Home
last modified time | relevance | path

Searched refs:per_replica_values (Results 1 – 7 of 7) sorted by relevance

/external/tensorflow/tensorflow/python/distribute/
Dcross_device_ops.py626 def _group_value_by_device(per_replica_values): argument
644 destinations = per_replica_values[0]._devices # pylint: disable=protected-access
646 for per_replica_value in per_replica_values:
859 def _batch_all_reduce(self, reduce_op, per_replica_values): argument
862 cross_device_utils.split_by_sparsity(per_replica_values))
1181 def _batch_all_reduce(self, reduce_op, per_replica_values, options): argument
1184 cross_device_utils.split_by_sparsity(per_replica_values))
1198 def _do_batch_all_reduce_dense(self, reduce_op, per_replica_values, options): argument
1201 batch_size = len(per_replica_values)
1224 for per_replica in reversed(per_replica_values):
[all …]
Dparameter_server_strategy.py402 per_replica_values = []
404 per_replica_values.append(
407 return distribute_utils.regroup(per_replica_values, always_wrap=True)
Dcollective_all_reduce_strategy.py625 per_replica_values = []
632 per_replica_values.append(value_fn(value_context))
633 return distribute_utils.regroup(per_replica_values, always_wrap=True)
Dmirrored_strategy.py592 per_replica_values = []
594 per_replica_values.append(value_fn(
597 return distribute_utils.regroup(per_replica_values, always_wrap=True)
Dinput_lib_test.py1095 def map_fn(per_replica_values): argument
1098 map(sparse_tensor.is_sparse, per_replica_values.values)) else
1099 math_ops.reduce_sum, (per_replica_values,))
1238 def map_fn(per_replica_values): argument
1241 map(sparse_tensor.is_sparse, per_replica_values.values)) else
1242 math_ops.reduce_sum, (per_replica_values,))
Dtpu_strategy.py980 per_replica_values = []
982 per_replica_values.append(
985 return distribute_utils.regroup(per_replica_values, always_wrap=True)
/external/tensorflow/tensorflow/python/keras/distribute/
Ddistributed_training_utils_v1.py216 def flatten_per_replica_values(distribution_strategy, per_replica_values): argument
236 return [e for flattened in nest.flatten(per_replica_values)