Home
last modified time | relevance | path

Searched refs:matrix_shape (Results 1 – 22 of 22) sorted by relevance

/external/tensorflow/tensorflow/python/kernel_tests/
Dmatrix_solve_op_test.py126 matrix_shape = [3, 3]
130 matrix_shape, seed=seed)
132 matrix_shape, seed=seed)
134 matrix_shape, seed=seed)
136 matrix_shape, seed=seed)
161 def _GenerateTestData(self, matrix_shape, num_rhs): argument
162 batch_shape = matrix_shape[:-2]
163 matrix_shape = matrix_shape[-2:]
164 assert matrix_shape[0] == matrix_shape[1]
165 n = matrix_shape[0]
[all …]
Dmatrix_solve_ls_op_test.py46 def _GenerateTestData(matrix_shape, num_rhs): argument
47 batch_shape = matrix_shape[:-2]
48 matrix_shape = matrix_shape[-2:]
49 m = matrix_shape[-2]
53 size=np.prod(matrix_shape)).reshape(matrix_shape).astype(np.float32)
238 matrix_shape = (127, 127)
241 size=np.prod(matrix_shape)).reshape(matrix_shape).astype(np.float32)
242 rhs = np.ones([matrix_shape[0], num_rhs]).astype(np.float32)
255 matrix_shape = (127, 64)
258 size=np.prod(matrix_shape)).reshape(matrix_shape).astype(np.float32)
[all …]
Dtridiagonal_solve_op_test.py611 def test_with_matrix_shapes(matrix_shape, rhs_shape=None): argument
617 diags_shape=matrix_shape,
624 test_with_matrix_shapes(matrix_shape=[4, 4], rhs_shape=[None, None])
625 test_with_matrix_shapes(matrix_shape=[None, 4], rhs_shape=[None, None])
626 test_with_matrix_shapes(matrix_shape=[4, None], rhs_shape=[None, None])
627 test_with_matrix_shapes(matrix_shape=[None, None], rhs_shape=[None, None])
628 test_with_matrix_shapes(matrix_shape=[4, 4])
629 test_with_matrix_shapes(matrix_shape=[None, 4])
630 test_with_matrix_shapes(matrix_shape=[4, None])
631 test_with_matrix_shapes(matrix_shape=[None, None])
[all …]
Dmatrix_square_root_op_test.py109 matrix_shape = [5, 5]
112 shape=matrix_shape, seed=seed)
114 shape=matrix_shape, seed=seed)
Dmatrix_logarithm_op_test.py133 matrix_shape = [5, 5]
136 stateless_random_ops.stateless_random_normal(matrix_shape, seed=seed),
139 stateless_random_ops.stateless_random_normal(matrix_shape, seed=seed),
Dqr_op_test.py68 matrix_shape = [rows_, cols_]
70 matrix_shape, seed)
72 matrix_shape, seed)
Dlu_op_test.py224 matrix_shape = [5, 5]
227 shape=matrix_shape, seed=seed)
229 shape=matrix_shape, seed=seed)
Dcholesky_op_test.py186 matrix_shape = [5, 5]
187 matrix1 = stateless_random_ops.stateless_random_normal(matrix_shape, seed)
188 matrix2 = stateless_random_ops.stateless_random_normal(matrix_shape, seed)
/external/tensorflow/tensorflow/python/ops/
Dlinalg_ops.py70 matrix_shape = array_ops.shape(matrix)
71 batch_shape = matrix_shape[:-2]
73 small_dim = matrix_shape[-1]
75 small_dim = matrix_shape[-2]
327 matrix_shape = tensor_shape[-2:]
331 is_io_bound = batch_shape.num_elements() > np.min(matrix_shape)
353 matrix_shape = matrix.get_shape()[-2:]
354 if matrix_shape.is_fully_defined():
355 if matrix_shape[-2] >= matrix_shape[-1]:
362 matrix_shape = array_ops.shape(matrix)[-2:]
[all …]
Darray_grad.py388 matrix_shape = op.inputs[0].get_shape()[-2:]
389 if matrix_shape.is_fully_defined() and matrix_shape[0] == matrix_shape[1]:
398 matrix_shape = op.inputs[0].get_shape()[-2:]
399 if matrix_shape.is_fully_defined():
403 num_rows=matrix_shape[0],
404 num_cols=matrix_shape[1]), None, None
413 matrix_shape = op.inputs[0].get_shape()[-2:]
415 if matrix_shape.is_fully_defined():
419 num_rows=matrix_shape[0],
420 num_cols=matrix_shape[1],
[all …]
Dlinalg_grad.py629 matrix_shape = op.inputs[0].get_shape()[-2:]
630 if matrix_shape.is_fully_defined():
631 if matrix_shape[-2] >= matrix_shape[-1]:
638 matrix_shape = array_ops.shape(op.inputs[0])[-2:]
639 return control_flow_ops.cond(matrix_shape[-2] >= matrix_shape[-1],
/external/tensorflow/tensorflow/core/ops/
Dsparse_csr_matrix_ops.cc45 const ShapeHandle& matrix_shape, in ValidateSquareMatrixShape() argument
48 TF_RETURN_IF_ERROR(c->WithRankAtLeast(matrix_shape, 2, &out)); in ValidateSquareMatrixShape()
49 TF_RETURN_IF_ERROR(c->WithRankAtMost(matrix_shape, 3, &out)); in ValidateSquareMatrixShape()
50 if (!c->RankKnown(matrix_shape)) { in ValidateSquareMatrixShape()
54 TF_RETURN_IF_ERROR(c->Merge(c->Dim(matrix_shape, -2), in ValidateSquareMatrixShape()
55 c->Dim(matrix_shape, -1), matrix_dimension)); in ValidateSquareMatrixShape()
