1 /*
2  * Copyright 2019 The libgav1 Authors
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef LIBGAV1_SRC_TILE_H_
18 #define LIBGAV1_SRC_TILE_H_
19 
20 #include <algorithm>
21 #include <array>
22 #include <cassert>
23 #include <condition_variable>  // NOLINT (unapproved c++11 header)
24 #include <cstddef>
25 #include <cstdint>
26 #include <memory>
27 #include <mutex>  // NOLINT (unapproved c++11 header)
28 #include <vector>
29 
30 #include "src/buffer_pool.h"
31 #include "src/decoder_state.h"
32 #include "src/dsp/common.h"
33 #include "src/dsp/constants.h"
34 #include "src/dsp/dsp.h"
35 #include "src/frame_scratch_buffer.h"
36 #include "src/loop_restoration_info.h"
37 #include "src/obu_parser.h"
38 #include "src/post_filter.h"
39 #include "src/quantizer.h"
40 #include "src/residual_buffer_pool.h"
41 #include "src/symbol_decoder_context.h"
42 #include "src/tile_scratch_buffer.h"
43 #include "src/utils/array_2d.h"
44 #include "src/utils/block_parameters_holder.h"
45 #include "src/utils/blocking_counter.h"
46 #include "src/utils/common.h"
47 #include "src/utils/compiler_attributes.h"
48 #include "src/utils/constants.h"
49 #include "src/utils/entropy_decoder.h"
50 #include "src/utils/memory.h"
51 #include "src/utils/segmentation_map.h"
52 #include "src/utils/threadpool.h"
53 #include "src/utils/types.h"
54 #include "src/yuv_buffer.h"
55 
56 namespace libgav1 {
57 
58 // Indicates what the ProcessSuperBlock() and TransformBlock() functions should
59 // do. "Parse" refers to consuming the bitstream, reading the transform
60 // coefficients and performing the dequantization. "Decode" refers to computing
61 // the prediction, applying the inverse transforms and adding the residual.
62 enum ProcessingMode {
63   kProcessingModeParseOnly,
64   kProcessingModeDecodeOnly,
65   kProcessingModeParseAndDecode,
66 };
67 
68 class Tile : public Allocable {
69  public:
Create(int tile_number,const uint8_t * const data,size_t size,const ObuSequenceHeader & sequence_header,const ObuFrameHeader & frame_header,RefCountedBuffer * const current_frame,const DecoderState & state,FrameScratchBuffer * const frame_scratch_buffer,const WedgeMaskArray & wedge_masks,const QuantizerMatrix & quantizer_matrix,SymbolDecoderContext * const saved_symbol_decoder_context,const SegmentationMap * prev_segment_ids,PostFilter * const post_filter,const dsp::Dsp * const dsp,ThreadPool * const thread_pool,BlockingCounterWithStatus * const pending_tiles,bool frame_parallel,bool use_intra_prediction_buffer)70   static std::unique_ptr<Tile> Create(
71       int tile_number, const uint8_t* const data, size_t size,
72       const ObuSequenceHeader& sequence_header,
73       const ObuFrameHeader& frame_header, RefCountedBuffer* const current_frame,
74       const DecoderState& state, FrameScratchBuffer* const frame_scratch_buffer,
75       const WedgeMaskArray& wedge_masks,
76       const QuantizerMatrix& quantizer_matrix,
77       SymbolDecoderContext* const saved_symbol_decoder_context,
78       const SegmentationMap* prev_segment_ids, PostFilter* const post_filter,
79       const dsp::Dsp* const dsp, ThreadPool* const thread_pool,
80       BlockingCounterWithStatus* const pending_tiles, bool frame_parallel,
81       bool use_intra_prediction_buffer) {
82     std::unique_ptr<Tile> tile(new (std::nothrow) Tile(
83         tile_number, data, size, sequence_header, frame_header, current_frame,
84         state, frame_scratch_buffer, wedge_masks, quantizer_matrix,
85         saved_symbol_decoder_context, prev_segment_ids, post_filter, dsp,
86         thread_pool, pending_tiles, frame_parallel,
87         use_intra_prediction_buffer));
88     return (tile != nullptr && tile->Init()) ? std::move(tile) : nullptr;
89   }
90 
91   // Move only.
92   Tile(Tile&& tile) noexcept;
93   Tile& operator=(Tile&& tile) noexcept;
94   Tile(const Tile&) = delete;
95   Tile& operator=(const Tile&) = delete;
96 
97   struct Block;  // Defined after this class.
98 
99   // Parses the entire tile.
100   bool Parse();
101   // Decodes the entire tile. |superblock_row_progress| and
102   // |superblock_row_progress_condvar| are arrays of size equal to the number of
103   // superblock rows in the frame. Increments |superblock_row_progress[i]| after
104   // each superblock row at index |i| is decoded. If the count reaches the
105   // number of tile columns, then it notifies
106   // |superblock_row_progress_condvar[i]|.
107   bool Decode(std::mutex* mutex, int* superblock_row_progress,
108               std::condition_variable* superblock_row_progress_condvar);
109   // Parses and decodes the entire tile. Depending on the configuration of this
110   // Tile, this function may do multithreaded decoding.
111   bool ParseAndDecode();  // 5.11.2.
112   // Processes all the columns of the superblock row at |row4x4| that are within
113   // this Tile. If |save_symbol_decoder_context| is true, then
114   // SaveSymbolDecoderContext() is invoked for the last superblock row.
