Home
last modified time | relevance | path

Searched refs:logits (Results 1 – 25 of 189) sorted by relevance

12345678

/external/tensorflow/tensorflow/python/ops/
Dnn_xent_test.py40 def _SigmoidCrossEntropyWithLogits(self, logits, targets): argument
41 assert len(logits) == len(targets)
42 pred = [1 / (1 + exp(-x)) for x in logits]
52 logits = constant_op.constant(x, shape=sizes, dtype=dtype, name="logits")
55 return logits, targets, losses
60 logits, targets, _ = self._Inputs()
62 labels=targets, logits=logits, name="mylogistic")
69 logits, targets, losses = self._Inputs(dtype=dtype)
71 labels=targets, logits=logits)
80 logits, targets, losses = self._Inputs(dtype=dtype, sizes=[2, 2, 2])
[all …]
Dctc_ops.py82 logits=None): argument
194 logits,
205 logits=None, argument
217 inputs = deprecation.deprecated_argument_lookup("logits", logits, "inputs",
629 def ctc_loss_and_grad(logits, labels, label_length, logit_length, unique=None): argument
653 num_labels = _get_dim(logits, 2)
656 ilabel_log_probs = nn_ops.log_softmax(logits)
679 max_logit_length = _get_dim(logits, 0)
697 def _ctc_loss_op_standard(labels, logits, logit_length, logits_time_major, argument
699 part_before = logits[:, :, :blank_index]
[all …]
Dnn_impl.py118 logits=None,
164 labels, logits)
167 with ops.name_scope(name, "logistic_loss", [logits, labels]) as name:
168 logits = ops.convert_to_tensor(logits, name="logits")
171 labels.get_shape().assert_is_compatible_with(logits.get_shape())
174 (logits.get_shape(), labels.get_shape()))
184 zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
185 cond = (logits >= zeros)
186 relu_logits = array_ops.where(cond, logits, zeros)
187 neg_abs_logits = array_ops.where(cond, -logits, logits)
[all …]
/external/tensorflow/tensorflow/python/ops/distributions/
Dbernoulli.py52 logits=None, argument
86 logits=logits,
104 def logits(self): member in Bernoulli
139 event = math_ops.cast(event, self.logits.dtype)
140 logits = self.logits
144 def _broadcast(logits, event): argument
145 return (array_ops.ones_like(event) * logits,
146 array_ops.ones_like(logits) * event)
149 logits.get_shape().is_fully_defined() and
150 event.get_shape() == logits.get_shape()):
[all …]
Dcategorical.py163 logits=None, argument
194 with ops.name_scope(name, values=[logits, probs]) as name:
196 logits=logits,
250 def logits(self): member in Categorical
263 return self.logits.get_shape()[:-1]
272 if self.logits.get_shape().ndims == 2:
273 logits_2d = self.logits
275 logits_2d = array_ops.reshape(self.logits, [-1, self.event_size])
311 k, logits = _broadcast_cat_event_and_params(
312 k, self.logits, base_dtype=self.dtype.base_dtype)
[all …]
Dmultinomial.py162 logits=None, argument
195 with ops.name_scope(name, values=[total_count, logits, probs]) as name:
202 logits=logits,
225 def logits(self): member in Multinomial
252 self.logits[..., 0], dtype=n_draws.dtype) * n_draws
253 logits = array_ops.ones_like(
254 n_draws[..., array_ops.newaxis], dtype=self.logits.dtype) * self.logits
257 flat_logits = array_ops.reshape(logits, [-1, k]) # [B1B2...Bm, k]
262 logits, n_draw = args[0], args[1] # [K], []
263 x = random_ops.multinomial(logits[array_ops.newaxis, ...], n_draw,
[all …]
/external/tensorflow/tensorflow/examples/speech_commands/
Dmodels_test.py56 logits, dropout_rate = models.create_model(
58 self.assertIsNotNone(logits)
60 self.assertIsNotNone(sess.graph.get_tensor_by_name(logits.name))
68 logits = models.create_model(fingerprint_input, model_settings, "conv",
70 self.assertIsNotNone(logits)
71 self.assertIsNotNone(sess.graph.get_tensor_by_name(logits.name))
78 logits, dropout_rate = models.create_model(
80 self.assertIsNotNone(logits)
82 self.assertIsNotNone(sess.graph.get_tensor_by_name(logits.name))
90 logits, dropout_rate = models.create_model(
[all …]
/external/tensorflow/tensorflow/python/kernel_tests/random/
Dmultinomial_op_test.py40 def composed_sampler(logits, num_samples): argument
42 unif = random_ops.random_uniform(logits.get_shape().concatenate(
46 logits = array_ops.expand_dims(logits, -1)
49 return math_ops.argmax(logits + noise, axis=1)
63 logits = constant_op.constant([[-10., 10., -10.], [-10., -10., 10.]])
