Impl::Debugger : public vk::dbg::ClientEventListener
950 {
951 class State;
952 class LocalVariableValue;
953
954 Debugger(const SpirvShader *shader, const std::shared_ptr<vk::dbg::Context> &ctx);
955 ~Debugger();
956
957 enum class Pass
958 {
959 Define, // Pre-pass (called from SpirvShader constructor)
960 Emit // Code generation pass (called from SpirvShader::emit()).
961 };
962
963 // process() is called for each debugger instruction in two compiler passes.
964 // For the Define pass, process() constructs ::debug objects and
965 // registers them in the objects map.
966 // For the Emit pass, process() populates the fields of ::debug objects and
967 // potentially emits instructions for the shader program.
968 void process(const InsnIterator &insn, EmitState *state, Pass pass);
969
970 // finalize() must be called after all shader instruction have been emitted.
971 // finalize() allocates the trap memory and registers the Debugger for
972 // client debugger events so that it can monitor for changes in breakpoints.
973 void finalize();
974
975 // setNextSetLocationIsSteppable() indicates that the next call to
976 // setLocation() must be a debugger steppable line.
977 void setNextSetLocationIsSteppable();
978
979 // setScope() sets the current debug source scope. Used by setLocation()
980 // when the next location is debugger steppable.
981 void setScope(debug::SourceScope *);
982
983 // setLocation() sets the current codegen source location to the given file
984 // and line.
985 void setLocation(EmitState *state, const std::shared_ptr<vk::dbg::File> &, int line);
986 void setLocation(EmitState *state, const char *file, int line);
987
988 using SpirvInstruction = const void *;
989
990 const SpirvShader *const shader; // The shader program being debugged
991 std::shared_ptr<vk::dbg::Context> const ctx; // The debugger context
992 bool shaderHasDebugInfo; // True if the shader has high-level debug info (OpenCL.Debug100 instructions)
993 std::shared_ptr<vk::dbg::File> spirvFile; // Virtual file containing SPIR-V disassembly instructions
994 std::unordered_map<SpirvInstruction, int> spirvLineMappings; // Instruction pointer to line
995 std::unordered_map<SpirvInstruction, Object::ID> results; // Instruction pointer to result ID
996
997 // LocationAndScope holds a source location and scope pair.
998 struct LocationAndScope
999 {
1000 vk::dbg::Location location;
1001 debug::SourceScope *scope;
1002
operator ==sw::SpirvShader::Impl::Debugger::LocationAndScope1003 inline bool operator==(const LocationAndScope &other) const
1004 {
1005 return location == other.location && scope == other.scope;
1006 }
1007 struct Hash
1008 {
operator ()sw::SpirvShader::Impl::Debugger::LocationAndScope::Hash1009 uint64_t operator()(const LocationAndScope &l) const
1010 {
1011 return std::hash<decltype(l.location)>()(l.location) ^ std::hash<decltype(l.scope)>()(l.scope);
1012 }
1013 };
1014 };
1015
1016 // Traps holds information about debugger traps - points in the shader
1017 // program where execution may pause for the debugger, either due to hitting
1018 // a breakpoint or following a single line step.
1019 // The Traps::memory is continually read during execution of a shader,
1020 // triggering a trap when the byte is non-zero. Traps can also be enabled
1021 // via the State::alwaysTrap field.
1022 struct Traps
1023 {
1024 // Source location + scope -> line trap index
1025 std::unordered_map<LocationAndScope, size_t, LocationAndScope::Hash> byLocationAndScope;
1026
1027 // Function name -> entry trap index
1028 std::unordered_map<std::string, size_t> byFunctionName;
1029
1030 // Trap index -> source location + scope
1031 std::vector<LocationAndScope> byIndex;
1032
1033 // Trap memory - shared for all running instances of the shader.
1034 // Each byte represents a single trap enabled (1) / disabled (0) state.
1035 std::unique_ptr<uint8_t[]> memory;
1036 } traps;
1037
1038 // Shadow memory is used to construct a contiguous memory block
1039 // (State::shadow) that contains an up-to-date copy of each
1040 // SpirvShader::Object's value(s) in the currently executing shader.
1041 // Shadow memory either contains SIMD-interleaved values for all components
1042 // in the object, or a SIMD-pointer (Shadow::Pointer).
1043 struct Shadow
1044 {
1045 // Entry describes the byte offset and kind of the shadow memory for
1046 // a single SpirvShader::Object.
1047 struct Entry
1048 {
1049 enum class Kind
1050 {
1051 Value,
1052 Pointer,
1053 };
1054 Kind kind;
1055 uint32_t offset;
1056 };
1057
1058 // Pointer is the structure stored in shadow memory for pointer types.
1059 // The address for a given SIMD lane is the base + offsets[lane].
1060 struct Pointer
1061 {
1062 uint8_t *base; // Common base address for all SIMD lanes.
1063 uint32_t offsets[sw::SIMD::Width]; // Per lane offsets.
1064 };
1065
1066 // Memory is returned by get().
1067 // Memory holds a pointer (addr) to the entry in the shadow memory, and
1068 // provides the dref() method for dereferencing a pointer for the given
1069 // SIMD lane.
1070 struct Memory
1071 {
1072 inline operator void *();
1073 inline Memory dref(int lane) const;
1074 uint8_t *addr;
1075 };
1076
1077 // create() adds a new entry for the object with the given id.
1078 void create(const SpirvShader *, const EmitState *, Object::ID);
1079
1080 // get() returns a Memory pointing to the shadow memory for the object
1081 // with the given id.
1082 Memory get(const State *, Object::ID) const;
1083
1084 std::unordered_map<Object::ID, Entry> entries;
1085 uint32_t size = 0; // Total size of the shadow memory in bytes.
1086 } shadow;
1087
1088 // vk::dbg::ClientEventListener
1089 void onSetBreakpoint(const vk::dbg::Location &location, bool &handled) override;
1090 void onSetBreakpoint(const std::string &func, bool &handled) override;
1091 void onBreakpointsChanged() override;
1092
1093 private:
1094 // add() registers the debug object with the given id.
1095 template<typename ID>
1096 void add(ID id, std::unique_ptr<debug::Object> &&);
1097
1098 // addNone() registers given id as a None value or type.
1099 void addNone(debug::Object::ID id);
1100
1101 // isNone() returns true if the given id was registered as none with
1102 // addNone().
1103 bool isNone(debug::Object::ID id) const;
1104
1105 // get() returns the debug object with the given id.
1106 // The object must exist and be of type (or derive from type) T.
1107 // A returned nullptr represents a None value or type.
1108 template<typename T>
1109 T *get(SpirvID<T> id) const;
1110
1111 // getOrNull() returns the debug object with the given id if
1112 // the object exists and is of type (or derive from type) T.
1113 // Otherwise, returns nullptr.
1114 template<typename T>
1115 T *getOrNull(SpirvID<T> id) const;
1116
1117 // use get() and add() to access this
1118 std::unordered_map<debug::Object::ID, std::unique_ptr<debug::Object>> objects;
1119
1120 // defineOrEmit() when called in Pass::Define, creates and stores a
1121 // zero-initialized object into the Debugger::objects map using the
1122 // object identifier held by second instruction operand.
1123 // When called in Pass::Emit, defineOrEmit() calls the function F with the
1124 // previously-built object.
1125 //
1126 // F must be a function with the signature:
1127 // void(OBJECT_TYPE *)
1128 //
1129 // The object type is automatically inferred from the function signature.
1130 template<typename F, typename T = typename std::remove_pointer<ArgTyT<F>>::type>
1131 void defineOrEmit(InsnIterator insn, Pass pass, F &&emit);
1132
1133 std::unordered_map<std::string, std::shared_ptr<vk::dbg::File>> files;
1134 uint32_t numDebugValueSlots = 0; // Number of independent debug::Values which need to be tracked
1135 bool nextSetLocationIsSteppable = true;
1136 debug::SourceScope *lastSetScope = nullptr;
1137 vk::dbg::Location lastSetLocation;
1138 };
1139
1140 ////////////////////////////////////////////////////////////////////////////////
1141 // sw::SpirvShader::Impl::Debugger::LocalVariableValue
1142 //
1143 // Implementation of vk::dbg::Value that displays a debug::LocalVariable that
1144 // has its value(s) defined by debug::Value(s).
1145 //
1146 // TODO(b/145351270) Note: The OpenCL.DebugInfo.100 spec does not state how
1147 // DebugValues should be applied to the DebugLocalVariable.
1148 //
1149 // This implementation keeps track of the order of DebugValues as they are
1150 // 'executed', and uses the most recent values for each specific index.
1151 // OpenCL.DebugInfo.100 is significantly derived from the LLVM debug
1152 // instructions, and so it can be assumed that DebugValue is intended to behave
1153 // like llvm.dbg.value.
1154 //
1155 // https://llvm.org/docs/SourceLevelDebugging.html#object-lifetime-in-optimized-code
1156 // describes the expected behavior of llvm.dbg.value, which instead of runtime
1157 // tracking, uses static analysis of the LLVM IR to determine which debug
1158 // values should be used.
1159 //
1160 // If DebugValue is to behave the same way as llvm.dbg.value, then this
1161 // implementation should be changed to examine the order of DebugValue
1162 // instructions in the SPIR-V. This can only be done once the SPIR-V generating
1163 // compiler and SPIR-V optimization passes generate and preserve the DebugValue
1164 // ordering as described in the LLVM SourceLevelDebugging document.
1165 ////////////////////////////////////////////////////////////////////////////////
1166 class sw::SpirvShader::Impl::Debugger::LocalVariableValue : public vk::dbg::Value
1167 {
1168 public:
1169 // Data shared across all nodes in the LocalVariableValue.