115   template <ProcessingMode processing_mode, bool save_symbol_decoder_context>
116   bool ProcessSuperBlockRow(int row4x4, TileScratchBuffer* scratch_buffer);
117 
sequence_header()118   const ObuSequenceHeader& sequence_header() const { return sequence_header_; }
frame_header()119   const ObuFrameHeader& frame_header() const { return frame_header_; }
current_frame()120   const RefCountedBuffer& current_frame() const { return current_frame_; }
motion_field()121   const TemporalMotionField& motion_field() const { return motion_field_; }
reference_frame_sign_bias()122   const std::array<bool, kNumReferenceFrameTypes>& reference_frame_sign_bias()
123       const {
124     return reference_frame_sign_bias_;
125   }
126 
IsRow4x4Inside(int row4x4)127   bool IsRow4x4Inside(int row4x4) const {
128     return row4x4 >= row4x4_start_ && row4x4 < row4x4_end_;
129   }
130 
131   // 5.11.51.
IsInside(int row4x4,int column4x4)132   bool IsInside(int row4x4, int column4x4) const {
133     return IsRow4x4Inside(row4x4) && column4x4 >= column4x4_start_ &&
134            column4x4 < column4x4_end_;
135   }
136 
IsLeftInside(int column4x4)137   bool IsLeftInside(int column4x4) const {
138     // We use "larger than" as the condition. Don't pass in the left column
139     // offset column4x4 - 1.
140     assert(column4x4 <= column4x4_end_);
141     return column4x4 > column4x4_start_;
142   }
143 
IsTopInside(int row4x4)144   bool IsTopInside(int row4x4) const {
145     // We use "larger than" as the condition. Don't pass in the top row offset
146     // row4x4 - 1.
147     assert(row4x4 <= row4x4_end_);
148     return row4x4 > row4x4_start_;
149   }
150 
IsTopLeftInside(int row4x4,int column4x4)151   bool IsTopLeftInside(int row4x4, int column4x4) const {
152     // We use "larger than" as the condition. Don't pass in the top row offset
153     // row4x4 - 1 or the left column offset column4x4 - 1.
154     assert(row4x4 <= row4x4_end_);
155     assert(column4x4 <= column4x4_end_);
156     return row4x4 > row4x4_start_ && column4x4 > column4x4_start_;
157   }
158 
IsBottomRightInside(int row4x4,int column4x4)159   bool IsBottomRightInside(int row4x4, int column4x4) const {
160     assert(row4x4 >= row4x4_start_);
161     assert(column4x4 >= column4x4_start_);
162     return row4x4 < row4x4_end_ && column4x4 < column4x4_end_;
163   }
164 
BlockParametersAddress(int row4x4,int column4x4)165   BlockParameters** BlockParametersAddress(int row4x4, int column4x4) const {
166     return block_parameters_holder_.Address(row4x4, column4x4);
167   }
168 
BlockParametersStride()169   int BlockParametersStride() const {
170     return block_parameters_holder_.columns4x4();
171   }
172 
173   // Returns true if Parameters() can be called with |row| and |column| as
174   // inputs, false otherwise.
HasParameters(int row,int column)175   bool HasParameters(int row, int column) const {
176     return block_parameters_holder_.Find(row, column) != nullptr;
177   }
Parameters(int row,int column)178   const BlockParameters& Parameters(int row, int column) const {
179     return *block_parameters_holder_.Find(row, column);
180   }
181 
number()182   int number() const { return number_; }
superblock_rows()183   int superblock_rows() const { return superblock_rows_; }
superblock_columns()184   int superblock_columns() const { return superblock_columns_; }
row4x4_start()185   int row4x4_start() const { return row4x4_start_; }
column4x4_start()186   int column4x4_start() const { return column4x4_start_; }
column4x4_end()187   int column4x4_end() const { return column4x4_end_; }
188 
189  private:
190   // Stores the transform tree state when reading variable size transform trees
191   // and when applying the transform tree. When applying the transform tree,
192   // |depth| is not used.
193   struct TransformTreeNode {
194     // The default constructor is invoked by the Stack<TransformTreeNode, n>
195     // constructor. Stack<> does not use the default-constructed elements, so it
196     // is safe for the default constructor to not initialize the members.
197     TransformTreeNode() = default;
198     TransformTreeNode(int x, int y, TransformSize tx_size, int depth = -1)
xTransformTreeNode199         : x(x), y(y), tx_size(tx_size), depth(depth) {}
200 
201     int x;
202     int y;
203     TransformSize tx_size;
204     int depth;
205   };
206 
207   // Enum to track the processing state of a superblock.
208   enum SuperBlockState : uint8_t {
209     kSuperBlockStateNone,       // Not yet parsed or decoded.
210     kSuperBlockStateParsed,     // Parsed but not yet decoded.
211     kSuperBlockStateScheduled,  // Scheduled for decoding.
212     kSuperBlockStateDecoded     // Parsed and decoded.
213   };
214 
215   // Parameters used to facilitate multi-threading within the Tile.
216   struct ThreadingParameters {
217     std::mutex mutex;
218     // 2d array of size |superblock_rows_| by |superblock_columns_| containing
219     // the processing state of each superblock.
220     Array2D<SuperBlockState> sb_state LIBGAV1_GUARDED_BY(mutex);
221     // Variable used to indicate either parse or decode failure.
222     bool abort LIBGAV1_GUARDED_BY(mutex) = false;
223     int pending_jobs LIBGAV1_GUARDED_BY(mutex) = 0;
224     std::condition_variable pending_jobs_zero_condvar;
225   };
226 
227   // The residual pointer is used to traverse the |residual_buffer_|. It is
228   // used in two different ways.
229   // If |split_parse_and_decode_| is true:
230   //    The pointer points to the beginning of the |residual_buffer_| when the
231   //    "parse" and "decode" steps begin. It is then moved forward tx_size in
232   //    each iteration of the "parse" and the "decode" steps. In this case, the
233   //    ResidualPtr variable passed into various functions starting from
234   //    ProcessSuperBlock is used as an in/out parameter to keep track of the
235   //    residual pointer.
