/external/tensorflow/tensorflow/python/layers/ |
D | pooling.py | 22 from tensorflow.python.keras.legacy_tf_layers import pooling 25 AveragePooling1D = pooling.AveragePooling1D 26 average_pooling1d = pooling.average_pooling1d 27 MaxPooling1D = pooling.MaxPooling1D 28 max_pooling1d = pooling.max_pooling1d 29 AveragePooling2D = pooling.AveragePooling2D 30 average_pooling2d = pooling.average_pooling2d 31 MaxPooling2D = pooling.MaxPooling2D 32 max_pooling2d = pooling.max_pooling2d 33 AveragePooling3D = pooling.AveragePooling3D [all …]
|
D | layers.py | 61 from tensorflow.python.layers.pooling import AveragePooling1D 62 from tensorflow.python.layers.pooling import MaxPooling1D 63 from tensorflow.python.layers.pooling import AveragePooling2D 64 from tensorflow.python.layers.pooling import MaxPooling2D 65 from tensorflow.python.layers.pooling import AveragePooling3D 66 from tensorflow.python.layers.pooling import MaxPooling3D 68 from tensorflow.python.layers.pooling import average_pooling1d 69 from tensorflow.python.layers.pooling import max_pooling1d 70 from tensorflow.python.layers.pooling import average_pooling2d 71 from tensorflow.python.layers.pooling import max_pooling2d [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_FractionalAvgPool.pbtxt | 12 output tensor after fractional avg pooling. 18 row pooling sequence, needed to calculate gradient. 24 column pooling sequence, needed to calculate gradient. 32 pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements 33 must be 1.0 because we don't allow pooling on batch and channels 34 dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions 41 When set to True, generates the pooling sequence in a 50 When set to True, it means when pooling, the values at the boundary 51 of adjacent pooling cells are used by both cells. For example: 57 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. [all …]
|
D | api_def_FractionalMaxPool.pbtxt | 12 output tensor after fractional max pooling. 18 row pooling sequence, needed to calculate gradient. 24 column pooling sequence, needed to calculate gradient. 32 pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements 33 must be 1.0 because we don't allow pooling on batch and channels 34 dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions 41 When set to True, generates the pooling sequence in a 50 When set to True, it means when pooling, the values at the boundary 51 of adjacent pooling cells are used by both cells. For example: 57 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. [all …]
|
D | api_def_FractionalAvgPoolGrad.pbtxt | 20 row pooling sequence, form pooling region with 27 column pooling sequence, form pooling region with 40 When set to True, it means when pooling, the values at the boundary 41 of adjacent pooling cells are used by both cells. For example: 47 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. 48 The result would be [41/3, 26/3] for fractional avg pooling. 55 out_backprop to those indices that form the same pooling cell. Therefore, we
|
D | api_def_FractionalMaxPoolGrad.pbtxt | 26 row pooling sequence, form pooling region with 33 column pooling sequence, form pooling region with 46 When set to True, it means when pooling, the values at the boundary 47 of adjacent pooling cells are used by both cells. For example: 53 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. 54 The result would be [20, 16] for fractional max pooling.
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.applications.pbtxt | 65 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 69 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 73 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 77 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 81 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 85 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 89 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 93 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 97 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 101 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… [all …]
|
D | tensorflow.keras.applications.efficientnet.pbtxt | 5 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 9 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 13 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 17 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 21 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 25 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 29 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 33 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl…
|
D | tensorflow.keras.applications.resnet.pbtxt | 5 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 9 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 13 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl…
|
D | tensorflow.keras.applications.densenet.pbtxt | 5 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 9 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 13 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl…
|
D | tensorflow.keras.applications.resnet_v2.pbtxt | 5 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 9 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 13 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl…