66 logits, num_samples, output_dtype=output_dtype))
102 logits = np.array([[1000.] * 5])
104 logits *= -1
105 samples = self.evaluate(random_ops.multinomial(logits, 10))
121 logits = np.log(probs).astype(np.float32)
[all …]
/external/tensorflow/tensorflow/python/kernel_tests/
Dlosses_test.py120 logits = constant_op.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0],
125 losses.softmax_cross_entropy(labels, logits, weights=None)
130 logits = constant_op.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0],
133 loss = losses.softmax_cross_entropy(labels, logits)
139 logits = constant_op.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0],
144 loss = losses.softmax_cross_entropy(labels, logits)
150 logits = constant_op.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0],
155 loss = losses.softmax_cross_entropy(labels, logits, weights)
160 logits = constant_op.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0],
165 loss = losses.softmax_cross_entropy(labels, logits,
[all …]
Dctc_loss_op_test.py77 logits=inputs,
323 logits = random_ops.random_uniform([num_frames, batch_size, num_labels])
333 t.watch(logits)
336 logits=logits,
339 ref_grad = t.gradient(ref_loss, [logits])
348 grad = gradients_impl.gradients(loss, [logits])
355 logits=logits,
370 logits = random_ops.random_uniform([num_frames, batch_size, num_labels])
385 logits=logits,
388 ctc_loss_grads = gradients_impl.gradients(ctc_loss, [logits])[0]
[all …]
Dsparse_xent_op_test.py151 labels=[[0, 2]], logits=[[0., 1.], [2., 3.], [2., 3.]])
157 labels=constant_op.constant(0), logits=constant_op.constant(1.0))
163 labels=labels, logits=[[7.]])
170 labels=constant_op.constant(0), logits=constant_op.constant([1.0]))
208 labels=l, logits=f, name="xent")
238 labels=l, logits=f, name="xent"), [f])[0]
243 labels=l, logits=f, name="xent"), [f])[0]
266 labels=labels, logits=features)
275 labels=labels, logits=features), [features])[0]
297 logits = array_ops.placeholder(dtypes.float32, shape=[None, 3])
[all …]
/external/tensorflow/tensorflow/python/ops/losses/
Dlosses_impl.py321 def hinge_loss(labels, logits, weights=1.0, scope=None, argument
355 if logits is None:
357 with ops.name_scope(scope, "hinge_loss", (logits, labels, weights)) as scope:
358 logits = math_ops.cast(logits, dtype=dtypes.float32)
360 logits.get_shape().assert_is_compatible_with(labels.get_shape())
365 math_ops.subtract(all_ones, math_ops.multiply(labels, logits)))
659 multi_class_labels, logits, weights=1.0, label_smoothing=0, scope=None, argument
703 if logits is None:
706 (logits, multi_class_labels, weights)) as scope:
707 logits = ops.convert_to_tensor(logits)
[all …]
/external/tensorflow/tensorflow/core/kernels/
Dsparse_xent_op.cc57 const Tensor& logits = context->input(0); in Compute() local
59 OP_REQUIRES(context, TensorShapeUtils::IsMatrix(logits.shape()), in Compute()
61 logits.shape().DebugString())); in Compute()
65 OP_REQUIRES(context, logits.dim_size(0) == labels.dim_size(0), in Compute()
69 logits.shape().DebugString(), " and labels shape ", in Compute()
71 OP_REQUIRES(context, logits.dim_size(1) > 0, in Compute()
74 logits.shape().DebugString())); in Compute()
85 {0}, 1, logits.shape(), &back_out)); in Compute()
87 if (logits.dim_size(0) > 0) { in Compute()
90 context, CheckInvalidLabelIndex<Index>(labels, logits.dim_size(1))); in Compute()
[all …]
Dsparse_xent_op_gpu.cu.cc42 typename TTypes<T>::ConstMatrix logits, in Compute()
46 const int rows = logits.dimension(kBatchDim); in Compute()
47 const int cols = logits.dimension(kClassDim); in Compute()
53 ctx, maximum.data(), logits.data(), 2, rows, cols, 1, 1, constants.kOne, in Compute()
62 void operator()(OpKernelContext* ctx, typename TTypes<T>::ConstMatrix logits, in operator ()()
66 SparseXentEigenImpl<GPUDevice, T, Index>::Compute(ctx, logits, labels, in operator ()()
Dsoftmax_op_functor.h34 void operator()(const Device& d, typename TTypes<T>::ConstMatrix logits,
44 static void Compute(const Device& d, typename TTypes<T>::ConstMatrix logits, in Compute()
49 const int batch_size = logits.dimension(kBatchDim); in Compute()
50 const int num_classes = logits.dimension(kClassDim); in Compute()
66 auto shifted_logits = (logits - logits.maximum(along_class) in Compute()
Dsparse_xent_op.h60 typename TTypes<const T, 2>::Tensor32Bit logits, in SparseXentLossGenerator() argument
64 : logits_(logits), in SparseXentLossGenerator()
139 typename TTypes<T>::ConstMatrix logits, in Compute()
148 To32Bit(maximum).device(d) = To32Bit(logits).maximum(along_row); in Compute()
162 void operator()(OpKernelContext* ctx, typename TTypes<T>::ConstMatrix logits,
174 typename TTypes<T>::ConstMatrix logits, in Compute()
186 const int batch_size = logits.dimension(kBatchDim); in Compute()
187 const int num_classes = logits.dimension(kClassDim); in Compute()
213 RowMaxReduction<Device, T>::Compute(ctx, logits, scratch); in Compute()
218 To32Bit(logits) - in Compute()
/external/tensorflow/tensorflow/python/kernel_tests/distributions/
Dcategorical_test.py41 logits = random_ops.random_uniform(
43 return categorical.Categorical(logits, dtype=dtype)
54 self.assertAllEqual([2], dist.logits.get_shape())
59 logits = np.log(p) - 50.