236   // If |split_parse_and_decode_| is false:
237   //    The pointer is reset to the beginning of the |residual_buffer_| for
238   //    every transform block.
239   using ResidualPtr = uint8_t*;
240 
241   Tile(int tile_number, const uint8_t* data, size_t size,
242        const ObuSequenceHeader& sequence_header,
243        const ObuFrameHeader& frame_header, RefCountedBuffer* current_frame,
244        const DecoderState& state, FrameScratchBuffer* frame_scratch_buffer,
245        const WedgeMaskArray& wedge_masks,
246        const QuantizerMatrix& quantizer_matrix,
247        SymbolDecoderContext* saved_symbol_decoder_context,
248        const SegmentationMap* prev_segment_ids, PostFilter* post_filter,
249        const dsp::Dsp* dsp, ThreadPool* thread_pool,
250        BlockingCounterWithStatus* pending_tiles, bool frame_parallel,
251        bool use_intra_prediction_buffer);
252 
253   // Performs member initializations that may fail. Helper function used by
254   // Create().
255   LIBGAV1_MUST_USE_RESULT bool Init();
256 
257   // Saves the symbol decoder context of this tile into
258   // |saved_symbol_decoder_context_| if necessary.
259   void SaveSymbolDecoderContext();
260 
261   // Entry point for multi-threaded decoding. This function performs the same
262   // functionality as ParseAndDecode(). The current thread does the "parse" step
263   // while the worker threads do the "decode" step.
264   bool ThreadedParseAndDecode();
265 
266   // Returns whether or not the prerequisites for decoding the superblock at
267   // |row_index| and |column_index| are satisfied. |threading_.mutex| must be
268   // held when calling this function.
269   bool CanDecode(int row_index, int column_index) const;
270 
271   // This function is run by the worker threads when multi-threaded decoding is
272   // enabled. Once a superblock is decoded, this function will set the
273   // corresponding |threading_.sb_state| entry to kSuperBlockStateDecoded. On
274   // failure, |threading_.abort| will be set to true. If at any point
275   // |threading_.abort| becomes true, this function will return as early as it
276   // can. If the decoding succeeds, this function will also schedule the
277   // decoding jobs for the superblock to the bottom-left and the superblock to
278   // the right of this superblock (if it is allowed).
279   void DecodeSuperBlock(int row_index, int column_index, int block_width4x4);
280 
281   // If |use_intra_prediction_buffer_| is true, then this function copies the
282   // last row of the superblockrow starting at |row4x4| into the
283   // |intra_prediction_buffer_| (which may be used by the intra prediction
284   // process for the next superblock row).
285   void PopulateIntraPredictionBuffer(int row4x4);
286 
287   uint16_t* GetPartitionCdf(int row4x4, int column4x4, BlockSize block_size);
288   bool ReadPartition(int row4x4, int column4x4, BlockSize block_size,
289                      bool has_rows, bool has_columns, Partition* partition);
290   // Processes the Partition starting at |row4x4_start|, |column4x4_start|
291   // iteratively. It performs a DFS traversal over the partition tree to process
292   // the blocks in the right order.
293   bool ProcessPartition(
294       int row4x4_start, int column4x4_start, TileScratchBuffer* scratch_buffer,
295       ResidualPtr* residual);  // Iterative implementation of 5.11.4.
296   bool ProcessBlock(int row4x4, int column4x4, BlockSize block_size,
297                     TileScratchBuffer* scratch_buffer,
298                     ResidualPtr* residual);   // 5.11.5.
299   void ResetCdef(int row4x4, int column4x4);  // 5.11.55.
300 
301   // This function is used to decode a superblock when the parsing has already
302   // been done for that superblock.
303   bool DecodeSuperBlock(int sb_row_index, int sb_column_index,
304                         TileScratchBuffer* scratch_buffer);
305   // Helper function used by DecodeSuperBlock(). Note that the decode_block()
306   // function in the spec is equivalent to ProcessBlock() in the code.
307   bool DecodeBlock(int row4x4, int column4x4, BlockSize block_size,
308                    TileScratchBuffer* scratch_buffer, ResidualPtr* residual);
309 
310   void ClearBlockDecoded(TileScratchBuffer* scratch_buffer, int row4x4,
311                          int column4x4);  // 5.11.3.
312   bool ProcessSuperBlock(int row4x4, int column4x4,
313                          TileScratchBuffer* scratch_buffer,
314                          ProcessingMode mode);
315   void ResetLoopRestorationParams();
316   void ReadLoopRestorationCoefficients(int row4x4, int column4x4,
317                                        BlockSize block_size);  // 5.11.57.
318 
319   // Helper functions for DecodeBlock.
320   bool ReadSegmentId(const Block& block);       // 5.11.9.
321   bool ReadIntraSegmentId(const Block& block);  // 5.11.8.
322   void ReadSkip(const Block& block);            // 5.11.11.
323   void ReadSkipMode(const Block& block);        // 5.11.10.
324   void ReadCdef(const Block& block);            // 5.11.56.
325   // Returns the new value. |cdf| is an array of size kDeltaSymbolCount + 1.
326   int ReadAndClipDelta(uint16_t* cdf, int delta_small, int scale, int min_value,
327                        int max_value, int value);
328   void ReadQuantizerIndexDelta(const Block& block);  // 5.11.12.
329   void ReadLoopFilterDelta(const Block& block);      // 5.11.13.
330   // Populates |BlockParameters::deblock_filter_level| for the given |block|
331   // using |deblock_filter_levels_|.
332   void PopulateDeblockFilterLevel(const Block& block);
333   void ReadPredictionModeY(const Block& block, bool intra_y_mode);
334   void ReadIntraAngleInfo(const Block& block,
335                           PlaneType plane_type);  // 5.11.42 and 5.11.43.
336   void ReadPredictionModeUV(const Block& block);
337   void ReadCflAlpha(const Block& block);  // 5.11.45.