1170 struct Shared
1171 {
Sharedsw::sw::SpirvShader::Impl::Debugger::LocalVariableValue::Shared1172 Shared(debug::LocalVariable const *const variable, State const *const state, int const lane)
1173 : variable(variable)
1174 , state(state)
1175 , lane(lane)
1176 {
1177 ASSERT(variable->definition == debug::LocalVariable::Definition::Values);
1178 }
1179
1180 debug::LocalVariable const *const variable;
1181 State const *const state;
1182 int const lane;
1183 };
1184
1185 LocalVariableValue(debug::LocalVariable *variable, State const *const state, int lane);
1186
1187 LocalVariableValue(
1188 std::shared_ptr<const Shared> const &shared,
1189 debug::Type const *ty,
1190 debug::LocalVariable::ValueNode const *node);
1191
1192 private:
1193 // vk::dbg::Value
1194 std::string type() override;
1195 std::string get(const vk::dbg::FormatFlags &) override;
1196 std::shared_ptr<vk::dbg::Variables> children() override;
1197
1198 void updateValue();
1199 std::shared_ptr<const Shared> const shared;
1200 debug::Type const *const ty;
1201 debug::LocalVariable::ValueNode const *const node;
1202 debug::Value *activeValue = nullptr;
1203 std::shared_ptr<vk::dbg::Value> value;
1204 };
1205
1206 ////////////////////////////////////////////////////////////////////////////////
1207 // sw::SpirvShader::Impl::Debugger::State
1208 //
1209 // State holds the runtime data structures for the shader debug session.
1210 //
1211 // When debugging is enabled, the shader program will construct a State with a
1212 // call to create(), and during execution write shader information into fields
1213 // of this class, including:
1214 // * Shadow memory for keeping track of register-held values.
1215 // * Global variables.
1216 // * Last reached ::debug::Values (see LocalVariableValue)
1217 //
1218 // Bulky data that is only needed once the shader has hit a trap is held by
1219 // State::Data. This is lazily constructed by the first call to trap().
1220 //
1221 // There is an instance of this class per shader invocation.
1222 ////////////////////////////////////////////////////////////////////////////////
1223 class SpirvShader::Impl::Debugger::State
1224 {
1225 public:
1226 // Globals holds a copy of the shader's builtin global variables.
1227 struct Globals
1228 {
1229 struct Compute
1230 {
1231 sw::uint3 numWorkgroups;
1232 sw::uint3 workgroupID;
1233 sw::uint3 workgroupSize;
1234 uint32_t numSubgroups;
1235 uint32_t subgroupIndex;
1236 sw::SIMD::uint3 globalInvocationId;
1237 sw::SIMD::uint3 localInvocationId;
1238 sw::SIMD::uint3 localInvocationIndex;
1239 };
1240 struct Fragment
1241 {
1242 uint32_t viewIndex;
1243 sw::SIMD::vec4 fragCoord;
1244 sw::SIMD::vec4 pointCoord;
1245 sw::SIMD::int2 windowSpacePosition;
1246 sw::SIMD::uint_t helperInvocation;
1247 };
1248 struct Vertex
1249 {
1250 uint32_t viewIndex;
1251 uint32_t instanceIndex;
1252 sw::SIMD::uint_t vertexIndex;
1253 };
1254
1255 // Common for all shader types
1256 uint32_t subgroupSize;
1257 sw::SIMD::uint_t activeLaneMask;
1258
1259 // Shader type specific globals
1260 union
1261 {
1262 Compute compute;
1263 Fragment fragment;
1264 Vertex vertex;
1265 };
1266 };
1267
1268 // create() allocates, constructs and returns a State.
1269 // Called at the start of the debugger-enabled shader program.
1270 static State *create(const Debugger *debugger);
1271
1272 // destroy() destructs and frees a state.
1273 // Called at the end of the debugger-enabled shader program.
1274 static void destroy(State *);
1275
1276 // trap() is called by the debugger-enabled shader program to suspend
1277 // execution of the shader. This will appear in the attached debugger as if
1278 // a breakpoint has been hit.
1279 // trap() will be called if the Debugger::Traps::memory[index] is non-zero,
1280 // or if alwaysTrap is non-zero.
1281 // index is the index of the trap (see Debugger::Traps).
1282 void trap(int index);
1283
1284 const Debugger *const debugger;
1285
1286 // traps is a simple copy of Debugger::Traps::memory.
1287 // Copied here to reduce pointer chasing during shader execution.
1288 uint8_t *traps = nullptr;
1289
1290 // alwaysTrap (if non-zero) forces a call trap() even if
1291 // Debugger::Traps::memory[index] is zero. Used to perform single line
1292 // stepping (pause at next line / instruction).
1293 uint8_t alwaysTrap = 0;
1294
1295 // Global variable values. Written to at shader start.
1296 Globals globals;
1297
1298 // Shadow memory for all SpirvShader::Objects in the executing shader
1299 // program.
1300 // See Debugger::Shadow for more information.
1301 std::unique_ptr<uint8_t[]> const shadow;
1302
1303 // Array of last reached debug::Value.
1304 // Indexed by ::debug::LocalVariable::ValueNode::debugValueIndex.
1305 std::unique_ptr<debug::Value *[]> const lastReachedDebugValues;
1306
1307 private:
1308 // Data holds the debugger-interface state (vk::dbg::*).
1309 // This is only constructed on the first call to Debugger::State::trap() as
1310 // it contains data that is only needed when the debugger is actively
1311 // inspecting execution of the shader program.
1312 struct Data
1313 {
1314 Data(State *state);
1315
1316 // terminate() is called at the end of execution of the shader program.
1317 // terminate() ensures that the debugger thread stack is at the same
1318 // level as when the program entered.
1319 void terminate(State *state);
1320
1321 // trap() updates the debugger thread with the stack frames and
1322 // variables at the trap's scoped location.
1323 // trap() will notify the debugger that the thread has paused, and will
1324 // block until instructed to resume (either continue or step) by the
1325 // user.
1326 void trap(int index, State *state);
1327
1328 private:
1329 using PerLaneVariables = std::array<std::shared_ptr<vk::dbg::VariableContainer>, sw::SIMD::Width>;
1330
1331 struct StackEntry
1332 {
1333 debug::LexicalBlock *block;
1334 uint32_t line;
1335
operator !=sw::SpirvShader::Impl::Debugger::State::Data::StackEntry1336 bool operator!=(const StackEntry &other) const { return block != other.block || line != other.line; }
1337 };
1338
1339 struct GlobalVariables
1340 {
1341 std::shared_ptr<vk::dbg::VariableContainer> common;
1342 PerLaneVariables lanes;
1343 };
1344
1345 // updateFrameLocals() updates the local variables in the frame with
1346 // those in the lexical block.
1347 void updateFrameLocals(State *state, vk::dbg::Frame &frame, debug::LexicalBlock *block);
1348
1349 // getOrCreateLocals() creates and returns the per-lane local variables
1350 // from those in the lexical block.
1351 PerLaneVariables getOrCreateLocals(State *state, debug::LexicalBlock const *block);
1352
1353 // buildGlobal() creates and adds to globals global variable with the
1354 // given name and value. The value is copied instead of holding a
1355 // pointer to val.
1356 template<typename T>
1357 void buildGlobal(const char *name, const T &val);
1358 template<typename T, int N>
1359 void buildGlobal(const char *name, const sw::SIMD::PerLane<T, N> &vec);
1360
1361 // buildGlobals() builds all the global variable values, populating
1362 // globals.
1363 void buildGlobals(State *state);
1364
1365 // buildSpirvVariables() builds a Struct holding all the SPIR-V named
1366 // values for the given lane.
1367 std::shared_ptr<vk::dbg::Struct> buildSpirvVariables(State *state, int lane) const;
1368
1369 // buildSpirvValue() returns a debugger value for the SPIR-V shadow
1370 // value at memory of the given type and for the given lane.
1371 std::shared_ptr<vk::dbg::Value> buildSpirvValue(State *state, Shadow::Memory memory, const SpirvShader::Type &type, int lane) const;
1372
1373 GlobalVariables globals;
1374 std::shared_ptr<vk::dbg::Thread> thread;
1375 std::vector<StackEntry> stack;
1376 std::unordered_map<debug::LexicalBlock const *, PerLaneVariables> locals;
1377 };
1378
1379 State(const Debugger *debugger);
1380 ~State();
1381 std::unique_ptr<Data> data;
1382 };
1383
1384 ////////////////////////////////////////////////////////////////////////////////
1385 // sw::SpirvShader::Impl::Debugger methods
1386 ////////////////////////////////////////////////////////////////////////////////
Debugger(const SpirvShader * shader,const std::shared_ptr<vk::dbg::Context> & ctx)1387 SpirvShader::Impl::Debugger::Debugger(const SpirvShader *shader, const std::shared_ptr<vk::dbg::Context> &ctx)
1388 : shader(shader)
1389 , ctx(ctx)
1390 {
1391 }
1392
~Debugger()1393 SpirvShader::Impl::Debugger::~Debugger()
1394 {
1395 ctx->removeListener(this);
1396 }
1397
finalize()1398 void SpirvShader::Impl::Debugger::finalize()
1399 {
1400 ASSERT(traps.byIndex.size() == traps.byLocationAndScope.size());
1401 traps.memory = std::make_unique<uint8_t[]>(traps.byIndex.size());
1402
1403 ctx->addListener(this);
1404
1405 // Register existing breakpoints.
1406 onBreakpointsChanged();
1407 }
1408
setNextSetLocationIsSteppable()1409 void sw::SpirvShader::Impl::Debugger::setNextSetLocationIsSteppable()
1410 {
1411 nextSetLocationIsSteppable = true;
1412 }
1413
setScope(debug::SourceScope * scope)1414 void SpirvShader::Impl::Debugger::setScope(debug::SourceScope *scope)
1415 {
1416 lastSetScope = scope;
1417 }
1418
setLocation(EmitState * state,const std::shared_ptr<vk::dbg::File> & file,int line)1419 void SpirvShader::Impl::Debugger::setLocation(EmitState *state, const std::shared_ptr<vk::dbg::File> &file, int line)
1420 {
1421 vk::dbg::Location location{ file, line };
1422
1423 if(location != lastSetLocation)
1424 {
1425 // If the location has changed, then this is always a step.
1426 nextSetLocationIsSteppable = true;
1427 lastSetLocation = location;
1428 }
1429
1430 if(nextSetLocationIsSteppable)
1431 {
1432 // Get or create the trap for the given location and scope.
1433 LocationAndScope locationAndScope{ location, lastSetScope };
1434 int index = getOrCreate(traps.byLocationAndScope, locationAndScope, [&] {
1435 traps.byIndex.emplace_back(locationAndScope);
1436 return traps.byIndex.size() - 1;
1437 });
1438
1439 // Also create a map index for the given scope's function so we can
1440 // break on function entry.
