Home
last modified time | relevance | path

Searched refs:sum_v (Results 1 – 3 of 3) sorted by relevance

/external/libgav1/libgav1/src/dsp/arm/
Dfilm_grain_neon.cc122 int32x4x2_t sum_u, int32x4x2_t sum_v, in WriteFinalAutoRegressionChroma() argument
129 v_grain_cursor, sum_v, coeffs_v, pos, shift); in WriteFinalAutoRegressionChroma()
136 int32x4x2_t sum_u, int32x4x2_t sum_v, in WriteFinalAutoRegressionChroma() argument
143 v_grain_cursor, sum_v, coeffs_v, pos, shift); in WriteFinalAutoRegressionChroma()
260 int32x4x2_t sum_v; in ApplyAutoRegressiveFilterToChromaGrains_NEON() local
262 SetZero(&sum_v); in ApplyAutoRegressiveFilterToChromaGrains_NEON()
288 sum_v = AccumulateWeightedGrain<offset>( \ in ApplyAutoRegressiveFilterToChromaGrains_NEON()
289 v_grain_lo, v_grain_hi, params.auto_regression_coeff_v[pos++], sum_v) in ApplyAutoRegressiveFilterToChromaGrains_NEON()
321 sum_v.val[0] = vmlal_n_s16(sum_v.val[0], vget_low_s16(luma), coeff_v); in ApplyAutoRegressiveFilterToChromaGrains_NEON()
322 sum_v.val[1] = vmlal_n_s16(sum_v.val[1], vget_high_s16(luma), coeff_v); in ApplyAutoRegressiveFilterToChromaGrains_NEON()
[all …]
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/benchmarks/
Dnormalization_adapt_benchmark.py46 sum_v = math_ops.reduce_sum(values, axis=0)
52 ex = 0 + sum_v - math_ops.multiply(batch_size_f, k)
55 math_ops.multiply(math_ops.multiply(2.0, k), sum_v)))
/external/libgav1/libgav1/src/dsp/
Dfilm_grain.cc181 int sum_v = 0; in ApplyAutoRegressiveFilterToChromaGrains_C() local
195 sum_v += in ApplyAutoRegressiveFilterToChromaGrains_C()
216 sum_v += luma * coeff_v; in ApplyAutoRegressiveFilterToChromaGrains_C()
222 v_grain[y * chroma_width + x] + RightShiftWithRounding(sum_v, shift), in ApplyAutoRegressiveFilterToChromaGrains_C()