338   int GetPaletteCache(const Block& block, PlaneType plane_type,
339                       uint16_t* cache);
340   void ReadPaletteColors(const Block& block, Plane plane);
341   void ReadPaletteModeInfo(const Block& block);      // 5.11.46.
342   void ReadFilterIntraModeInfo(const Block& block);  // 5.11.24.
343   int ReadMotionVectorComponent(const Block& block,
344                                 int component);                // 5.11.32.
345   void ReadMotionVector(const Block& block, int index);        // 5.11.31.
346   bool DecodeIntraModeInfo(const Block& block);                // 5.11.7.
347   int8_t ComputePredictedSegmentId(const Block& block) const;  // 5.11.21.
348   bool ReadInterSegmentId(const Block& block, bool pre_skip);  // 5.11.19.
349   void ReadIsInter(const Block& block);                        // 5.11.20.
350   bool ReadIntraBlockModeInfo(const Block& block,
351                               bool intra_y_mode);  // 5.11.22.
352   CompoundReferenceType ReadCompoundReferenceType(const Block& block);
353   template <bool is_single, bool is_backward, int index>
354   uint16_t* GetReferenceCdf(const Block& block, CompoundReferenceType type =
355                                                     kNumCompoundReferenceTypes);
356   void ReadReferenceFrames(const Block& block);  // 5.11.25.
357   void ReadInterPredictionModeY(const Block& block,
358                                 const MvContexts& mode_contexts);
359   void ReadRefMvIndex(const Block& block);
360   void ReadInterIntraMode(const Block& block, bool is_compound);  // 5.11.28.
IsScaled(ReferenceFrameType type)361   bool IsScaled(ReferenceFrameType type) const {  // Part of 5.11.27.
362     const int index =
363         frame_header_.reference_frame_index[type - kReferenceFrameLast];
364     return reference_frames_[index]->upscaled_width() != frame_header_.width ||
365            reference_frames_[index]->frame_height() != frame_header_.height;
366   }
367   void ReadMotionMode(const Block& block, bool is_compound);  // 5.11.27.
368   uint16_t* GetIsExplicitCompoundTypeCdf(const Block& block);
369   uint16_t* GetIsCompoundTypeAverageCdf(const Block& block);
370   void ReadCompoundType(const Block& block, bool is_compound);  // 5.11.29.
371   uint16_t* GetInterpolationFilterCdf(const Block& block, int direction);
372   void ReadInterpolationFilter(const Block& block);
373   bool ReadInterBlockModeInfo(const Block& block);             // 5.11.23.
374   bool DecodeInterModeInfo(const Block& block);                // 5.11.18.
375   bool DecodeModeInfo(const Block& block);                     // 5.11.6.
376   bool IsMvValid(const Block& block, bool is_compound) const;  // 6.10.25.
377   bool AssignInterMv(const Block& block, bool is_compound);    // 5.11.26.
378   bool AssignIntraMv(const Block& block);                      // 5.11.26.
379   int GetTopTransformWidth(const Block& block, int row4x4, int column4x4,
380                            bool ignore_skip);
381   int GetLeftTransformHeight(const Block& block, int row4x4, int column4x4,
382                              bool ignore_skip);
383   TransformSize ReadFixedTransformSize(const Block& block);  // 5.11.15.
384   // Iterative implementation of 5.11.17.
385   void ReadVariableTransformTree(const Block& block, int row4x4, int column4x4,
386                                  TransformSize tx_size);
387   void DecodeTransformSize(const Block& block);  // 5.11.16.
388   bool ComputePrediction(const Block& block);    // 5.11.33.
389   // |x4| and |y4| are the column and row positions of the 4x4 block. |w4| and
390   // |h4| are the width and height in 4x4 units of |tx_size|.
391   int GetTransformAllZeroContext(const Block& block, Plane plane,
392                                  TransformSize tx_size, int x4, int y4, int w4,
393                                  int h4);
394   TransformSet GetTransformSet(TransformSize tx_size,
395                                bool is_inter) const;  // 5.11.48.
396   TransformType ComputeTransformType(const Block& block, Plane plane,
397                                      TransformSize tx_size, int block_x,
398                                      int block_y);  // 5.11.40.
399   void ReadTransformType(const Block& block, int x4, int y4,
400                          TransformSize tx_size);  // 5.11.47.
401   template <typename ResidualType>
402   void ReadCoeffBase2D(
403       const uint16_t* scan, TransformSize tx_size, int adjusted_tx_width_log2,
404       int eob,
405       uint16_t coeff_base_cdf[kCoeffBaseContexts][kCoeffBaseSymbolCount + 1],
406       uint16_t coeff_base_range_cdf[kCoeffBaseRangeContexts]
407                                    [kCoeffBaseRangeSymbolCount + 1],
408       ResidualType* quantized_buffer, uint8_t* level_buffer);
409   template <typename ResidualType>
410   void ReadCoeffBaseHorizontal(
411       const uint16_t* scan, TransformSize tx_size, int adjusted_tx_width_log2,
412       int eob,
413       uint16_t coeff_base_cdf[kCoeffBaseContexts][kCoeffBaseSymbolCount + 1],
414       uint16_t coeff_base_range_cdf[kCoeffBaseRangeContexts]
415                                    [kCoeffBaseRangeSymbolCount + 1],
416       ResidualType* quantized_buffer, uint8_t* level_buffer);
417   template <typename ResidualType>
418   void ReadCoeffBaseVertical(
419       const uint16_t* scan, TransformSize tx_size, int adjusted_tx_width_log2,
420       int eob,
421       uint16_t coeff_base_cdf[kCoeffBaseContexts][kCoeffBaseSymbolCount + 1],
422       uint16_t coeff_base_range_cdf[kCoeffBaseRangeContexts]
423                                    [kCoeffBaseRangeSymbolCount + 1],
424       ResidualType* quantized_buffer, uint8_t* level_buffer);
425   int GetDcSignContext(int x4, int y4, int w4, int h4, Plane plane);
426   void SetEntropyContexts(int x4, int y4, int w4, int h4, Plane plane,
427                           uint8_t coefficient_level, int8_t dc_category);
428   void InterIntraPrediction(
429       uint16_t* prediction_0, const uint8_t* prediction_mask,
430       ptrdiff_t prediction_mask_stride,
431       const PredictionParameters& prediction_parameters, int prediction_width,
432       int prediction_height, int subsampling_x, int subsampling_y,
433       uint8_t* dest,
434       ptrdiff_t dest_stride);  // Part of section 7.11.3.1 in the spec.