1441 if(lastSetScope)
1442 {
1443 if(auto func = debug::find<debug::Function>(lastSetScope->scope))
1444 {
1445 getOrCreate(traps.byFunctionName, func->name, [&] { return index; });
1446 }
1447 }
1448
1449 // Emit the shader logic to test the trap value (either through via
1450 // Debugger::State::traps[] or Debugger::State::alwaysTrap), and call
1451 // Debugger::State::trap() if either are true.
1452 auto dbgState = state->routine->dbgState;
1453 auto alwaysTrap = *Pointer<Byte>(dbgState + OFFSET(Impl::Debugger::State, alwaysTrap));
1454 auto traps = *Pointer<Pointer<Byte>>(dbgState + OFFSET(Impl::Debugger::State, traps));
1455 auto trap = Pointer<Byte>(traps)[index];
1456 If(alwaysTrap != Byte(0) || trap != Byte(0))
1457 {
1458 rr::Call(&State::trap, state->routine->dbgState, index);
1459 }
1460 nextSetLocationIsSteppable = false;
1461 }
1462 }
1463
setLocation(EmitState * state,const char * path,int line)1464 void SpirvShader::Impl::Debugger::setLocation(EmitState *state, const char *path, int line)
1465 {
1466 auto lock = ctx->lock();
1467 auto file = lock.findFile(path);
1468 if(!file)
1469 {
1470 file = lock.createPhysicalFile(path);
1471 }
1472 setLocation(state, file, line);
1473 }
1474
onSetBreakpoint(const vk::dbg::Location & location,bool & handled)1475 void SpirvShader::Impl::Debugger::onSetBreakpoint(const vk::dbg::Location &location, bool &handled)
1476 {
1477 // Notify the debugger if the breakpoint location is handled.
1478 // We don't actually set the trap here as this is performed by
1479 // onBreakpointsChanged(), which is only called once, even for multiple
1480 // breakpoint changes.
1481 for(auto it : traps.byLocationAndScope)
1482 {
1483 if(location == it.first.location)
1484 {
1485 handled = true;
1486 return;
1487 }
1488 }
1489 }
1490
onSetBreakpoint(const std::string & func,bool & handled)1491 void SpirvShader::Impl::Debugger::onSetBreakpoint(const std::string &func, bool &handled)
1492 {
1493 // Notify the debugger if the function-entry breakpoint is handled.
1494 // We don't actually set the trap here as this is performed by
1495 // onBreakpointsChanged(), which is only called once, even for multiple
1496 // breakpoint changes.
1497 auto it = traps.byFunctionName.find(func);
1498 if(it != traps.byFunctionName.end())
1499 {
1500 handled = true;
1501 }
1502
1503 if(isEntryBreakpointForShaderType(shader->executionModel, func))
1504 {
1505 handled = true;
1506 }
1507 }
1508
onBreakpointsChanged()1509 void SpirvShader::Impl::Debugger::onBreakpointsChanged()
1510 {
1511 // TODO(b/145351270): TSAN will probably moan that traps.memory is being
1512 // modified while being read on othe threads. We can solve this by adding
1513 // a shared mutex (RWMutex) for the traps, read-locking for execution, and
1514 // write locking here. This will prevent setting breakpoints while a shader
1515 // is executing (maybe problematic if you want to debug a slow or
1516 // never-completing shader).
1517 // For now, just be racy. It's unlikely that this will cause any noticable
1518 // problems.
1519
1520 // Start by disabling all traps.
1521 memset(traps.memory.get(), 0, traps.byIndex.size() * sizeof(traps.memory[0]));
1522
1523 // Add traps for all breakpoints by location.
1524 for(auto it : files)
1525 {
1526 auto &file = it.second;
1527 for(auto line : file->getBreakpoints())
1528 {
1529 for(auto it : traps.byLocationAndScope)
1530 {
1531 if(it.first.location == vk::dbg::Location{ file, line })
1532 {
1533 traps.memory[it.second] = 1;
1534 }
1535 }
1536 }
1537 }
1538
1539 // Add traps for all breakpoints by function name.
1540 auto lock = ctx->lock();
1541 for(auto it : traps.byFunctionName)
1542 {
1543 if(lock.isFunctionBreakpoint(it.first))
1544 {
1545 traps.memory[it.second] = 1;
1546 }
1547 }
1548
1549 // Add traps for breakpoints by shader type.
1550 for(auto bp : lock.getFunctionBreakpoints())
1551 {
1552 if(isEntryBreakpointForShaderType(shader->executionModel, bp))
1553 {
1554 traps.memory[0] = 1;
1555 }
1556 }
1557 }
1558
1559 template<typename F, typename T>
defineOrEmit(InsnIterator insn,Pass pass,F && emit)1560 void SpirvShader::Impl::Debugger::defineOrEmit(InsnIterator insn, Pass pass, F &&emit)
1561 {
1562 auto id = SpirvID<T>(insn.word(2));
1563 switch(pass)
1564 {
1565 case Pass::Define:
1566 add(id, std::unique_ptr<debug::Object>(new T()));
1567 break;
1568 case Pass::Emit:
1569 emit(get<T>(id));
1570 break;
1571 }
1572 }
1573
process(const InsnIterator & insn,EmitState * state,Pass pass)1574 void SpirvShader::Impl::Debugger::process(const InsnIterator &insn, EmitState *state, Pass pass)
1575 {
1576 auto extInstIndex = insn.word(4);
1577 switch(extInstIndex)
1578 {
1579 case OpenCLDebugInfo100DebugInfoNone:
1580 if(pass == Pass::Define)
1581 {
1582 addNone(debug::Object::ID(insn.word(2)));
1583 }
1584 break;
1585 case OpenCLDebugInfo100DebugCompilationUnit:
1586 defineOrEmit(insn, pass, [&](debug::CompilationUnit *cu) {
1587 cu->source = get(debug::Source::ID(insn.word(7)));
1588 });
1589 break;
1590 case OpenCLDebugInfo100DebugTypeBasic:
1591 defineOrEmit(insn, pass, [&](debug::BasicType *type) {
1592 type->name_ = shader->getString(insn.word(5));
1593 type->size = shader->GetConstScalarInt(insn.word(6));
1594 type->encoding = static_cast<OpenCLDebugInfo100DebugBaseTypeAttributeEncoding>(insn.word(7));
1595 });
1596 break;
1597 case OpenCLDebugInfo100DebugTypeArray:
1598 defineOrEmit(insn, pass, [&](debug::ArrayType *type) {
1599 type->base = get(debug::Type::ID(insn.word(5)));
1600 type->size = shader->GetConstScalarInt(insn.word(6));
1601 for(uint32_t i = 7; i < insn.wordCount(); i++)
1602 {
1603 // Decompose multi-dimentional into nested single
1604 // dimensional arrays. Greatly simplifies logic.
1605 auto inner = new debug::ArrayType();
1606 inner->base = type->base;
1607 type->size = shader->GetConstScalarInt(insn.word(i));
1608 type->base = inner;
1609 type->ownsBase = true;
1610 type = inner;
1611 }
1612 });
1613 break;
1614 case OpenCLDebugInfo100DebugTypeVector:
1615 defineOrEmit(insn, pass, [&](debug::VectorType *type) {
1616 type->base = get(debug::Type::ID(insn.word(5)));
1617 type->components = insn.word(6);
1618 });
1619 break;
1620 case OpenCLDebugInfo100DebugTypeFunction:
1621 defineOrEmit(insn, pass, [&](debug::FunctionType *type) {
1622 type->flags = insn.word(5);
1623 type->returnTy = getOrNull(debug::Type::ID(insn.word(6)));
1624
1625 // 'Return Type' operand must be a debug type or OpTypeVoid. See
1626 // https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugTypeFunction
1627 ASSERT_MSG(type->returnTy != nullptr || shader->getType(insn.word(6)).opcode() == spv::Op::OpTypeVoid, "Invalid return type of DebugTypeFunction: %d", insn.word(6));
1628
1629 for(uint32_t i = 7; i < insn.wordCount(); i++)
1630 {
1631 type->paramTys.push_back(get(debug::Type::ID(insn.word(i))));
1632 }
1633 });
1634 break;
1635 case OpenCLDebugInfo100DebugTypeComposite:
1636 defineOrEmit(insn, pass, [&](debug::CompositeType *type) {
1637 type->name_ = shader->getString(insn.word(5));
1638 type->tag = static_cast<OpenCLDebugInfo100DebugCompositeType>(insn.word(6));
1639 type->source = get(debug::Source::ID(insn.word(7)));
1640 type->line = insn.word(8);
1641 type->column = insn.word(9);
1642 type->parent = get(debug::Object::ID(insn.word(10)));
1643 type->linkage = shader->getString(insn.word(11));
1644 type->size = isNone(insn.word(12)) ? 0 : shader->GetConstScalarInt(insn.word(12));
1645 type->flags = insn.word(13);
1646 for(uint32_t i = 14; i < insn.wordCount(); i++)
1647 {
1648 auto obj = get(debug::Object::ID(insn.word(i)));
1649 if(auto member = debug::cast<debug::Member>(obj)) // Can also be Function or TypeInheritance, which we don't care about.
1650 {
1651 type->members_.push_back(member);
1652 }
1653 }
1654 });
1655 break;
1656 case OpenCLDebugInfo100DebugTypeMember:
1657 defineOrEmit(insn, pass, [&](debug::Member *member) {
1658 member->name = shader->getString(insn.word(5));
1659 member->type = get(debug::Type::ID(insn.word(6)));
1660 member->source = get(debug::Source::ID(insn.word(7)));
1661 member->line = insn.word(8);
1662 member->column = insn.word(9);
1663 member->parent = get(debug::CompositeType::ID(insn.word(10)));
1664 member->offset = shader->GetConstScalarInt(insn.word(11));
1665 member->size = shader->GetConstScalarInt(insn.word(12));
1666 member->flags = insn.word(13);
1667 });
1668 break;
1669 case OpenCLDebugInfo100DebugTypeTemplate:
1670 defineOrEmit(insn, pass, [&](debug::TemplateType *tpl) {
1671 tpl->target = get(debug::Type::ID(insn.word(5)));
1672 for(size_t i = 6, c = insn.wordCount(); i < c; i++)
1673 {
1674 tpl->parameters.emplace_back(get(debug::TemplateParameter::ID(insn.word(i))));
1675 }
1676 });
1677 break;
1678 case OpenCLDebugInfo100DebugTypeTemplateParameter:
1679 defineOrEmit(insn, pass, [&](debug::TemplateParameter *param) {
1680 param->name = shader->getString(insn.word(5));
1681 param->type = get(debug::Type::ID(insn.word(6)));
1682 param->value = 0; // TODO: Get value from OpConstant if "a template value parameter".