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.applications.pbtxt | 65 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 69 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 73 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 77 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 81 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 85 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 89 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 93 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 97 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 101 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… [all …]
|
D | tensorflow.keras.applications.efficientnet.pbtxt | 5 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 9 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 13 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 17 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 21 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 25 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 29 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 33 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl…
|
D | tensorflow.keras.applications.densenet.pbtxt | 5 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 9 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 13 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl…
|
D | tensorflow.keras.applications.resnet.pbtxt | 5 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 9 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 13 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl…
|
D | tensorflow.keras.applications.resnet_v2.pbtxt | 5 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 9 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl… 13 …argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'cl…
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | efficientnet.py | 208 pooling=None, argument 378 if pooling == 'avg': 380 elif pooling == 'max': 527 pooling=None, argument 541 pooling=pooling, 553 pooling=None, argument 567 pooling=pooling, 579 pooling=None, argument 593 pooling=pooling, 605 pooling=None, argument [all …]
|
D | resnet_v2.py | 38 pooling=None, argument 57 pooling, 69 pooling=None, argument 88 pooling, 100 pooling=None, argument 119 pooling,
|
D | densenet.py | 135 pooling=None, argument 252 if pooling == 'avg': 254 elif pooling == 'max': 327 pooling=None, argument 331 input_shape, pooling, classes) 340 pooling=None, argument 344 input_shape, pooling, classes) 353 pooling=None, argument 357 input_shape, pooling, classes)
|
D | resnet.py | 68 pooling=None, argument 191 if pooling == 'avg': 193 elif pooling == 'max': 460 pooling=None, argument 472 input_tensor, input_shape, pooling, classes, **kwargs) 481 pooling=None, argument 493 input_tensor, input_shape, pooling, classes, **kwargs) 502 pooling=None, argument 514 input_tensor, input_shape, pooling, classes, **kwargs)
|
D | nasnet.py | 74 pooling=None, argument 265 if pooling == 'avg': 267 elif pooling == 'max': 327 pooling=None, argument 393 pooling=pooling, 404 pooling=None, argument 470 pooling=pooling,
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | pooling.cc | 38 namespace pooling { namespace 461 static TfLiteRegistration r = {pooling::Init, pooling::Free, in Register_AVERAGE_POOL_REF() 462 pooling::GenericPrepare<pooling::kAverage>, in Register_AVERAGE_POOL_REF() 463 pooling::AverageEval<pooling::kReference>}; in Register_AVERAGE_POOL_REF() 468 static TfLiteRegistration r = {pooling::Init, pooling::Free, in Register_MAX_POOL_REF() 469 pooling::GenericPrepare<pooling::kMax>, in Register_MAX_POOL_REF() 470 pooling::MaxEval<pooling::kReference>}; in Register_MAX_POOL_REF() 475 static TfLiteRegistration r = {pooling::Init, pooling::Free, in Register_L2_POOL_REF() 476 pooling::GenericPrepare<pooling::kL2>, in Register_L2_POOL_REF() 477 pooling::L2Eval<pooling::kReference>}; in Register_L2_POOL_REF() [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | __init__.py | 188 from tensorflow.python.keras.layers.pooling import MaxPooling1D 189 from tensorflow.python.keras.layers.pooling import MaxPooling2D 190 from tensorflow.python.keras.layers.pooling import MaxPooling3D 191 from tensorflow.python.keras.layers.pooling import AveragePooling1D 192 from tensorflow.python.keras.layers.pooling import AveragePooling2D 193 from tensorflow.python.keras.layers.pooling import AveragePooling3D 194 from tensorflow.python.keras.layers.pooling import GlobalAveragePooling1D 195 from tensorflow.python.keras.layers.pooling import GlobalAveragePooling2D 196 from tensorflow.python.keras.layers.pooling import GlobalAveragePooling3D 197 from tensorflow.python.keras.layers.pooling import GlobalMaxPooling1D [all …]
|
D | pooling_test.py | 38 keras.layers.pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5)) 40 keras.layers.pooling.GlobalMaxPooling1D, 44 keras.layers.pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5)) 46 keras.layers.pooling.GlobalAveragePooling1D, 116 keras.layers.pooling.GlobalMaxPooling2D, 120 keras.layers.pooling.GlobalMaxPooling2D, 124 keras.layers.pooling.GlobalAveragePooling2D, 128 keras.layers.pooling.GlobalAveragePooling2D, 134 keras.layers.pooling.GlobalMaxPooling3D, 138 keras.layers.pooling.GlobalMaxPooling3D, [all …]
|
/external/tensorflow/tensorflow/lite/micro/kernels/ |
D | pooling.cc | 27 namespace pooling { namespace 246 return {/*init=*/pooling::Init, in Register_AVERAGE_POOL_2D() 248 /*prepare=*/pooling::Prepare, in Register_AVERAGE_POOL_2D() 249 /*invoke=*/pooling::AverageEval, in Register_AVERAGE_POOL_2D() 257 return {/*init=*/pooling::Init, in Register_MAX_POOL_2D() 259 /*prepare=*/pooling::Prepare, in Register_MAX_POOL_2D() 260 /*invoke=*/pooling::MaxEval, in Register_MAX_POOL_2D()
|