558 ShapeHandle matrix_shape = sparse_matrix_shape_and_type.shape; in __anon5631e9dc0f02() local
560 TF_RETURN_IF_ERROR(ValidateSquareMatrixShape(c, matrix_shape, &n)); in __anon5631e9dc0f02()
563 if (c->Rank(matrix_shape) == 2) { in __anon5631e9dc0f02()
564 output = c->Vector(c->Dim(matrix_shape, 0)); in __anon5631e9dc0f02()
[all …]
/external/tensorflow/tensorflow/python/ops/linalg/
Dlinear_operator_identity.py307 matrix_shape = tensor_shape.TensorShape((self._num_rows_static,
310 return matrix_shape
313 return batch_shape.concatenate(matrix_shape)
316 matrix_shape = array_ops.stack((self._num_rows, self._num_rows), axis=0)
318 return matrix_shape
320 return array_ops.concat((self._batch_shape_arg, matrix_shape), 0)
657 matrix_shape = tensor_shape.TensorShape((self._num_rows_static,
661 return batch_shape.concatenate(matrix_shape)
664 matrix_shape = array_ops.stack((self._num_rows, self._num_rows), axis=0)
667 return array_ops.concat((batch_shape, matrix_shape), 0)
Dlinear_operator_composition.py208 matrix_shape = tensor_shape.TensorShape(
219 return batch_shape.concatenate(matrix_shape)
230 matrix_shape = array_ops.stack([
241 return array_ops.concat((batch_shape, matrix_shape), 0)
Dlinear_operator_zeros.py249 matrix_shape = tensor_shape.TensorShape((self._num_rows_static,
252 return matrix_shape
255 return batch_shape.concatenate(matrix_shape)
258 matrix_shape = array_ops.stack((self._num_rows, self._num_columns), axis=0)
260 return matrix_shape
262 return array_ops.concat((self._batch_shape_arg, matrix_shape), 0)
Dlinear_operator_kronecker.py256 matrix_shape = tensor_shape.TensorShape([
266 return batch_shape.concatenate(matrix_shape)
277 matrix_shape = [range_dimension, domain_dimension]
286 return array_ops.concat((batch_shape, matrix_shape), 0)
Dlinear_operator_block_diag.py261 matrix_shape = tensor_shape.TensorShape([domain_dimension, range_dimension])
270 return batch_shape.concatenate(matrix_shape)
280 matrix_shape = array_ops.stack([domain_dimension, range_dimension])
288 return array_ops.concat((batch_shape, matrix_shape), 0)
Dlinear_operator_block_lower_triangular.py364 matrix_shape = tensor_shape.TensorShape([domain_dimension, range_dimension])
374 return batch_shape.concatenate(matrix_shape)
384 matrix_shape = array_ops.stack([domain_dimension, range_dimension])
392 return array_ops.concat((batch_shape, matrix_shape), 0)
/external/tensorflow/tensorflow/compiler/xla/tests/
Dxla_hlo_profile_test.cc270 Shape matrix_shape = ShapeUtil::MakeShape(F32, {size, size}); in XLA_TEST_F() local
272 ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(S32, {}), matrix_shape}); in XLA_TEST_F()
302 Parameter(&builder, 0, matrix_shape, "initial_value")}); in XLA_TEST_F()
305 Parameter(&builder, 1, matrix_shape, "other_value")); in XLA_TEST_F()
310 ExecuteAndFetchProfile(&profile_output, client, computation, matrix_shape, in XLA_TEST_F()
311 matrix_shape); in XLA_TEST_F()
Dwhile_test.cc1190 auto matrix_shape = ShapeUtil::MakeShape(F32, {2, 2}); in XLA_TEST_F() local
1193 {scalar_s32, matrix_shape, matrix_shape, matrix_shape}); in XLA_TEST_F()
1218 auto matrix_input = Parameter(&builder, 0, matrix_shape, "matrix"); in XLA_TEST_F()
Dtuple_test.cc171 auto matrix_shape = builder.GetShape(matrix_element).ConsumeValueOrDie(); in XLA_TEST_F() local
180 ASSERT_TRUE(ShapeUtil::Equal(matrix_shape, in XLA_TEST_F()
/external/tensorflow/tensorflow/compiler/xla/service/
Dshape_inference_test.cc106 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); in TEST_F() local
108 ShapeInference::InferUnaryOpShape(HloOpcode::kNegate, matrix_shape); in TEST_F()
110 ASSERT_TRUE(ShapeUtil::Equal(matrix_shape, inferred_status.ValueOrDie())); in TEST_F()
315 Shape matrix_shape = ShapeUtil::MakeShape(F32, {8, 8}); in TEST_F() local
332 matrix_shape, init_value_shape, window, to_apply); in TEST_F()
1271 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); in TEST_F() local
1273 ShapeInference::InferSliceShape(matrix_shape, {32, 0}, {64, 64}, {1, 1}); in TEST_F()
1280 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}, {true, true}); in TEST_F() local
1282 ShapeInference::InferSliceShape(matrix_shape, {32, 0}, {33, 64}, {1, 1}); in TEST_F()
1290 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); in TEST_F() local
[all …]