1683 param->source = get(debug::Source::ID(insn.word(8)));
1684 param->line = insn.word(9);
1685 param->column = insn.word(10);
1686 });
1687 break;
1688 case OpenCLDebugInfo100DebugGlobalVariable:
1689 defineOrEmit(insn, pass, [&](debug::GlobalVariable *var) {
1690 var->name = shader->getString(insn.word(5));
1691 var->type = get(debug::Type::ID(insn.word(6)));
1692 var->source = get(debug::Source::ID(insn.word(7)));
1693 var->line = insn.word(8);
1694 var->column = insn.word(9);
1695 var->parent = get(debug::Scope::ID(insn.word(10)));
1696 var->linkage = shader->getString(insn.word(11));
1697 var->variable = isNone(insn.word(12)) ? 0 : insn.word(12);
1698 var->flags = insn.word(13);
1699 // static member declaration: word(14)
1700 });
1701 break;
1702 case OpenCLDebugInfo100DebugFunction:
1703 defineOrEmit(insn, pass, [&](debug::Function *func) {
1704 func->name = shader->getString(insn.word(5));
1705 func->type = get(debug::FunctionType::ID(insn.word(6)));
1706 func->source = get(debug::Source::ID(insn.word(7)));
1707 func->declLine = insn.word(8);
1708 func->declColumn = insn.word(9);
1709 func->parent = get(debug::Scope::ID(insn.word(10)));
1710 func->linkage = shader->getString(insn.word(11));
1711 func->flags = insn.word(12);
1712 func->line = insn.word(13);
1713 func->function = Function::ID(insn.word(14));
1714 // declaration: word(13)
1715 });
1716 break;
1717 case OpenCLDebugInfo100DebugLexicalBlock:
1718 defineOrEmit(insn, pass, [&](debug::LexicalBlock *scope) {
1719 scope->source = get(debug::Source::ID(insn.word(5)));
1720 scope->line = insn.word(6);
1721 scope->column = insn.word(7);
1722 scope->parent = get(debug::Scope::ID(insn.word(8)));
1723 if(insn.wordCount() > 9)
1724 {
1725 scope->name = shader->getString(insn.word(9));
1726 }
1727 });
1728 break;
1729 case OpenCLDebugInfo100DebugScope:
1730 defineOrEmit(insn, pass, [&](debug::SourceScope *ss) {
1731 ss->scope = get(debug::Scope::ID(insn.word(5)));
1732 if(insn.wordCount() > 6)
1733 {
1734 ss->inlinedAt = get(debug::InlinedAt::ID(insn.word(6)));
1735 }
1736 setScope(ss);
1737 });
1738 break;
1739 case OpenCLDebugInfo100DebugNoScope:
1740 break;
1741 case OpenCLDebugInfo100DebugInlinedAt:
1742 defineOrEmit(insn, pass, [&](debug::InlinedAt *ia) {
1743 ia->line = insn.word(5);
1744 ia->scope = get(debug::Scope::ID(insn.word(6)));
1745 if(insn.wordCount() > 7)
1746 {
1747 ia->inlined = get(debug::InlinedAt::ID(insn.word(7)));
1748 }
1749 });
1750 break;
1751 case OpenCLDebugInfo100DebugLocalVariable:
1752 defineOrEmit(insn, pass, [&](debug::LocalVariable *var) {
1753 var->name = shader->getString(insn.word(5));
1754 var->type = get(debug::Type::ID(insn.word(6)));
1755 var->source = get(debug::Source::ID(insn.word(7)));
1756 var->line = insn.word(8);
1757 var->column = insn.word(9);
1758 var->parent = get(debug::Scope::ID(insn.word(10)));
1759 if(insn.wordCount() > 11)
1760 {
1761 var->arg = insn.word(11);
1762 }
1763 if(auto block = debug::find<debug::LexicalBlock>(var->parent))
1764 {
1765 block->variables.emplace_back(var);
1766 }
1767 });
1768 break;
1769 case OpenCLDebugInfo100DebugDeclare:
1770 defineOrEmit(insn, pass, [&](debug::Declare *decl) {
1771 decl->local = get(debug::LocalVariable::ID(insn.word(5)));
1772 decl->variable = Object::ID(insn.word(6));
1773 decl->expression = get(debug::Expression::ID(insn.word(7)));
1774
1775 decl->local->declaration = decl;
1776
1777 ASSERT_MSG(decl->local->definition == debug::LocalVariable::Definition::Undefined,
1778 "DebugLocalVariable '%s' declared at %s:%d was previously defined as %s, now again as %s",
1779 decl->local->name.c_str(),
1780 decl->local->source ? decl->local->source->file.c_str() : "<unknown>",
1781 (int)decl->local->line,
1782 tostring(decl->local->definition),
1783 tostring(debug::LocalVariable::Definition::Declaration));
1784 decl->local->definition = debug::LocalVariable::Definition::Declaration;
1785 });
1786 break;
1787 case OpenCLDebugInfo100DebugValue:
1788 defineOrEmit(insn, pass, [&](debug::Value *value) {
1789 value->local = get(debug::LocalVariable::ID(insn.word(5)));
1790 value->value = insn.word(6);
1791 value->expression = get(debug::Expression::ID(insn.word(7)));
1792
1793 if(value->local->definition == debug::LocalVariable::Definition::Undefined)
1794 {
1795 value->local->definition = debug::LocalVariable::Definition::Values;
1796 }
1797 else
1798 {
1799 ASSERT_MSG(value->local->definition == debug::LocalVariable::Definition::Values,
1800 "DebugLocalVariable '%s' declared at %s:%d was previously defined as %s, now again as %s",
1801 value->local->name.c_str(),
1802 value->local->source ? value->local->source->file.c_str() : "<unknown>",
1803 (int)value->local->line,
1804 tostring(value->local->definition),
1805 tostring(debug::LocalVariable::Definition::Values));
1806 }
1807
1808 auto node = &value->local->values;
1809 for(uint32_t i = 8; i < insn.wordCount(); i++)
1810 {
1811 auto idx = shader->GetConstScalarInt(insn.word(i));
1812 value->indexes.push_back(idx);
1813
1814 auto it = node->children.find(idx);
1815 if(it != node->children.end())
1816 {
1817 node = it->second.get();
1818 }
1819 else
1820 {
1821 auto parent = node;
1822 auto child = std::make_unique<debug::LocalVariable::ValueNode>();
1823 node = child.get();
1824 parent->children.emplace(idx, std::move(child));
1825 }
1826 }
1827
1828 if(node->debugValueIndex == debug::LocalVariable::ValueNode::NoDebugValueIndex)
1829 {
1830 node->debugValueIndex = numDebugValueSlots++;
1831 }
1832
1833 rr::Pointer<rr::Pointer<Byte>> lastReachedArray = *rr::Pointer<rr::Pointer<rr::Pointer<Byte>>>(
1834 state->routine->dbgState + OFFSET(Impl::Debugger::State, lastReachedDebugValues));
1835 rr::Pointer<rr::Pointer<Byte>> lastReached = &lastReachedArray[node->debugValueIndex];
1836 *lastReached = rr::ConstantPointer(value);
1837 });
1838 break;
1839 case OpenCLDebugInfo100DebugExpression:
1840 defineOrEmit(insn, pass, [&](debug::Expression *expr) {
1841 for(uint32_t i = 5; i < insn.wordCount(); i++)
1842 {
1843 expr->operations.push_back(get(debug::Operation::ID(insn.word(i))));
1844 }
1845 });
1846 break;
1847 case OpenCLDebugInfo100DebugSource:
1848 defineOrEmit(insn, pass, [&](debug::Source *source) {
1849 source->file = shader->getString(insn.word(5));
1850 if(insn.wordCount() > 6)
1851 {
1852 source->source = shader->getString(insn.word(6));
1853 auto file = ctx->lock().createVirtualFile(source->file.c_str(), source->source.c_str());
1854 source->dbgFile = file;
1855 files.emplace(source->file.c_str(), file);
1856 }
1857 else
1858 {
1859 auto file = ctx->lock().createPhysicalFile(source->file.c_str());
1860 source->dbgFile = file;
1861 files.emplace(source->file.c_str(), file);
1862 }
1863 });
1864 break;
1865 case OpenCLDebugInfo100DebugOperation:
1866 defineOrEmit(insn, pass, [&](debug::Operation *operation) {
1867 operation->opcode = insn.word(5);
1868 for(uint32_t i = 6; i < insn.wordCount(); i++)
1869 {
1870 operation->operands.push_back(insn.word(i));
1871 }
1872 });
1873 break;
1874
1875 case OpenCLDebugInfo100DebugTypePointer:
1876 case OpenCLDebugInfo100DebugTypeQualifier:
1877 case OpenCLDebugInfo100DebugTypedef:
1878 case OpenCLDebugInfo100DebugTypeEnum:
1879 case OpenCLDebugInfo100DebugTypeInheritance:
1880 case OpenCLDebugInfo100DebugTypePtrToMember:
1881 case OpenCLDebugInfo100DebugTypeTemplateTemplateParameter:
1882 case OpenCLDebugInfo100DebugTypeTemplateParameterPack:
1883 case OpenCLDebugInfo100DebugFunctionDeclaration:
1884 case OpenCLDebugInfo100DebugLexicalBlockDiscriminator:
1885 case OpenCLDebugInfo100DebugInlinedVariable:
1886 case OpenCLDebugInfo100DebugMacroDef:
1887 case OpenCLDebugInfo100DebugMacroUndef:
1888 case OpenCLDebugInfo100DebugImportedEntity:
1889 UNIMPLEMENTED("b/148401179 OpenCLDebugInfo100 instruction %d", int(extInstIndex));
1890 break;
1891 default:
1892 UNSUPPORTED("OpenCLDebugInfo100 instruction %d", int(extInstIndex));
1893 }
1894 }
1895
1896 template<typename ID>
add(ID id,std::unique_ptr<debug::Object> && obj)1897 void SpirvShader::Impl::Debugger::add(ID id, std::unique_ptr<debug::Object> &&obj)
1898 {
1899 ASSERT_MSG(obj != nullptr, "add() called with nullptr obj");
1900 bool added = objects.emplace(debug::Object::ID(id.value()), std::move(obj)).second;
1901 ASSERT_MSG(added, "Debug object with %d already exists", id.value());
1902 }
1903
addNone(debug::Object::ID id)1904 void SpirvShader::Impl::Debugger::addNone(debug::Object::ID id)
1905 {
1906 bool added = objects.emplace(debug::Object::ID(id.value()), nullptr).second;
1907 ASSERT_MSG(added, "Debug object with %d already exists", id.value());
1908 }
1909
isNone(debug::Object::ID id) const1910 bool SpirvShader::Impl::Debugger::isNone(debug::Object::ID id) const
1911 {
1912 auto it = objects.find(debug::Object::ID(id.value()));
1913 if(it == objects.end()) { return false; }
1914 return it->second.get() == nullptr;
1915 }
1916
1917 template<typename T>
get(SpirvID<T> id) const1918 T *SpirvShader::Impl::Debugger::get(SpirvID<T> id) const
1919 {
1920 auto it = objects.find(debug::Object::ID(id.value()));
1921 ASSERT_MSG(it != objects.end(), "Unknown debug object %d", id.value());
1922 auto ptr = debug::cast<T>(it->second.get());
1923 ASSERT_MSG(ptr, "Debug object %d is not of the correct type. Got: %s, want: %s",
1924 id.value(), cstr(it->second->kind), cstr(T::KIND));
1925 return ptr;
1926 }
1927
1928 template<typename T>
getOrNull(SpirvID<T> id) const1929 T *SpirvShader::Impl::Debugger::getOrNull(SpirvID<T> id) const
1930 {
1931 auto it = objects.find(debug::Object::ID(id.value()));
1932 if(it == objects.end()) { return nullptr; } // Not found.