435   void CompoundInterPrediction(
436       const Block& block, const uint8_t* prediction_mask,
437       ptrdiff_t prediction_mask_stride, int prediction_width,
438       int prediction_height, int subsampling_x, int subsampling_y,
439       int candidate_row, int candidate_column, uint8_t* dest,
440       ptrdiff_t dest_stride);  // Part of section 7.11.3.1 in the spec.
441   GlobalMotion* GetWarpParams(const Block& block, Plane plane,
442                               int prediction_width, int prediction_height,
443                               const PredictionParameters& prediction_parameters,
444                               ReferenceFrameType reference_type,
445                               bool* is_local_valid,
446                               GlobalMotion* global_motion_params,
447                               GlobalMotion* local_warp_params)
448       const;  // Part of section 7.11.3.1 in the spec.
449   bool InterPrediction(const Block& block, Plane plane, int x, int y,
450                        int prediction_width, int prediction_height,
451                        int candidate_row, int candidate_column,
452                        bool* is_local_valid,
453                        GlobalMotion* local_warp_params);  // 7.11.3.1.
454   void ScaleMotionVector(const MotionVector& mv, Plane plane,
455                          int reference_frame_index, int x, int y, int* start_x,
456                          int* start_y, int* step_x, int* step_y);  // 7.11.3.3.
457   // If the method returns false, the caller only uses the output parameters
458   // *ref_block_start_x and *ref_block_start_y. If the method returns true, the
459   // caller uses all three output parameters.
460   static bool GetReferenceBlockPosition(
461       int reference_frame_index, bool is_scaled, int width, int height,
462       int ref_start_x, int ref_last_x, int ref_start_y, int ref_last_y,
463       int start_x, int start_y, int step_x, int step_y, int left_border,
464       int right_border, int top_border, int bottom_border,
465       int* ref_block_start_x, int* ref_block_start_y, int* ref_block_end_x);
466 
467   template <typename Pixel>
468   void BuildConvolveBlock(Plane plane, int reference_frame_index,
469                           bool is_scaled, int height, int ref_start_x,
470                           int ref_last_x, int ref_start_y, int ref_last_y,
471                           int step_y, int ref_block_start_x,
472                           int ref_block_end_x, int ref_block_start_y,
473                           uint8_t* block_buffer,
474                           ptrdiff_t convolve_buffer_stride,
475                           ptrdiff_t block_extended_width);
476   bool BlockInterPrediction(const Block& block, Plane plane,
477                             int reference_frame_index, const MotionVector& mv,
478                             int x, int y, int width, int height,
479                             int candidate_row, int candidate_column,
480                             uint16_t* prediction, bool is_compound,
481                             bool is_inter_intra, uint8_t* dest,
482                             ptrdiff_t dest_stride);  // 7.11.3.4.
483   bool BlockWarpProcess(const Block& block, Plane plane, int index,
484                         int block_start_x, int block_start_y, int width,
485                         int height, GlobalMotion* warp_params, bool is_compound,
486                         bool is_inter_intra, uint8_t* dest,
487                         ptrdiff_t dest_stride);  // 7.11.3.5.
488   bool ObmcBlockPrediction(const Block& block, const MotionVector& mv,
489                            Plane plane, int reference_frame_index, int width,
490                            int height, int x, int y, int candidate_row,
491                            int candidate_column,
492                            ObmcDirection blending_direction);
493   bool ObmcPrediction(const Block& block, Plane plane, int width,
494                       int height);  // 7.11.3.9.
495   void DistanceWeightedPrediction(void* prediction_0, void* prediction_1,
496                                   int width, int height, int candidate_row,
497                                   int candidate_column, uint8_t* dest,
498                                   ptrdiff_t dest_stride);  // 7.11.3.15.
499   // This function specializes the parsing of DC coefficient by removing some of
500   // the branches when i == 0 (since scan[0] is always 0 and scan[i] is always
501   // non-zero for all other possible values of i). |dc_category| is an output
502   // parameter that is populated when |is_dc_coefficient| is true.
503   // |coefficient_level| is an output parameter which accumulates the
504   // coefficient level.
505   template <typename ResidualType, bool is_dc_coefficient>
506   LIBGAV1_ALWAYS_INLINE bool ReadSignAndApplyDequantization(
507       const uint16_t* scan, int i, int q_value, const uint8_t* quantizer_matrix,
508       int shift, int max_value, uint16_t* dc_sign_cdf, int8_t* dc_category,
509       int* coefficient_level,
510       ResidualType* residual_buffer);     // Part of 5.11.39.
511   int ReadCoeffBaseRange(uint16_t* cdf);  // Part of 5.11.39.
512   // Returns the number of non-zero coefficients that were read. |tx_type| is an
513   // output parameter that stores the computed transform type for the plane
514   // whose coefficients were read. Returns -1 on failure.
