/external/tensorflow/tensorflow/python/kernel_tests/ |
D | matrix_solve_op_test.py | 126 matrix_shape = [3, 3] 130 matrix_shape, seed=seed) 132 matrix_shape, seed=seed) 134 matrix_shape, seed=seed) 136 matrix_shape, seed=seed) 161 def _GenerateTestData(self, matrix_shape, num_rhs): argument 162 batch_shape = matrix_shape[:-2] 163 matrix_shape = matrix_shape[-2:] 164 assert matrix_shape[0] == matrix_shape[1] 165 n = matrix_shape[0] [all …]
|
D | matrix_solve_ls_op_test.py | 46 def _GenerateTestData(matrix_shape, num_rhs): argument 47 batch_shape = matrix_shape[:-2] 48 matrix_shape = matrix_shape[-2:] 49 m = matrix_shape[-2] 53 size=np.prod(matrix_shape)).reshape(matrix_shape).astype(np.float32) 238 matrix_shape = (127, 127) 241 size=np.prod(matrix_shape)).reshape(matrix_shape).astype(np.float32) 242 rhs = np.ones([matrix_shape[0], num_rhs]).astype(np.float32) 255 matrix_shape = (127, 64) 258 size=np.prod(matrix_shape)).reshape(matrix_shape).astype(np.float32) [all …]
|
D | tridiagonal_solve_op_test.py | 611 def test_with_matrix_shapes(matrix_shape, rhs_shape=None): argument 617 diags_shape=matrix_shape, 624 test_with_matrix_shapes(matrix_shape=[4, 4], rhs_shape=[None, None]) 625 test_with_matrix_shapes(matrix_shape=[None, 4], rhs_shape=[None, None]) 626 test_with_matrix_shapes(matrix_shape=[4, None], rhs_shape=[None, None]) 627 test_with_matrix_shapes(matrix_shape=[None, None], rhs_shape=[None, None]) 628 test_with_matrix_shapes(matrix_shape=[4, 4]) 629 test_with_matrix_shapes(matrix_shape=[None, 4]) 630 test_with_matrix_shapes(matrix_shape=[4, None]) 631 test_with_matrix_shapes(matrix_shape=[None, None]) [all …]
|
D | matrix_square_root_op_test.py | 109 matrix_shape = [5, 5] 112 shape=matrix_shape, seed=seed) 114 shape=matrix_shape, seed=seed)
|
D | matrix_logarithm_op_test.py | 133 matrix_shape = [5, 5] 136 stateless_random_ops.stateless_random_normal(matrix_shape, seed=seed), 139 stateless_random_ops.stateless_random_normal(matrix_shape, seed=seed),
|
D | qr_op_test.py | 68 matrix_shape = [rows_, cols_] 70 matrix_shape, seed) 72 matrix_shape, seed)
|
D | lu_op_test.py | 224 matrix_shape = [5, 5] 227 shape=matrix_shape, seed=seed) 229 shape=matrix_shape, seed=seed)
|
D | cholesky_op_test.py | 186 matrix_shape = [5, 5] 187 matrix1 = stateless_random_ops.stateless_random_normal(matrix_shape, seed) 188 matrix2 = stateless_random_ops.stateless_random_normal(matrix_shape, seed)
|
/external/tensorflow/tensorflow/python/ops/ |
D | linalg_ops.py | 70 matrix_shape = array_ops.shape(matrix) 71 batch_shape = matrix_shape[:-2] 73 small_dim = matrix_shape[-1] 75 small_dim = matrix_shape[-2] 327 matrix_shape = tensor_shape[-2:] 331 is_io_bound = batch_shape.num_elements() > np.min(matrix_shape) 353 matrix_shape = matrix.get_shape()[-2:] 354 if matrix_shape.is_fully_defined(): 355 if matrix_shape[-2] >= matrix_shape[-1]: 362 matrix_shape = array_ops.shape(matrix)[-2:] [all …]
|
D | array_grad.py | 388 matrix_shape = op.inputs[0].get_shape()[-2:] 389 if matrix_shape.is_fully_defined() and matrix_shape[0] == matrix_shape[1]: 398 matrix_shape = op.inputs[0].get_shape()[-2:] 399 if matrix_shape.is_fully_defined(): 403 num_rows=matrix_shape[0], 404 num_cols=matrix_shape[1]), None, None 413 matrix_shape = op.inputs[0].get_shape()[-2:] 415 if matrix_shape.is_fully_defined(): 419 num_rows=matrix_shape[0], 420 num_cols=matrix_shape[1], [all …]
|
D | linalg_grad.py | 629 matrix_shape = op.inputs[0].get_shape()[-2:] 630 if matrix_shape.is_fully_defined(): 631 if matrix_shape[-2] >= matrix_shape[-1]: 638 matrix_shape = array_ops.shape(op.inputs[0])[-2:] 639 return control_flow_ops.cond(matrix_shape[-2] >= matrix_shape[-1],
|
/external/tensorflow/tensorflow/core/ops/ |
D | sparse_csr_matrix_ops.cc | 45 const ShapeHandle& matrix_shape, in ValidateSquareMatrixShape() argument 48 TF_RETURN_IF_ERROR(c->WithRankAtLeast(matrix_shape, 2, &out)); in ValidateSquareMatrixShape() 49 TF_RETURN_IF_ERROR(c->WithRankAtMost(matrix_shape, 3, &out)); in ValidateSquareMatrixShape() 50 if (!c->RankKnown(matrix_shape)) { in ValidateSquareMatrixShape() 54 TF_RETURN_IF_ERROR(c->Merge(c->Dim(matrix_shape, -2), in ValidateSquareMatrixShape() 55 c->Dim(matrix_shape, -1), matrix_dimension)); in ValidateSquareMatrixShape() 558 ShapeHandle matrix_shape = sparse_matrix_shape_and_type.shape; in __anon5631e9dc0f02() local 560 TF_RETURN_IF_ERROR(ValidateSquareMatrixShape(c, matrix_shape, &n)); in __anon5631e9dc0f02() 563 if (c->Rank(matrix_shape) == 2) { in __anon5631e9dc0f02() 564 output = c->Vector(c->Dim(matrix_shape, 0)); in __anon5631e9dc0f02() [all …]