1933 auto ptr = debug::cast<T>(it->second.get());
1934 ASSERT_MSG(ptr, "Debug object %d is not of the correct type. Got: %s, want: %s",
1935 id.value(), cstr(it->second->kind), cstr(T::KIND));
1936 return ptr;
1937 }
1938
1939 ////////////////////////////////////////////////////////////////////////////////
1940 // SpirvShader::Impl::Debugger::Shadow methods
1941 ////////////////////////////////////////////////////////////////////////////////
create(const SpirvShader * shader,const EmitState * state,Object::ID objId)1942 void SpirvShader::Impl::Debugger::Shadow::create(const SpirvShader *shader, const EmitState *state, Object::ID objId)
1943 {
1944 ASSERT_MSG(entries.find(objId) == entries.end(),
1945 "Object %%%d already has shadow memory allocated?", (int)objId.value());
1946
1947 Entry entry{};
1948 entry.offset = size;
1949
1950 rr::Pointer<Byte> base = *rr::Pointer<rr::Pointer<Byte>>(state->routine->dbgState + OFFSET(Impl::Debugger::State, shadow));
1951 base += entry.offset;
1952
1953 auto &obj = shader->getObject(objId);
1954 auto &objTy = shader->getType(obj.typeId());
1955 auto mask = state->activeLaneMask();
1956 switch(obj.kind)
1957 {
1958 case Object::Kind::Constant:
1959 case Object::Kind::Intermediate:
1960 {
1961 size += objTy.componentCount * sizeof(uint32_t) * sw::SIMD::Width;
1962 auto dst = InterleaveByLane(SIMD::Pointer(base, 0));
1963 for(uint32_t i = 0u; i < objTy.componentCount; i++)
1964 {
1965 auto val = SpirvShader::Operand(shader, state, objId).Int(i);
1966 dst.Store(val, sw::OutOfBoundsBehavior::UndefinedBehavior, mask);
1967 dst += sizeof(uint32_t) * SIMD::Width;
1968 }
1969 entry.kind = Entry::Kind::Value;
1970 break;
1971 }
1972 case Object::Kind::Pointer:
1973 case Object::Kind::InterfaceVariable:
1974 {
1975 size += sizeof(void *) + sizeof(uint32_t) * SIMD::Width;
1976 auto ptr = state->getPointer(objId);
1977 store(base, ptr.base);
1978 store(base + sizeof(void *), ptr.offsets());
1979 entry.kind = Entry::Kind::Pointer;
1980 break;
1981 }
1982 default:
1983 break;
1984 }
1985 entries.emplace(objId, entry);
1986 }
1987
1988 SpirvShader::Impl::Debugger::Shadow::Memory
get(const State * state,Object::ID objId) const1989 SpirvShader::Impl::Debugger::Shadow::get(const State *state, Object::ID objId) const
1990 {
1991 auto entryIt = entries.find(objId);
1992 ASSERT_MSG(entryIt != entries.end(), "Missing shadow entry for object %%%d (%s)",
1993 (int)objId.value(),
1994 OpcodeName(state->debugger->shader->getObject(objId).opcode()));
1995 auto &entry = entryIt->second;
1996 auto data = &state->shadow[entry.offset];
1997 return Memory{ data };
1998 }
1999
operator void*()2000 SpirvShader::Impl::Debugger::Shadow::Memory::operator void *()
2001 {
2002 return addr;
2003 }
2004
2005 SpirvShader::Impl::Debugger::Shadow::Memory
dref(int lane) const2006 SpirvShader::Impl::Debugger::Shadow::Memory::dref(int lane) const
2007 {
2008 auto ptr = *reinterpret_cast<Pointer *>(addr);
2009 return Memory{ ptr.base + ptr.offsets[lane] };
2010 }
2011
2012 ////////////////////////////////////////////////////////////////////////////////
2013 // sw::SpirvShader::Impl::Debugger::LocalVariableValue methods
2014 ////////////////////////////////////////////////////////////////////////////////
LocalVariableValue(debug::LocalVariable * variable,State const * const state,int lane)2015 sw::SpirvShader::Impl::Debugger::LocalVariableValue::LocalVariableValue(
2016 debug::LocalVariable *variable,
2017 State const *const state,
2018 int lane)
2019 : LocalVariableValue(std::make_shared<Shared>(variable, state, lane), variable->type, &variable->values)
2020 {}
2021
LocalVariableValue(std::shared_ptr<const Shared> const & shared,debug::Type const * ty,debug::LocalVariable::ValueNode const * node)2022 sw::SpirvShader::Impl::Debugger::LocalVariableValue::LocalVariableValue(
2023 std::shared_ptr<const Shared> const &shared,
2024 debug::Type const *ty,
2025 debug::LocalVariable::ValueNode const *node)
2026 : shared(shared)
2027 , ty(ty)
2028 , node(node)
2029 {
2030 }
2031
type()2032 std::string sw::SpirvShader::Impl::Debugger::LocalVariableValue::type()
2033 {
2034 updateValue();
2035 return value->type();
2036 }
2037
get(const vk::dbg::FormatFlags & fmt)2038 std::string sw::SpirvShader::Impl::Debugger::LocalVariableValue::get(const vk::dbg::FormatFlags &fmt)
2039 {
2040 updateValue();
2041 return value->get(fmt);
2042 }
2043
children()2044 std::shared_ptr<vk::dbg::Variables> sw::SpirvShader::Impl::Debugger::LocalVariableValue::children()
2045 {
2046 updateValue();
2047 return value->children();
2048 }
2049
updateValue()2050 void sw::SpirvShader::Impl::Debugger::LocalVariableValue::updateValue()
2051 {
2052 // Fetch the last reached ::debug::Value for this local variable node.
2053 auto newActiveValue = (node->debugValueIndex != debug::LocalVariable::ValueNode::NoDebugValueIndex)
2054 ? shared->state->lastReachedDebugValues[node->debugValueIndex]
2055 : nullptr;
2056 auto activeValueChanged = activeValue != newActiveValue;
2057 activeValue = newActiveValue;
2058
2059 if(activeValue && activeValueChanged)
2060 { // We have a new ::debug::Value, read it.
2061
2062 ASSERT(activeValue->local == shared->variable); // If this isn't true, then something is very wonky.
2063
2064 // Update the value.
2065 auto ptr = shared->state->debugger->shadow.get(shared->state, activeValue->value);
2066 for(auto op : activeValue->expression->operations)
2067 {
2068 switch(op->opcode)
2069 {
2070 case OpenCLDebugInfo100Deref:
2071 ptr = ptr.dref(shared->lane);
2072 break;
2073 default:
2074 UNIMPLEMENTED("b/148401179 OpenCLDebugInfo100DebugOperation %d", (int)op->opcode);
2075 break;
2076 }
2077 }
2078 value = ty->value(ptr, true);
2079 }
2080 else if(!value || activeValueChanged)
2081 { // We have no ::debug::Value. Display <undefined>
2082
2083 if(node->children.empty())
2084 { // No children? Just have the node display <undefined>
2085 value = ty->undefined();
2086 }
2087 else
2088 { // Node has children.
2089 // Display <undefined> for those that don't have sub-nodes, and
2090 // create child LocalVariableValues for those that do.
2091 value = vk::dbg::Struct::create(ty->name(), [&](auto &vc) {
2092 auto numMembers = ty->numMembers();
2093 for(size_t i = 0; i < numMembers; i++)
2094 {
2095 auto member = ty->getMember(i);
2096
2097 auto it = node->children.find(i);
2098 if(it != node->children.end())
2099 {
2100 auto child = std::make_shared<LocalVariableValue>(shared, member.type, it->second.get());
2101 vc->put(member.name, child);
2102 }
2103 else
2104 {
2105 vc->put(member.name, member.type->undefined());
2106 }
2107 }
2108 });
2109 }
2110 }
2111 }
2112
2113 ////////////////////////////////////////////////////////////////////////////////
2114 // sw::SpirvShader::Impl::Debugger::State methods
2115 ////////////////////////////////////////////////////////////////////////////////
create(const Debugger * debugger)2116 SpirvShader::Impl::Debugger::State *SpirvShader::Impl::Debugger::State::create(const Debugger *debugger)
2117 {
2118 return new State(debugger);
2119 }
2120
destroy(State * state)2121 void SpirvShader::Impl::Debugger::State::destroy(State *state)
2122 {
2123 delete state;
2124 }
2125
State(const Debugger * debugger)2126 SpirvShader::Impl::Debugger::State::State(const Debugger *debugger)
2127 : debugger(debugger)
2128 , traps(debugger->traps.memory.get())
2129 , shadow(new uint8_t[debugger->shadow.size])
2130 , lastReachedDebugValues(new debug::Value *[debugger->numDebugValueSlots])
2131 {
2132 memset(shadow.get(), 0, debugger->shadow.size);
2133 memset(lastReachedDebugValues.get(), 0, sizeof(lastReachedDebugValues[0]) * debugger->numDebugValueSlots);
2134 }
2135
~State()2136 SpirvShader::Impl::Debugger::State::~State()
2137 {
2138 if(data) { data->terminate(this); }
2139 }
2140
trap(int index)2141 void SpirvShader::Impl::Debugger::State::trap(int index)
2142 {
2143 if(std::all_of(globals.activeLaneMask.data.begin(),
2144 globals.activeLaneMask.data.end(),
2145 [](auto v) { return v == 0; }))
2146 {
2147 // Don't trap if no lanes are active.
