/external/tensorflow/tensorflow/compiler/xla/service/ |
D | dot_decomposer.cc | 42 const int64 num_batch_dims = original_dnums.lhs_batch_dimensions_size(); in CanonicalizeDot() local 49 lhs_rank - num_batch_dims - num_contracting_dims; in CanonicalizeDot() 56 batch_dim_sizes.reserve(num_batch_dims); in CanonicalizeDot() 99 rhs_rank - num_batch_dims - num_contracting_dims; in CanonicalizeDot() 152 for (int64 i = 0; i < num_batch_dims; ++i) { in CanonicalizeDot() 157 num_batch_dims + (lhs_non_contracting_size > 1 ? 1 : 0)); in CanonicalizeDot() 158 dot_dnums.add_rhs_contracting_dimensions(num_batch_dims); in CanonicalizeDot()
|
D | qr_expander.cc | 189 const int64 num_batch_dims = num_dims - 2; in QrBlock() local 190 std::vector<int64> batch_dims(num_batch_dims); in QrBlock() 191 for (int i = 0; i < num_batch_dims; ++i) { in QrBlock() 195 std::vector<int64> batch_dim_indices(num_batch_dims); in QrBlock() 369 const int64 num_batch_dims = num_dims - 2; in BuildQrDecomposition() local 370 std::vector<int64> batch_dims(num_batch_dims); in BuildQrDecomposition() 371 for (int i = 0; i < num_batch_dims; ++i) { in BuildQrDecomposition()
|
D | transpose_folding.cc | 47 int64 num_batch_dims = in CanFoldOperandsIntoDot() local 49 int64 expected_rank = 2 + num_batch_dims; in CanFoldOperandsIntoDot()
|
D | elemental_ir_emitter.cc | 2220 int64 num_batch_dims = dim_numbers.rhs_batch_dimensions_size(); in EmitElementalDot() local 2221 for (int64 i = 0; i < num_batch_dims; i++) { in EmitElementalDot() 2225 for (int64 i = 0; i < rhs_dims - 1 - num_batch_dims; i++) { in EmitElementalDot()
|
/external/tensorflow/tensorflow/compiler/xla/client/lib/ |
D | svd.cc | 118 const int64 num_batch_dims = num_dims - 2; in HouseRow() local 119 std::vector<int64> batch_dims(num_batch_dims); in HouseRow() 120 for (int k = 0; k < num_batch_dims; ++k) { in HouseRow() 183 const int64 num_batch_dims = num_dims - 2; in HouseCol() local 184 std::vector<int64> batch_dims(num_batch_dims); in HouseCol() 185 for (int k = 0; k < num_batch_dims; ++k) { in HouseCol() 257 const int64 num_batch_dims = num_dims - 2; in HouseHolderBidiagonalization() local 258 std::vector<int64> batch_dims(num_batch_dims); in HouseHolderBidiagonalization() 259 for (int i = 0; i < num_batch_dims; ++i) { in HouseHolderBidiagonalization() 459 const int64 num_batch_dims = num_dims - 2; in OneSidedJacobiUpdate() local [all …]
|
D | lu_decomposition.cc | 34 const int num_batch_dims = a_shape.dimensions().size() - 2; in LuDecomposition() local 37 a_shape.dimensions().begin() + num_batch_dims); in LuDecomposition()
|
D | self_adjoint_eig.cc | 429 const int64 num_batch_dims = num_dims - 2; in SelfAdjointEig() local 430 std::vector<int64> batch_dims(num_batch_dims); in SelfAdjointEig() 431 for (int i = 0; i < num_batch_dims; ++i) { in SelfAdjointEig()
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_ops.py | 194 num_batch_dims=1): argument 199 input_shape.ndims - num_batch_dims + 1) 206 filter_shape.ndims + num_batch_dims - 1) 211 if input_shape.ndims < 3 or input_shape.ndims - num_batch_dims + 1 > 5: 215 .format(input_shape.ndims, num_batch_dims)) 216 conv_dims = input_shape.ndims - num_batch_dims - 1 601 num_batch_dims=1): argument 616 starting_spatial_dim = num_batch_dims + 1 618 starting_spatial_dim = num_batch_dims 1093 num_batch_dims = inputs_rank - num_spatial_dims - 1 # Channel dimension. [all …]
|
/external/tensorflow/tensorflow/compiler/xla/service/cpu/ |
D | dot_op_emitter.cc | 1134 int64 num_batch_dims = in EmitBatchDotOperation() local 1143 CollapseFirstNDims(b, lhs_array, num_batch_dims); in EmitBatchDotOperation() 1145 CollapseFirstNDims(b, rhs_array, num_batch_dims); in EmitBatchDotOperation() 1147 CollapseFirstNDims(b, target_array, num_batch_dims); in EmitBatchDotOperation() 1171 dot_info.dim_nums.lhs_contracting_dimensions(0) - num_batch_dims); in EmitBatchDotOperation() 1174 dot_info.dim_nums.rhs_contracting_dimensions(0) - num_batch_dims); in EmitBatchDotOperation()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | conv_ops_3d_test.py | 229 self.assertEqual(convolver1.num_batch_dims, 1) 235 self.assertEqual(convolver2.num_batch_dims, 2)
|
D | conv_ops_test.py | 472 self.assertEqual(convolver1.num_batch_dims, 1) 478 self.assertEqual(convolver2.num_batch_dims, 2)
|
/external/tensorflow/tensorflow/compiler/mlir/xla/transforms/ |
D | legalize_tf.cc | 540 bool transpose_rhs, int64_t num_batch_dims, in BatchDot() argument 543 llvm::to_vector<4>(llvm::seq<int64_t>(0, num_batch_dims)), builder); in BatchDot() 545 llvm::makeArrayRef({transpose_lhs ? num_batch_dims : num_batch_dims + 1}), in BatchDot() 548 llvm::makeArrayRef({transpose_rhs ? num_batch_dims + 1 : num_batch_dims}), in BatchDot() 5825 const int64_t num_batch_dims = num_dims - 2; in QRBlock() local 5826 auto batch_dims = a_type.getShape().take_front(num_batch_dims); in QRBlock() 5857 auto vva = BatchDot(loc, v_broadcast, false, a, false, num_batch_dims, in QRBlock() 5859 vva = BatchDot(loc, v_broadcast, true, vva, false, num_batch_dims, in QRBlock() 5888 GetI64ElementsAttr(llvm::SmallVector<int64_t, 4>(num_batch_dims, 1), in QRBlock() 5903 const int64_t minor_dim = num_batch_dims; in QRBlock() [all …]
|
/external/llvm-project/mlir/include/mlir/Dialect/Vector/ |
D | VectorOps.td | 60 num_batch_dims (see dimension type descriptions below)). For K = 0 (no
|