515   template <typename ResidualType>
516   int ReadTransformCoefficients(const Block& block, Plane plane, int start_x,
517                                 int start_y, TransformSize tx_size,
518                                 TransformType* tx_type);  // 5.11.39.
519   bool TransformBlock(const Block& block, Plane plane, int base_x, int base_y,
520                       TransformSize tx_size, int x, int y,
521                       ProcessingMode mode);  // 5.11.35.
522   // Iterative implementation of 5.11.36.
523   bool TransformTree(const Block& block, int start_x, int start_y,
524                      BlockSize plane_size, ProcessingMode mode);
525   void ReconstructBlock(const Block& block, Plane plane, int start_x,
526                         int start_y, TransformSize tx_size,
527                         TransformType tx_type,
528                         int non_zero_coeff_count);         // Part of 7.12.3.
529   bool Residual(const Block& block, ProcessingMode mode);  // 5.11.34.
530   // part of 5.11.5 (reset_block_context() in the spec).
531   void ResetEntropyContext(const Block& block);
532   // Populates the |color_context| and |color_order| for the |i|th iteration
533   // with entries counting down from |start| to |end| (|start| > |end|).
534   void PopulatePaletteColorContexts(
535       const Block& block, PlaneType plane_type, int i, int start, int end,
536       uint8_t color_order[kMaxPaletteSquare][kMaxPaletteSize],
537       uint8_t color_context[kMaxPaletteSquare]);  // 5.11.50.
538   bool ReadPaletteTokens(const Block& block);     // 5.11.49.
539   template <typename Pixel>
540   void IntraPrediction(const Block& block, Plane plane, int x, int y,
541                        bool has_left, bool has_top, bool has_top_right,
542                        bool has_bottom_left, PredictionMode mode,
543                        TransformSize tx_size);
544   bool IsSmoothPrediction(int row, int column, Plane plane) const;
545   int GetIntraEdgeFilterType(const Block& block,
546                              Plane plane) const;  // 7.11.2.8.
547   template <typename Pixel>
548   void DirectionalPrediction(const Block& block, Plane plane, int x, int y,
549                              bool has_left, bool has_top, bool needs_left,
550                              bool needs_top, int prediction_angle, int width,
551                              int height, int max_x, int max_y,
552                              TransformSize tx_size, Pixel* top_row,
553                              Pixel* left_column);  // 7.11.2.4.
554   template <typename Pixel>
555   void PalettePrediction(const Block& block, Plane plane, int start_x,
556                          int start_y, int x, int y,
557                          TransformSize tx_size);  // 7.11.4.
558   template <typename Pixel>
559   void ChromaFromLumaPrediction(const Block& block, Plane plane, int start_x,
560                                 int start_y,
561                                 TransformSize tx_size);  // 7.11.5.
562   // Section 7.19. Applies some filtering and reordering to the motion vectors
563   // for the given |block| and stores them into |current_frame_|.
564   void StoreMotionFieldMvsIntoCurrentFrame(const Block& block);
565 
566   // Returns the zero-based index of the super block that contains |row4x4|
567   // relative to the start of this tile.
SuperBlockRowIndex(int row4x4)568   int SuperBlockRowIndex(int row4x4) const {
569     return (row4x4 - row4x4_start_) >>
570            (sequence_header_.use_128x128_superblock ? 5 : 4);
571   }
572 
573   // Returns the zero-based index of the super block that contains |column4x4|
574   // relative to the start of this tile.
SuperBlockColumnIndex(int column4x4)575   int SuperBlockColumnIndex(int column4x4) const {
576     return (column4x4 - column4x4_start_) >>
577            (sequence_header_.use_128x128_superblock ? 5 : 4);
578   }
579 
SuperBlockSize()580   BlockSize SuperBlockSize() const {
581     return sequence_header_.use_128x128_superblock ? kBlock128x128
582                                                    : kBlock64x64;
583   }
PlaneCount()584   int PlaneCount() const {
585     return sequence_header_.color_config.is_monochrome ? kMaxPlanesMonochrome
586                                                        : kMaxPlanes;
587   }
588 
589   const int number_;
590   const int row_;
591   const int column_;
592   const uint8_t* const data_;
593   size_t size_;
594   int row4x4_start_;
595   int row4x4_end_;
596   int column4x4_start_;
597   int column4x4_end_;
598   int superblock_rows_;
599   int superblock_columns_;
600   bool read_deltas_;
601   const int8_t subsampling_x_[kMaxPlanes];
602   const int8_t subsampling_y_[kMaxPlanes];
603   int deblock_row_limit_[kMaxPlanes];
604   int deblock_column_limit_[kMaxPlanes];
605 
606   // The dimensions (in order) are: segment_id, level_index (based on plane and
607   // direction), reference_frame and mode_id.
608   uint8_t deblock_filter_levels_[kMaxSegments][kFrameLfCount]
609                                 [kNumReferenceFrameTypes][2];
610 
611   // current_quantizer_index_ is in the range [0, 255].
612   uint8_t current_quantizer_index_;
613   // These two arrays (|coefficient_levels_| and |dc_categories_|) are used to
614   // store the entropy context. Their dimensions are as follows: First -
615   // left/top; Second - plane; Third - row4x4 (if first dimension is
616   // left)/column4x4 (if first dimension is top).
617   //
618   // This is equivalent to the LeftLevelContext and AboveLevelContext arrays in
619   // the spec. In the spec, it stores values from 0 through 63 (inclusive). The
620   // stored values are used to compute the left and top contexts in
621   // GetTransformAllZeroContext. In that function, we only care about the
622   // following values: 0, 1, 2, 3 and >= 4. So instead of clamping to 63, we
623   // clamp to 4 (i.e.) all the values greater than 4 are stored as 4.