|
/external/tensorflow/tensorflow/python/ops/linalg/ |
D | linear_operator_identity.py | 307 matrix_shape = tensor_shape.TensorShape((self._num_rows_static, 310 return matrix_shape 313 return batch_shape.concatenate(matrix_shape) 316 matrix_shape = array_ops.stack((self._num_rows, self._num_rows), axis=0) 318 return matrix_shape 320 return array_ops.concat((self._batch_shape_arg, matrix_shape), 0) 657 matrix_shape = tensor_shape.TensorShape((self._num_rows_static, 661 return batch_shape.concatenate(matrix_shape) 664 matrix_shape = array_ops.stack((self._num_rows, self._num_rows), axis=0) 667 return array_ops.concat((batch_shape, matrix_shape), 0)
|
D | linear_operator_composition.py | 208 matrix_shape = tensor_shape.TensorShape( 219 return batch_shape.concatenate(matrix_shape) 230 matrix_shape = array_ops.stack([ 241 return array_ops.concat((batch_shape, matrix_shape), 0)
|
D | linear_operator_zeros.py | 249 matrix_shape = tensor_shape.TensorShape((self._num_rows_static, 252 return matrix_shape 255 return batch_shape.concatenate(matrix_shape) 258 matrix_shape = array_ops.stack((self._num_rows, self._num_columns), axis=0) 260 return matrix_shape 262 return array_ops.concat((self._batch_shape_arg, matrix_shape), 0)
|
D | linear_operator_kronecker.py | 256 matrix_shape = tensor_shape.TensorShape([ 266 return batch_shape.concatenate(matrix_shape) 277 matrix_shape = [range_dimension, domain_dimension] 286 return array_ops.concat((batch_shape, matrix_shape), 0)
|
D | linear_operator_block_diag.py | 261 matrix_shape = tensor_shape.TensorShape([domain_dimension, range_dimension]) 270 return batch_shape.concatenate(matrix_shape) 280 matrix_shape = array_ops.stack([domain_dimension, range_dimension]) 288 return array_ops.concat((batch_shape, matrix_shape), 0)
|
D | linear_operator_block_lower_triangular.py | 364 matrix_shape = tensor_shape.TensorShape([domain_dimension, range_dimension]) 374 return batch_shape.concatenate(matrix_shape) 384 matrix_shape = array_ops.stack([domain_dimension, range_dimension]) 392 return array_ops.concat((batch_shape, matrix_shape), 0)
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | xla_hlo_profile_test.cc | 270 Shape matrix_shape = ShapeUtil::MakeShape(F32, {size, size}); in XLA_TEST_F() local 272 ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(S32, {}), matrix_shape}); in XLA_TEST_F() 302 Parameter(&builder, 0, matrix_shape, "initial_value")}); in XLA_TEST_F() 305 Parameter(&builder, 1, matrix_shape, "other_value")); in XLA_TEST_F() 310 ExecuteAndFetchProfile(&profile_output, client, computation, matrix_shape, in XLA_TEST_F() 311 matrix_shape); in XLA_TEST_F()
|
D | while_test.cc | 1190 auto matrix_shape = ShapeUtil::MakeShape(F32, {2, 2}); in XLA_TEST_F() local 1193 {scalar_s32, matrix_shape, matrix_shape, matrix_shape}); in XLA_TEST_F() 1218 auto matrix_input = Parameter(&builder, 0, matrix_shape, "matrix"); in XLA_TEST_F()
|
D | tuple_test.cc | 171 auto matrix_shape = builder.GetShape(matrix_element).ConsumeValueOrDie(); in XLA_TEST_F() local 180 ASSERT_TRUE(ShapeUtil::Equal(matrix_shape, in XLA_TEST_F()
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | shape_inference_test.cc | 106 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); in TEST_F() local 108 ShapeInference::InferUnaryOpShape(HloOpcode::kNegate, matrix_shape); in TEST_F() 110 ASSERT_TRUE(ShapeUtil::Equal(matrix_shape, inferred_status.ValueOrDie())); in TEST_F() 315 Shape matrix_shape = ShapeUtil::MakeShape(F32, {8, 8}); in TEST_F() local 332 matrix_shape, init_value_shape, window, to_apply); in TEST_F() 1271 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); in TEST_F() local 1273 ShapeInference::InferSliceShape(matrix_shape, {32, 0}, {64, 64}, {1, 1}); in TEST_F() 1280 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}, {true, true}); in TEST_F() local 1282 ShapeInference::InferSliceShape(matrix_shape, {32, 0}, {33, 64}, {1, 1}); in TEST_F() 1290 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); in TEST_F() local [all …]
|