Home
last modified time | relevance | path

Searched refs:r_1 (Results 1 – 10 of 10) sorted by relevance

/external/skia/site/docs/dev/design/conical/
D_index.md37 Let two circles be $C_0, r_0$ and $C_1, r_1$ where $C$ is the center and $r$ is
41 $r_t = (1-t) \cdot r_0 + t \cdot r_1 > 0$ (note that radius $r_t$ has to be
48 2. $r_0 = r_1$ so the gradient is a single strip with bandwidth $2 r_0 = 2 r_1$.
54 \neq r_1$.
56 As $r_0 \neq r_1$, we can find a focal point
58 interpolated radius $r_f = (1-f) \cdot r_0 + f \cdot r_1 = 0$. Solving the
59 latter equation gets us $f = r_0 / (r_0 - r_1)$.
61 As $C_0 \neq C_1$, focal point $C_f$ is different from $C_1$ unless $r_1 = 0$.
62 If $r_1 = 0$, we can swap $C_0, r_0$ with $C_1, r_1$, compute swapped gradient
63 $t_s$ as if $r_1 \neq 0$, and finally set $t = 1 - t_s$. The only catch here is
[all …]
/external/skqp/site/dev/design/conical/
Dindex.md33 Let two circles be $C_0, r_0$ and $C_1, r_1$ where $C$ is the center and $r$ is the radius. For any
36 $r_t = (1-t) \cdot r_0 + t \cdot r_1 > 0$ (note that radius $r_t$ has to be *positive*). If
42 2. $r_0 = r_1$ so the gradient is a single strip with bandwidth $2 r_0 = 2 r_1$.
47 \neq r_1$.
49 As $r_0 \neq r_1$, we can find a focal point $C_f = (1-f) \cdot C_0 + f \cdot C_1$ where its
50 corresponding linearly interpolated radius $r_f = (1-f) \cdot r_0 + f \cdot r_1 = 0$.
51 Solving the latter equation gets us $f = r_0 / (r_0 - r_1)$.
53 As $C_0 \neq C_1$, focal point $C_f$ is different from $C_1$ unless $r_1 = 0$. If $r_1 = 0$, we can
54 swap $C_0, r_0$ with $C_1, r_1$, compute swapped gradient $t_s$ as if $r_1 \neq 0$, and finally set
62 2. The radius $r_t$ is $x_t r_1$.
[all …]
/external/oboe/apps/fxlab/app/src/main/cpp/effects/utils/
DWhiteNoise.h24 static float r_0, r_1 = 0; in operator() local
26 r_0 = r_1; in operator()
27 r_1 = (static_cast <float> (rand()) / static_cast <float> (RAND_MAX)) * 2 - 1; in operator()
29 float ret = r_0 + counter * (r_1 - r_0) / kScale; in operator()
/external/libvpx/libvpx/vpx_dsp/arm/
Dintrapred_neon.c493 const uint8x16_t r_1 = vextq_u8(row_0, row_1, 14); in vpx_d135_predictor_16x16_neon() local
508 d135_store_16x8(&dst, stride, r_0, r_1, r_2, r_3, r_4, r_5, r_6, r_7); in vpx_d135_predictor_16x16_neon()
564 const uint8x16_t r_1 = vextq_u8(row_1, row_2, 15); in vpx_d135_predictor_32x32_neon() local
566 d135_store_32x2(&dst, stride, r_0, r_1, r_2); in vpx_d135_predictor_32x32_neon()
571 const uint8x16_t r_1 = vextq_u8(row_1, row_2, 14); in vpx_d135_predictor_32x32_neon() local
573 d135_store_32x2(&dst, stride, r_0, r_1, r_2); in vpx_d135_predictor_32x32_neon()
578 const uint8x16_t r_1 = vextq_u8(row_1, row_2, 13); in vpx_d135_predictor_32x32_neon() local
580 d135_store_32x2(&dst, stride, r_0, r_1, r_2); in vpx_d135_predictor_32x32_neon()
585 const uint8x16_t r_1 = vextq_u8(row_1, row_2, 12); in vpx_d135_predictor_32x32_neon() local
587 d135_store_32x2(&dst, stride, r_0, r_1, r_2); in vpx_d135_predictor_32x32_neon()
[all …]
Davg_pred_neon.c38 const uint8x8_t r_1 = vld1_u8(ref + ref_stride); in vpx_comp_avg_pred_neon() local
39 r = vcombine_u8(r_0, r_1); in vpx_comp_avg_pred_neon()
/external/llvm/test/CodeGen/Generic/
Dprint-mul-exp.ll15 %r_1 = mul i32 %a, 1 ; <i32> [#uses=1]
35 call i32 (i8*, ...) @printf( i8* %a_mul_s, i32 1, i32 %r_1 ) ; <i32>:3 [#uses=0]
/external/llvm-project/llvm/test/CodeGen/Generic/
Dprint-mul-exp.ll15 %r_1 = mul i32 %a, 1 ; <i32> [#uses=1]
35 call i32 (i8*, ...) @printf( i8* %a_mul_s, i32 1, i32 %r_1 ) ; <i32>:3 [#uses=0]
/external/mesa3d/src/compiler/nir/
Dnir_lower_double_ops.c282 nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src); in lower_sqrt_rsq() local
283 res = nir_ffma(b, h_1, r_1, g_1); in lower_sqrt_rsq()
286 nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src), in lower_sqrt_rsq() local
288 res = nir_ffma(b, y_1, r_1, y_1); in lower_sqrt_rsq()
/external/llvm-project/lldb/test/API/functionalities/data-formatter/data-formatter-advanced/
Dmain.cpp89 int r_1; member
/external/eigen/unsupported/Eigen/
DPolynomials61 where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$.
114 …r is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d\f$ have…