2148 // Ideally, we would be simply jumping over blocks that have no active
2149 // lanes, but this is complicated due to ensuring that all reactor
2150 // RValues dominate their usage blocks.
2151 return;
2152 }
2153
2154 if(!data)
2155 {
2156 data = std::make_unique<Data>(this);
2157 }
2158 data->trap(index, this);
2159 }
2160
Data(State * state)2161 SpirvShader::Impl::Debugger::State::Data::Data(State *state)
2162 {
2163 buildGlobals(state);
2164
2165 thread = state->debugger->ctx->lock().currentThread();
2166
2167 if(!state->debugger->shaderHasDebugInfo)
2168 {
2169 // Enter the stack frame entry for the SPIR-V.
2170 thread->enter(state->debugger->spirvFile, "SPIR-V", [&](vk::dbg::Frame &frame) {
2171 for(size_t lane = 0; lane < sw::SIMD::Width; lane++)
2172 {
2173 auto laneLocals = std::make_shared<vk::dbg::Struct>("Lane", globals.lanes[lane]);
2174 frame.locals->variables->put(laneName(lane), laneLocals);
2175 frame.hovers->variables->extend(std::make_shared<HoversFromLocals>(frame.locals->variables));
2176 }
2177 });
2178 }
2179 }
2180
terminate(State * state)2181 void SpirvShader::Impl::Debugger::State::Data::terminate(State *state)
2182 {
2183 if(state->debugger->shaderHasDebugInfo)
2184 {
2185 for(size_t i = 0; i < stack.size(); i++)
2186 {
2187 thread->exit();
2188 }
2189 }
2190 else
2191 {
2192 thread->exit();
2193 }
2194 }
2195
trap(int index,State * state)2196 void SpirvShader::Impl::Debugger::State::Data::trap(int index, State *state)
2197 {
2198 auto debugger = state->debugger;
2199
2200 // Update the thread frames from the stack of scopes
2201 auto const &locationAndScope = debugger->traps.byIndex[index];
2202
2203 if(locationAndScope.scope)
2204 {
2205 // Gather the new stack as LexicalBlocks.
2206 std::vector<StackEntry> newStack;
2207 if(auto block = debug::find<debug::LexicalBlock>(locationAndScope.scope->scope))
2208 {
2209 newStack.emplace_back(StackEntry{ block, block->line });
2210 }
2211 for(auto inlined = locationAndScope.scope->inlinedAt; inlined != nullptr; inlined = inlined->inlined)
2212 {
2213 if(auto block = debug::find<debug::LexicalBlock>(inlined->scope))
2214 {
2215 newStack.emplace_back(StackEntry{ block, inlined->line });
2216 }
2217 }
2218 std::reverse(newStack.begin(), newStack.end());
2219
2220 // shrink pop stack frames until stack length is at most maxLen.
2221 auto shrink = [&](size_t maxLen) {
2222 while(stack.size() > maxLen)
2223 {
2224 thread->exit(true);
2225 stack.pop_back();
2226 }
2227 };
2228
2229 // Pop stack frames until stack length is at most newStack length.
2230 shrink(newStack.size());
2231
2232 // Find first deviation in stack frames, and shrink to that point.
2233 // Special care is taken for deviation in just the top most frame so we
2234 // don't end up reconstructing the top most stack frame every scope
2235 // change.
2236 for(size_t i = 0; i < stack.size(); i++)
2237 {
2238 if(stack[i] != newStack[i])
2239 {
2240 bool wasTopMostFrame = i == (stack.size() - 1);
2241 auto oldFunction = debug::find<debug::Function>(stack[i].block);
2242 auto newFunction = debug::find<debug::Function>(newStack[i].block);
2243 if(wasTopMostFrame && oldFunction == newFunction)
2244 {
2245 // Deviation is just a movement in the top most frame's
2246 // function.
2247 // Don't exit() and enter() for the same function - it'll
2248 // be treated as a step out and step in, breaking stepping
2249 // commands. Instead, just update the frame variables for
2250 // the new scope.
2251 stack[i] = newStack[i];
2252 thread->update(true, [&](vk::dbg::Frame &frame) {
2253 // Update the frame location if we're entering a
2254 // function. This allows the debugger to pause at the
2255 // line (which may not have any instructions or OpLines)
2256 // of a inlined function call. This is less jarring
2257 // than magically appearing in another function before
2258 // you've reached the line of the call site.
2259 // See b/170650010 for more context.
2260 if(stack.size() < newStack.size())
2261 {
2262 auto function = debug::find<debug::Function>(stack[i].block);
2263 frame.location = vk::dbg::Location{ function->source->dbgFile, (int)stack[i].line };
2264 }
2265 updateFrameLocals(state, frame, stack[i].block);
2266 });
2267 }
2268 else
2269 {
2270 shrink(i);
2271 }
2272 break;
2273 }
2274 }
2275
2276 // Now rebuild the parts of stack frames that are new.
2277 //
2278 // This is done in two stages:
2279 // (1) thread->enter() is called to construct the new stack frame with
2280 // the opening scope line. The frames locals and hovers are built
2281 // and assigned.
2282 // (2) thread->update() is called to adjust the frame's location to
2283 // entry.line. This may be different to the function entry in the
2284 // case of multiple nested inline functions. If its the same, then
2285 // this is a no-op.
2286 //
2287 // This two-stage approach allows the debugger to step through chains of
2288 // inlined function calls without having a jarring jump from the outer
2289 // function to the first statement within the function.
2290 // See b/170650010 for more context.
2291 for(size_t i = stack.size(); i < newStack.size(); i++)
2292 {
2293 auto entry = newStack[i];
2294 stack.emplace_back(entry);
2295 auto function = debug::find<debug::Function>(entry.block);
2296 thread->enter(entry.block->source->dbgFile, function->name, [&](vk::dbg::Frame &frame) {
2297 frame.location = vk::dbg::Location{ function->source->dbgFile, (int)function->line };
2298 frame.hovers->variables->extend(std::make_shared<HoversFromLocals>(frame.locals->variables));
2299 updateFrameLocals(state, frame, entry.block);
2300 });
2301 thread->update(true, [&](vk::dbg::Frame &frame) {
2302 frame.location.line = (int)entry.line;
2303 });
2304 }
2305 }
2306
2307 // If the debugger thread is running, notify that we're pausing due to the
2308 // trap.
2309 if(thread->state() == vk::dbg::Thread::State::Running)
2310 {
2311 // pause() changes the thread state Paused, and will cause the next
2312 // frame location changing call update() to block until the debugger
2313 // instructs the thread to resume or step.
2314 thread->pause();
2315 debugger->ctx->serverEventBroadcast()->onLineBreakpointHit(thread->id);
2316 }
2317
2318 // Update the frame location. This will likely block until the debugger
2319 // instructs the thread to resume or step.
2320 thread->update(true, [&](vk::dbg::Frame &frame) {
2321 frame.location = locationAndScope.location;
2322 });
2323
2324 // Clear the alwaysTrap state if the debugger instructed the thread to
2325 // resume, or set it if we're single line stepping (so we can keep track of
2326 // location).