624   std::array<Array2D<uint8_t>, 2> coefficient_levels_;
625   // This is equivalent to the LeftDcContext and AboveDcContext arrays in the
626   // spec. In the spec, it can store 3 possible values: 0, 1 and 2 (where 1
627   // means the value is < 0, 2 means the value is > 0 and 0 means the value is
628   // equal to 0).
629   //
630   // The stored values are used in two places:
631   //  * GetTransformAllZeroContext: Here, we only care about whether the
632   //  value is 0 or not (whether it is 1 or 2 is irrelevant).
633   //  * GetDcSignContext: Here, we do the following computation: if the
634   //  stored value is 1, we decrement a counter. If the stored value is 2
635   //  we increment a counter.
636   //
637   // Based on this usage, we can simply replace 1 with -1 and 2 with 1 and
638   // use that value to compute the counter.
639   //
640   // The usage on GetTransformAllZeroContext is unaffected since there we
641   // only care about whether it is 0 or not.
642   std::array<Array2D<int8_t>, 2> dc_categories_;
643   const ObuSequenceHeader& sequence_header_;
644   const ObuFrameHeader& frame_header_;
645   const std::array<bool, kNumReferenceFrameTypes>& reference_frame_sign_bias_;
646   const std::array<RefCountedBufferPtr, kNumReferenceFrameTypes>&
647       reference_frames_;
648   TemporalMotionField& motion_field_;
649   const std::array<uint8_t, kNumReferenceFrameTypes>& reference_order_hint_;
650   const WedgeMaskArray& wedge_masks_;
651   const QuantizerMatrix& quantizer_matrix_;
652   DaalaBitReader reader_;
653   SymbolDecoderContext symbol_decoder_context_;
654   SymbolDecoderContext* const saved_symbol_decoder_context_;
655   const SegmentationMap* prev_segment_ids_;
656   const dsp::Dsp& dsp_;
657   PostFilter& post_filter_;
658   BlockParametersHolder& block_parameters_holder_;
659   Quantizer quantizer_;
660   // When there is no multi-threading within the Tile, |residual_buffer_| is
661   // used. When there is multi-threading within the Tile,
662   // |residual_buffer_threaded_| is used. In the following comment,
663   // |residual_buffer| refers to either |residual_buffer_| or
664   // |residual_buffer_threaded_| depending on whether multi-threading is enabled
665   // within the Tile or not.
666   // The |residual_buffer| is used to help with the dequantization and the
667   // inverse transform processes. It is declared as a uint8_t, but is always
668   // accessed either as an int16_t or int32_t depending on |bitdepth|. Here is
669   // what it stores at various stages of the decoding process (in the order
670   // which they happen):
671   //   1) In ReadTransformCoefficients(), this buffer is used to store the
672   //   dequantized values.
673   //   2) In Reconstruct(), this buffer is used as the input to the row
674   //   transform process.
675   // The size of this buffer would be:
676   //    For |residual_buffer_|: (4096 + 32 * |kResidualPaddingVertical|) *
677   //        |residual_size_|. Where 4096 = 64x64 which is the maximum transform
678   //        size, and 32 * |kResidualPaddingVertical| is the padding to avoid
679   //        bottom boundary checks when parsing quantized coefficients. This
680   //        memory is allocated and owned by the Tile class.
681   //    For |residual_buffer_threaded_|: See the comment below. This memory is
682   //        not allocated or owned by the Tile class.
683   AlignedUniquePtr<uint8_t> residual_buffer_;
684   // This is a 2d array of pointers of size |superblock_rows_| by
685   // |superblock_columns_| where each pointer points to a ResidualBuffer for a
686   // single super block. The array is populated when the parsing process begins
687   // by calling |residual_buffer_pool_->Get()| and the memory is released back
688   // to the pool by calling |residual_buffer_pool_->Release()| when the decoding
689   // process is complete.
690   Array2D<std::unique_ptr<ResidualBuffer>> residual_buffer_threaded_;
691   // sizeof(int16_t or int32_t) depending on |bitdepth|.
692   const size_t residual_size_;
693   // Number of superblocks on the top-right that will have to be decoded before
694   // the current superblock can be decoded. This will be 1 if allow_intrabc is
695   // false. If allow_intrabc is true, then this value will be
696   // use_128x128_superblock ? 3 : 5. This is the allowed range of reference for
697   // the top rows for intrabc.
698   const int intra_block_copy_lag_;
699 
700   // In the Tile class, we use the "current_frame" in two ways:
701   //   1) To write the decoded output into (using the |buffer_| view).
702   //   2) To read the pixels for intra block copy (using the |current_frame_|
703   //      reference).
704   //
705   // When intra block copy is off, |buffer_| and |current_frame_| may or may not
706   // point to the same plane pointers. But it is okay since |current_frame_| is
707   // never used in this case.
708   //
709   // When intra block copy is on, |buffer_| and |current_frame_| always point to
710   // the same plane pointers (since post filtering is disabled). So the usage in
711   // both case 1 and case 2 remain valid.
712   Array2DView<uint8_t> buffer_[kMaxPlanes];
713   RefCountedBuffer& current_frame_;
714 
715   Array2D<int16_t>& cdef_index_;
716   Array2D<TransformSize>& inter_transform_sizes_;
717   std::array<RestorationUnitInfo, kMaxPlanes> reference_unit_info_;
718   // If |thread_pool_| is nullptr, the calling thread will do the parsing and
719   // the decoding in one pass. If |thread_pool_| is not nullptr, then the main
720   // thread will do the parsing while the thread pool workers will do the
721   // decoding.
722   ThreadPool* const thread_pool_;
723   ThreadingParameters threading_;
724   ResidualBufferPool* const residual_buffer_pool_;
725   TileScratchBufferPool* const tile_scratch_buffer_pool_;
726   BlockingCounterWithStatus* const pending_tiles_;
727   bool split_parse_and_decode_;
728   // This is used only when |split_parse_and_decode_| is false.
