Searched refs:per_replica_values (Results 1 – 7 of 7) sorted by relevance
/external/tensorflow/tensorflow/python/distribute/ |
D | cross_device_ops.py | 626 def _group_value_by_device(per_replica_values): argument 644 destinations = per_replica_values[0]._devices # pylint: disable=protected-access 646 for per_replica_value in per_replica_values: 859 def _batch_all_reduce(self, reduce_op, per_replica_values): argument 862 cross_device_utils.split_by_sparsity(per_replica_values)) 1181 def _batch_all_reduce(self, reduce_op, per_replica_values, options): argument 1184 cross_device_utils.split_by_sparsity(per_replica_values)) 1198 def _do_batch_all_reduce_dense(self, reduce_op, per_replica_values, options): argument 1201 batch_size = len(per_replica_values) 1224 for per_replica in reversed(per_replica_values): [all …]
|
D | parameter_server_strategy.py | 402 per_replica_values = [] 404 per_replica_values.append( 407 return distribute_utils.regroup(per_replica_values, always_wrap=True)
|
D | collective_all_reduce_strategy.py | 625 per_replica_values = [] 632 per_replica_values.append(value_fn(value_context)) 633 return distribute_utils.regroup(per_replica_values, always_wrap=True)
|
D | mirrored_strategy.py | 592 per_replica_values = [] 594 per_replica_values.append(value_fn( 597 return distribute_utils.regroup(per_replica_values, always_wrap=True)
|
D | input_lib_test.py | 1095 def map_fn(per_replica_values): argument 1098 map(sparse_tensor.is_sparse, per_replica_values.values)) else 1099 math_ops.reduce_sum, (per_replica_values,)) 1238 def map_fn(per_replica_values): argument 1241 map(sparse_tensor.is_sparse, per_replica_values.values)) else 1242 math_ops.reduce_sum, (per_replica_values,))
|
D | tpu_strategy.py | 980 per_replica_values = [] 982 per_replica_values.append( 985 return distribute_utils.regroup(per_replica_values, always_wrap=True)
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | distributed_training_utils_v1.py | 216 def flatten_per_replica_values(distribution_strategy, per_replica_values): argument 236 return [e for flattened in nest.flatten(per_replica_values)
|