2327 state->alwaysTrap = thread->state() != vk::dbg::Thread::State::Running;
2328 }
2329
updateFrameLocals(State * state,vk::dbg::Frame & frame,debug::LexicalBlock * block)2330 void SpirvShader::Impl::Debugger::State::Data::updateFrameLocals(State *state, vk::dbg::Frame &frame, debug::LexicalBlock *block)
2331 {
2332 auto locals = getOrCreateLocals(state, block);
2333 for(size_t lane = 0; lane < sw::SIMD::Width; lane++)
2334 {
2335 auto laneLocals = std::make_shared<vk::dbg::Struct>("Lane", locals[lane]);
2336 frame.locals->variables->put(laneName(lane), laneLocals);
2337 }
2338 }
2339
2340 SpirvShader::Impl::Debugger::State::Data::PerLaneVariables
getOrCreateLocals(State * state,debug::LexicalBlock const * block)2341 SpirvShader::Impl::Debugger::State::Data::getOrCreateLocals(State *state, debug::LexicalBlock const *block)
2342 {
2343 return getOrCreate(locals, block, [&] {
2344 PerLaneVariables locals;
2345 for(int lane = 0; lane < sw::SIMD::Width; lane++)
2346 {
2347 auto vc = std::make_shared<vk::dbg::VariableContainer>();
2348
2349 for(auto var : block->variables)
2350 {
2351 auto name = var->name;
2352
2353 switch(var->definition)
2354 {
2355 case debug::LocalVariable::Definition::Undefined:
2356 {
2357 vc->put(name, var->type->undefined());
2358 break;
2359 }
2360 case debug::LocalVariable::Definition::Declaration:
2361 {
2362 auto data = state->debugger->shadow.get(state, var->declaration->variable);
2363 vc->put(name, var->type->value(data.dref(lane), true));
2364 break;
2365 }
2366 case debug::LocalVariable::Definition::Values:
2367 {
2368 vc->put(name, std::make_shared<LocalVariableValue>(var, state, lane));
2369 break;
2370 }
2371 }
2372 }
2373
2374 locals[lane] = std::move(vc);
2375 }
2376 if(auto parent = debug::find<debug::LexicalBlock>(block->parent))
2377 {
2378 auto extend = getOrCreateLocals(state, parent);
2379 for(int lane = 0; lane < sw::SIMD::Width; lane++)
2380 {
2381 locals[lane]->extend(extend[lane]);
2382 }
2383 }
2384 else
2385 {
2386 for(int lane = 0; lane < sw::SIMD::Width; lane++)
2387 {
2388 locals[lane]->extend(globals.lanes[lane]);
2389 }
2390 }
2391 return locals;
2392 });
2393 }
2394
2395 template<typename T>
buildGlobal(const char * name,const T & val)2396 void SpirvShader::Impl::Debugger::State::Data::buildGlobal(const char *name, const T &val)
2397 {
2398 globals.common->put(name, makeDbgValue(val));
2399 }
2400
2401 template<typename T, int N>
buildGlobal(const char * name,const sw::SIMD::PerLane<T,N> & simd)2402 void SpirvShader::Impl::Debugger::State::Data::buildGlobal(const char *name, const sw::SIMD::PerLane<T, N> &simd)
2403 {
2404 for(int lane = 0; lane < sw::SIMD::Width; lane++)
2405 {
2406 globals.lanes[lane]->put(name, makeDbgValue(simd[lane]));
2407 }
2408 }
2409
buildGlobals(State * state)2410 void SpirvShader::Impl::Debugger::State::Data::buildGlobals(State *state)
2411 {
2412 globals.common = std::make_shared<vk::dbg::VariableContainer>();
2413 globals.common->put("subgroupSize", vk::dbg::make_reference(state->globals.subgroupSize));
2414
2415 for(int lane = 0; lane < sw::SIMD::Width; lane++)
2416 {
2417 auto vc = std::make_shared<vk::dbg::VariableContainer>();
2418
2419 vc->put("enabled", vk::dbg::make_reference(reinterpret_cast<const bool &>(state->globals.activeLaneMask[lane])));
2420
2421 for(auto &it : state->debugger->objects)
2422 {
2423 if(auto var = debug::cast<debug::GlobalVariable>(it.second.get()))
2424 {
2425 if(var->variable != 0)
2426 {
2427 auto data = state->debugger->shadow.get(state, var->variable);
2428 vc->put(var->name, var->type->value(data.dref(lane), true));
2429 }
2430 }
2431 }
2432
2433 auto spirv = buildSpirvVariables(state, lane);
2434 if(state->debugger->shaderHasDebugInfo)
2435 {
2436 vc->put("SPIR-V", spirv);
2437 }
2438 else
2439 {
2440 vc->extend(spirv->children());
2441 }
2442
2443 vc->extend(globals.common);
2444 globals.lanes[lane] = vc;
2445 }
2446
2447 switch(state->debugger->shader->executionModel)
2448 {
2449 case spv::ExecutionModelGLCompute:
2450 {
2451 buildGlobal("numWorkgroups", state->globals.compute.numWorkgroups);
2452 buildGlobal("workgroupID", state->globals.compute.workgroupID);
2453 buildGlobal("workgroupSize", state->globals.compute.workgroupSize);
2454 buildGlobal("numSubgroups", state->globals.compute.numSubgroups);
2455 buildGlobal("subgroupIndex", state->globals.compute.subgroupIndex);
2456 buildGlobal("globalInvocationId", state->globals.compute.globalInvocationId);
2457 buildGlobal("localInvocationIndex", state->globals.compute.localInvocationIndex);
2458 break;
2459 }
2460 case spv::ExecutionModelFragment:
2461 {
2462 buildGlobal("viewIndex", state->globals.fragment.viewIndex);
2463 buildGlobal("fragCoord", state->globals.fragment.fragCoord);
2464 buildGlobal("pointCoord", state->globals.fragment.pointCoord);
2465 buildGlobal("windowSpacePosition", state->globals.fragment.windowSpacePosition);
2466 buildGlobal("helperInvocation", state->globals.fragment.helperInvocation);
2467 break;
2468 }
2469 case spv::ExecutionModelVertex:
2470 {
2471 buildGlobal("viewIndex", state->globals.vertex.viewIndex);
2472 buildGlobal("instanceIndex", state->globals.vertex.instanceIndex);
2473 buildGlobal("vertexIndex", state->globals.vertex.vertexIndex);
2474 break;
2475 }
2476 default:
2477 break;
2478 }
2479 }
2480
2481 std::shared_ptr<vk::dbg::Struct>
buildSpirvVariables(State * state,int lane) const2482 SpirvShader::Impl::Debugger::State::Data::buildSpirvVariables(State *state, int lane) const
2483 {
2484 return vk::dbg::Struct::create("SPIR-V", [&](auto &vc) {
2485 auto debugger = state->debugger;
2486 auto &entries = debugger->shadow.entries;
2487 std::vector<Object::ID> ids;
2488 ids.reserve(entries.size());
2489 for(auto it : entries)
2490 {
2491 ids.emplace_back(it.first);
2492 }
2493 std::sort(ids.begin(), ids.end());
2494 for(auto id : ids)
2495 {
2496 auto &obj = debugger->shader->getObject(id);
2497 auto &objTy = debugger->shader->getType(obj.typeId());
2498 auto name = "%" + std::to_string(id.value());
2499 auto memory = debugger->shadow.get(state, id);
2500 switch(obj.kind)
2501 {
2502 case Object::Kind::Intermediate:
2503 case Object::Kind::Constant:
2504 if(auto val = buildSpirvValue(state, memory, objTy, lane))
2505 {
2506 vc->put(name, val);
2507 }
2508 break;
2509 default:
2510 break; // Not handled yet.
2511 }
2512 }
2513 });
2514 }
2515
2516 std::shared_ptr<vk::dbg::Value>
buildSpirvValue(State * state,Shadow::Memory memory,const SpirvShader::Type & type,int lane) const2517 SpirvShader::Impl::Debugger::State::Data::buildSpirvValue(State *state, Shadow::Memory memory, const SpirvShader::Type &type, int lane) const
2518 {
2519 auto debugger = state->debugger;
2520 auto shader = debugger->shader;
2521
2522 switch(type.definition.opcode())
2523 {
2524 case spv::OpTypeInt:
2525 return vk::dbg::make_reference(reinterpret_cast<uint32_t *>(memory.addr)[lane]);
2526 case spv::OpTypeFloat:
2527 return vk::dbg::make_reference(reinterpret_cast<float *>(memory.addr)[lane]);
2528 case spv::OpTypeVector:
2529 {
2530 auto elTy = shader->getType(type.element);
2531 return vk::dbg::Struct::create("vector", [&](auto &fields) {
2532 for(uint32_t i = 0; i < type.componentCount; i++)
2533 {
2534 if(auto val = buildSpirvValue(state, memory, elTy, lane))
2535 {
2536 fields->put(vecElementName(i, type.componentCount), val);
2537 memory.addr += sizeof(uint32_t) * sw::SIMD::Width;
2538 }
2539 }
2540 });
2541 }
2542 default:
2543 return nullptr; // Not handled yet
2544 }
2545 }
2546
2547 ////////////////////////////////////////////////////////////////////////////////
2548 // sw::SpirvShader methods
2549 ////////////////////////////////////////////////////////////////////////////////
dbgInit(const std::shared_ptr<vk::dbg::Context> & ctx)2550 void SpirvShader::dbgInit(const std::shared_ptr<vk::dbg::Context> &ctx)
2551 {
2552 impl.debugger = new Impl::Debugger(this, ctx);
2553 }
2554
dbgTerm()2555 void SpirvShader::dbgTerm()
2556 {
2557 if(impl.debugger)
2558 {
2559 delete impl.debugger;
2560 }
2561 }
2562
dbgCreateFile()2563 void SpirvShader::dbgCreateFile()
2564 {
2565 auto dbg = impl.debugger;
2566 if(!dbg) { return; }
2567
2568 int currentLine = 1;
2569 std::string source;
2570 for(auto insn : *this)
2571 {
2572 auto instruction = spvtools::spvInstructionBinaryToText(
2573 vk::SPIRV_VERSION,
2574 insn.wordPointer(0),
2575 insn.wordCount(),
2576 insns.data(),
2577 insns.size(),
2578 SPV_BINARY_TO_TEXT_OPTION_NO_HEADER) +
2579 "\n";
2580 dbg->spirvLineMappings[insn.wordPointer(0)] = currentLine;
2581 currentLine += std::count(instruction.begin(), instruction.end(), '\n');
2582 source += instruction;
2583 }
2584 std::string name;
2585 switch(executionModel)
2586 {
2587 case spv::ExecutionModelVertex: name = "VertexShader"; break;
2588 case spv::ExecutionModelFragment: name = "FragmentShader"; break;
2589 case spv::ExecutionModelGLCompute: name = "ComputeShader"; break;
2590 default: name = "SPIR-V Shader"; break;
2591 }
2592 static std::atomic<int> id = { 0 };
2593 name += std::to_string(id++) + ".spvasm";
2594 dbg->spirvFile = dbg->ctx->lock().createVirtualFile(name.c_str(), source.c_str());
2595 }
2596
dbgBeginEmit(EmitState * state) const2597 void SpirvShader::dbgBeginEmit(EmitState *state) const