60 dist = categorical.Categorical(logits=logits)
63 self.assertAllEqual([2], dist.logits.get_shape())
65 self.assertAllClose(dist.logits, logits)
101 self.assertEqual(dist.logits.dtype, dtypes.float32)
102 self.assertEqual(dist.logits.dtype, dist.entropy().dtype)
104 dist.logits.dtype, dist.prob(np.array(
[all …]
/external/tensorflow/tensorflow/lite/kernels/
Dmultinomial.cc37 const FloatType* logits, int logits_size, in MultinomialSample() argument
48 max_logit = std::max(max_logit, logits[i]); in MultinomialSample()
52 FloatType odds = std::exp(logits[i] - max_logit) + last_odds; in MultinomialSample()
76 const FloatType* logits, int logits_size, in MultinomialSample() argument
82 rng, logits, logits_size, in MultinomialSample()
87 rng, logits, logits_size, in MultinomialSample()
100 const TfLiteTensor* logits, int logits_offset, in MultinomialSample() argument
103 switch (logits->type) { in MultinomialSample()
112 context, rng, GetTensorData<float>(logits) + logits_offset, in MultinomialSample()
119 context, rng, GetTensorData<double>(logits) + logits_offset, in MultinomialSample()
[all …]
Dmultinomial_test.cc57 MultinomialOpModel(tflite::TensorData logits, int num_samples, in MultinomialOpModel() argument
59 logits_ = AddInput(logits); in MultinomialOpModel()
70 int logits() { return logits_; } in logits() function in tflite::__anon1d5c03730111::MultinomialOpModel
109 m.PopulateTensor<Float>(m.logits(), in TYPED_TEST()
140 m.PopulateTensor<Float>(m.logits(), in TYPED_TEST()
165 m.logits(), {static_cast<Float>(-1000.0f), static_cast<Float>(-1000.0f), in TYPED_TEST()
188 std::vector<Float> logits(kNumLogits, static_cast<Float>(0.0f)); in TYPED_TEST() local
189 m.PopulateTensor<Float>(m.logits(), logits); in TYPED_TEST()
214 std::vector<Float> logits( in TYPED_TEST() local
216 m.PopulateTensor<Float>(m.logits(), logits); in TYPED_TEST()
/external/tensorflow/tensorflow/python/eager/benchmarks/resnet50/
Dhvp_test.py37 logits = model(images, training=True)
39 logits=logits, onehot_labels=labels)
49 logits = model(images, training=True)
51 logits=logits, onehot_labels=labels)
57 logits = model(images, training=True)
59 logits=logits, onehot_labels=labels)
70 logits = model(images, training=True)
72 logits=logits, onehot_labels=labels)
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/
Dsoftmax_op.cc43 xla::XlaOp logits, bool log) { in BuildSoftmaxCustomCall() argument
44 TF_ASSIGN_OR_RETURN(xla::Shape logits_shape, b->GetShape(logits)); in BuildSoftmaxCustomCall()
45 return xla::CustomCallWithLayout(b, log ? "log_softmax" : "softmax", {logits}, in BuildSoftmaxCustomCall()
69 auto logits = ctx->Input(0); in Compile() local
76 b->ReportErrorOrReturn(BuildSoftmaxCustomCall(b, logits, log_)); in Compile()
85 xla::Reduce(logits, xla::MinValue(b, xla_type), max_func, {kClassDim}); in Compile()
88 auto shifted_logits = xla::Sub(logits, logits_max, batch_dims); in Compile()
118 xla::XlaOp logits, xla::XlaOp labels) { in CrossEntropyWithLogits() argument
127 xla::Reduce(logits, xla::MinValue(b, xla_type), max_func, {kClassDim}); in CrossEntropyWithLogits()
131 auto shifted_logits = xla::Sub(logits, logits_max, {kBatchDim}); in CrossEntropyWithLogits()
[all …]
/external/tensorflow/tensorflow/python/tpu/
Dasync_checkpoint_test.py69 logits = math_ops.matmul(features, w)
70 loss = losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
83 def metric_fn(labels, logits): argument
85 logging.info('LABELS %s %s', labels, logits)
87 'recall@1': metrics_lib.recall_at_k(labels, logits, 1),
88 'recall@5': metrics_lib.recall_at_k(labels, logits, 5),
91 loss = losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
92 eval_metrics = (metric_fn, [labels, logits])
/external/tensorflow/tensorflow/core/api_def/base_api/
Dapi_def_BoostedTreesPredict.pbtxt12 name: "logits"
14 Output rank 2 Tensor containing logits for each example.
26 scalar, dimension of the logits, to be used for partial logits
32 computes the logits. It is designed to be used during prediction.
Dapi_def_Softmax.pbtxt4 name: "logits"
12 Same shape as `logits`.
19 $$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$
Dapi_def_LogSoftmax.pbtxt4 name: "logits"
12 Same shape as `logits`.
19 logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i])))

12345678