2598 {
2599 auto dbg = impl.debugger;
2600 if(!dbg) { return; }
2601
2602 dbg->shaderHasDebugInfo = extensionsImported.count(Extension::OpenCLDebugInfo100) > 0;
2603
2604 auto routine = state->routine;
2605
2606 auto dbgState = rr::Call(&Impl::Debugger::State::create, dbg);
2607
2608 routine->dbgState = dbgState;
2609
2610 SetActiveLaneMask(state->activeLaneMask(), state);
2611
2612 for(int i = 0; i < SIMD::Width; i++)
2613 {
2614 using Globals = Impl::Debugger::State::Globals;
2615
2616 auto globals = dbgState + OFFSET(Impl::Debugger::State, globals);
2617 store(globals + OFFSET(Globals, subgroupSize), routine->invocationsPerSubgroup);
2618
2619 switch(executionModel)
2620 {
2621 case spv::ExecutionModelGLCompute:
2622 {
2623 auto compute = globals + OFFSET(Globals, compute);
2624 store(compute + OFFSET(Globals::Compute, numWorkgroups), routine->numWorkgroups);
2625 store(compute + OFFSET(Globals::Compute, workgroupID), routine->workgroupID);
2626 store(compute + OFFSET(Globals::Compute, workgroupSize), routine->workgroupSize);
2627 store(compute + OFFSET(Globals::Compute, numSubgroups), routine->subgroupsPerWorkgroup);
2628 store(compute + OFFSET(Globals::Compute, subgroupIndex), routine->subgroupIndex);
2629 store(compute + OFFSET(Globals::Compute, globalInvocationId), routine->globalInvocationID);
2630 store(compute + OFFSET(Globals::Compute, localInvocationIndex), routine->localInvocationIndex);
2631 break;
2632 }
2633 case spv::ExecutionModelFragment:
2634 {
2635 auto fragment = globals + OFFSET(Globals, fragment);
2636 store(fragment + OFFSET(Globals::Fragment, viewIndex), routine->viewID);
2637 store(fragment + OFFSET(Globals::Fragment, fragCoord), routine->fragCoord);
2638 store(fragment + OFFSET(Globals::Fragment, pointCoord), routine->pointCoord);
2639 store(fragment + OFFSET(Globals::Fragment, windowSpacePosition), routine->windowSpacePosition);
2640 store(fragment + OFFSET(Globals::Fragment, helperInvocation), routine->helperInvocation);
2641 break;
2642 }
2643 case spv::ExecutionModelVertex:
2644 {
2645 auto vertex = globals + OFFSET(Globals, vertex);
2646 store(vertex + OFFSET(Globals::Vertex, viewIndex), routine->viewID);
2647 store(vertex + OFFSET(Globals::Vertex, instanceIndex), routine->instanceID);
2648 store(vertex + OFFSET(Globals::Vertex, vertexIndex), routine->vertexIndex);
2649 break;
2650 }
2651 default:
2652 break;
2653 }
2654 }
2655 }
2656
dbgEndEmit(EmitState * state) const2657 void SpirvShader::dbgEndEmit(EmitState *state) const
2658 {
2659 auto dbg = impl.debugger;
2660 if(!dbg) { return; }
2661
2662 dbg->finalize();
2663
2664 rr::Call(&Impl::Debugger::State::destroy, state->routine->dbgState);
2665 }
2666
dbgBeginEmitInstruction(InsnIterator insn,EmitState * state) const2667 void SpirvShader::dbgBeginEmitInstruction(InsnIterator insn, EmitState *state) const
2668 {
2669 # if PRINT_EACH_EMITTED_INSTRUCTION
2670 {
2671 auto instruction = spvtools::spvInstructionBinaryToText(
2672 vk::SPIRV_VERSION,
2673 insn.wordPointer(0),
2674 insn.wordCount(),
2675 insns.data(),
2676 insns.size(),
2677 SPV_BINARY_TO_TEXT_OPTION_NO_HEADER);
2678 printf("%s\n", instruction.c_str());
2679 }
2680 # endif // PRINT_EACH_EMITTED_INSTRUCTION
2681
2682 # if PRINT_EACH_EXECUTED_INSTRUCTION
2683 {
2684 auto instruction = spvtools::spvInstructionBinaryToText(
2685 vk::SPIRV_VERSION,
2686 insn.wordPointer(0),
2687 insn.wordCount(),
2688 insns.data(),
2689 insns.size(),
2690 SPV_BINARY_TO_TEXT_OPTION_NO_HEADER);
2691 rr::Print("{0}\n", instruction);
2692 }
2693 # endif // PRINT_EACH_EXECUTED_INSTRUCTION
2694
2695 // Only single line step over statement instructions.
2696
2697 if(auto dbg = impl.debugger)
2698 {
2699 if(insn.opcode() == spv::OpLabel)
2700 {
2701 // Whenever we hit a label, force the next OpLine to be steppable.
2702 // This handles the case where we have control flow on the same line
2703 // For example:
2704 // while(true) { foo(); }
2705 // foo() should be repeatedly steppable.
2706 dbg->setNextSetLocationIsSteppable();
2707 }
2708
2709 if(!dbg->shaderHasDebugInfo)
2710 {
2711 // We're emitting debugger logic for SPIR-V.
2712 if(IsStatement(insn.opcode()))
2713 {
2714 auto line = dbg->spirvLineMappings.at(insn.wordPointer(0));
2715 dbg->setLocation(state, dbg->spirvFile, line);
2716 }
2717 }
2718 }
2719 }
2720
dbgEndEmitInstruction(InsnIterator insn,EmitState * state) const2721 void SpirvShader::dbgEndEmitInstruction(InsnIterator insn, EmitState *state) const
2722 {
2723 auto dbg = impl.debugger;
2724 if(!dbg) { return; }
2725
2726 switch(insn.opcode())
2727 {
2728 case spv::OpVariable:
2729 case spv::OpConstant: // TODO: Move constants out of shadow memory.
2730 case spv::OpConstantNull:
2731 case spv::OpConstantTrue:
2732 case spv::OpConstantFalse:
2733 case spv::OpConstantComposite:
2734 dbg->shadow.create(this, state, insn.resultId());
2735 break;
2736 default:
2737 {
2738 auto resIt = dbg->results.find(insn.wordPointer(0));
2739 if(resIt != dbg->results.end())
2740 {
2741 dbg->shadow.create(this, state, resIt->second);
2742 }
2743 }
2744 }
2745 }
2746
dbgUpdateActiveLaneMask(RValue<SIMD::Int> mask,EmitState * state) const2747 void SpirvShader::dbgUpdateActiveLaneMask(RValue<SIMD::Int> mask, EmitState *state) const
2748 {
2749 auto dbg = impl.debugger;
2750 if(!dbg) { return; }
2751
2752 auto dbgState = state->routine->dbgState;
2753 auto globals = dbgState + OFFSET(Impl::Debugger::State, globals);
2754 store(globals + OFFSET(Impl::Debugger::State::Globals, activeLaneMask), mask);
2755 }
2756
dbgDeclareResult(const InsnIterator & insn,Object::ID resultId) const2757 void SpirvShader::dbgDeclareResult(const InsnIterator &insn, Object::ID resultId) const
2758 {
2759 auto dbg = impl.debugger;
2760 if(!dbg) { return; }
2761
2762 dbg->results.emplace(insn.wordPointer(0), resultId);
2763 }
2764
EmitLine(InsnIterator insn,EmitState * state) const2765 SpirvShader::EmitResult SpirvShader::EmitLine(InsnIterator insn, EmitState *state) const
2766 {
2767 if(auto dbg = impl.debugger)
2768 {
2769 auto path = getString(insn.word(1));
2770 auto line = insn.word(2);
2771 dbg->setLocation(state, path.c_str(), line);
2772 }
2773 return EmitResult::Continue;
2774 }
2775
DefineOpenCLDebugInfo100(const InsnIterator & insn)2776 void SpirvShader::DefineOpenCLDebugInfo100(const InsnIterator &insn)
2777 {
2778 # if PRINT_EACH_DEFINED_DBG_INSTRUCTION
2779 {
2780 auto instruction = spvtools::spvInstructionBinaryToText(
2781 vk::SPIRV_VERSION,
2782 insn.wordPointer(0),
2783 insn.wordCount(),
2784 insns.data(),
2785 insns.size(),
2786 SPV_BINARY_TO_TEXT_OPTION_NO_HEADER);
2787 printf("%s\n", instruction.c_str());
2788 }
2789 # endif // PRINT_EACH_DEFINED_DBG_INSTRUCTION
2790
2791 auto dbg = impl.debugger;
2792 if(!dbg) { return; }
2793
2794 dbg->process(insn, nullptr, Impl::Debugger::Pass::Define);
2795 }
2796
EmitOpenCLDebugInfo100(InsnIterator insn,EmitState * state) const2797 SpirvShader::EmitResult SpirvShader::EmitOpenCLDebugInfo100(InsnIterator insn, EmitState *state) const
2798 {
2799 if(auto dbg = impl.debugger)
2800 {
2801 dbg->process(insn, state, Impl::Debugger::Pass::Emit);
2802 }
2803 return EmitResult::Continue;
2804 }
2805
2806 } // namespace sw
2807
2808 #else // ENABLE_VK_DEBUGGER
2809
2810 // Stub implementations of the dbgXXX functions.
2811 namespace sw {
2812
dbgInit(const std::shared_ptr<vk::dbg::Context> & dbgctx)2813 void SpirvShader::dbgInit(const std::shared_ptr<vk::dbg::Context> &dbgctx) {}
dbgTerm()2814 void SpirvShader::dbgTerm() {}
dbgCreateFile()2815 void SpirvShader::dbgCreateFile() {}
dbgBeginEmit(EmitState * state) const2816 void SpirvShader::dbgBeginEmit(EmitState *state) const {}
dbgEndEmit(EmitState * state) const2817 void SpirvShader::dbgEndEmit(EmitState *state) const {}
dbgBeginEmitInstruction(InsnIterator insn,EmitState * state) const2818 void SpirvShader::dbgBeginEmitInstruction(InsnIterator insn, EmitState *state) const {}
dbgEndEmitInstruction(InsnIterator insn,EmitState * state) const2819 void SpirvShader::dbgEndEmitInstruction(InsnIterator insn, EmitState *state) const {}
dbgExposeIntermediate(Object::ID id,EmitState * state) const2820 void SpirvShader::dbgExposeIntermediate(Object::ID id, EmitState *state) const {}
dbgUpdateActiveLaneMask(RValue<SIMD::Int> mask,EmitState * state) const2821 void SpirvShader::dbgUpdateActiveLaneMask(RValue<SIMD::Int> mask, EmitState *state) const {}
dbgDeclareResult(const InsnIterator & insn,Object::ID resultId) const2822 void SpirvShader::dbgDeclareResult(const InsnIterator &insn, Object::ID resultId) const {}
2823
DefineOpenCLDebugInfo100(const InsnIterator & insn)2824 void SpirvShader::DefineOpenCLDebugInfo100(const InsnIterator &insn) {}
2825
EmitOpenCLDebugInfo100(InsnIterator insn,EmitState * state) const2826 SpirvShader::EmitResult SpirvShader::EmitOpenCLDebugInfo100(InsnIterator insn, EmitState *state) const
2827 {
2828 return EmitResult::Continue;
2829 }
2830
EmitLine(InsnIterator insn,EmitState * state) const2831 SpirvShader::EmitResult SpirvShader::EmitLine(InsnIterator insn, EmitState *state) const
2832 {
2833 return EmitResult::Continue;
2834 }
2835
2836 } // namespace sw
2837
2838 #endif // ENABLE_VK_DEBUGGER
2839