729   std::unique_ptr<PredictionParameters> prediction_parameters_ = nullptr;
730   // Stores the |transform_type| for the super block being decoded at a 4x4
731   // granularity. The spec uses absolute indices for this array but it is
732   // sufficient to use indices relative to the super block being decoded.
733   TransformType transform_types_[32][32];
734   // delta_lf_[i] is in the range [-63, 63].
735   int8_t delta_lf_[kFrameLfCount];
736   // True if all the values in |delta_lf_| are zero. False otherwise.
737   bool delta_lf_all_zero_;
738   const bool frame_parallel_;
739   const bool use_intra_prediction_buffer_;
740   // Buffer used to store the unfiltered pixels that are necessary for decoding
741   // the next superblock row (for the intra prediction process). Used only if
742   // |use_intra_prediction_buffer_| is true. The |frame_scratch_buffer| contains
743   // one row buffer for each tile row. This tile will have to use the buffer
744   // corresponding to this tile's row.
745   IntraPredictionBuffer* const intra_prediction_buffer_;
746   // Stores the progress of the reference frames. This will be used to avoid
747   // unnecessary calls into RefCountedBuffer::WaitUntil().
748   std::array<int, kNumReferenceFrameTypes> reference_frame_progress_cache_;
749 };
750 
751 struct Tile::Block {
BlockBlock752   Block(const Tile& tile, BlockSize size, int row4x4, int column4x4,
753         TileScratchBuffer* const scratch_buffer, ResidualPtr* residual)
754       : tile(tile),
755         size(size),
756         row4x4(row4x4),
757         column4x4(column4x4),
758         width(kBlockWidthPixels[size]),
759         height(kBlockHeightPixels[size]),
760         width4x4(width >> 2),
761         height4x4(height >> 2),
762         scratch_buffer(scratch_buffer),
763         residual(residual) {
764     assert(size != kBlockInvalid);
765     residual_size[kPlaneY] = kPlaneResidualSize[size][0][0];
766     residual_size[kPlaneU] = residual_size[kPlaneV] =
767         kPlaneResidualSize[size][tile.subsampling_x_[kPlaneU]]
768                           [tile.subsampling_y_[kPlaneU]];
769     assert(residual_size[kPlaneY] != kBlockInvalid);
770     if (tile.PlaneCount() > 1) {
771       assert(residual_size[kPlaneU] != kBlockInvalid);
772     }
773     if ((row4x4 & 1) == 0 &&
774         (tile.sequence_header_.color_config.subsampling_y & height4x4) == 1) {
775       has_chroma = false;
776     } else if ((column4x4 & 1) == 0 &&
777                (tile.sequence_header_.color_config.subsampling_x & width4x4) ==
778                    1) {
779       has_chroma = false;
780     } else {
781       has_chroma = !tile.sequence_header_.color_config.is_monochrome;
782     }
783     top_available[kPlaneY] = tile.IsTopInside(row4x4);
784     left_available[kPlaneY] = tile.IsLeftInside(column4x4);
785     if (has_chroma) {
786       // top_available[kPlaneU] and top_available[kPlaneV] are valid only if
787       // has_chroma is true.
788       // The next 3 lines are equivalent to:
789       // top_available[kPlaneU] = top_available[kPlaneV] =
790       //     top_available[kPlaneY] &&
791       //     ((tile.sequence_header_.color_config.subsampling_y & height4x4) ==
792       //     0 || tile.IsTopInside(row4x4 - 1));
793       top_available[kPlaneU] = top_available[kPlaneV] = tile.IsTopInside(
794           row4x4 -
795           (tile.sequence_header_.color_config.subsampling_y & height4x4));
796       // left_available[kPlaneU] and left_available[kPlaneV] are valid only if
797       // has_chroma is true.
798       // The next 3 lines are equivalent to:
799       // left_available[kPlaneU] = left_available[kPlaneV] =
800       //     left_available[kPlaneY] &&
801       //     ((tile.sequence_header_.color_config.subsampling_x & width4x4) == 0
802       //      || tile.IsLeftInside(column4x4 - 1));
803       left_available[kPlaneU] = left_available[kPlaneV] = tile.IsLeftInside(
804           column4x4 -
805           (tile.sequence_header_.color_config.subsampling_x & width4x4));
806     }
807     const ptrdiff_t stride = tile.BlockParametersStride();
808     BlockParameters** const bps =
809         tile.BlockParametersAddress(row4x4, column4x4);
810     bp = *bps;
811     // bp_top is valid only if top_available[kPlaneY] is true.
812     if (top_available[kPlaneY]) {
813       bp_top = *(bps - stride);
814     }
815     // bp_left is valid only if left_available[kPlaneY] is true.
816     if (left_available[kPlaneY]) {
817       bp_left = *(bps - 1);
818     }
819   }
820 
HasChromaBlock821   bool HasChroma() const { return has_chroma; }
822 
823   // These return values of these group of functions are valid only if the
824   // corresponding top_available or left_available is true.
TopReferenceBlock825   ReferenceFrameType TopReference(int index) const {
826     return bp_top->reference_frame[index];
827   }
828 
LeftReferenceBlock829   ReferenceFrameType LeftReference(int index) const {
830     return bp_left->reference_frame[index];
831   }
832 
IsTopIntraBlock833   bool IsTopIntra() const { return TopReference(0) <= kReferenceFrameIntra; }
IsLeftIntraBlock834   bool IsLeftIntra() const { return LeftReference(0) <= kReferenceFrameIntra; }
835 
IsTopSingleBlock836   bool IsTopSingle() const { return TopReference(1) <= kReferenceFrameIntra; }
IsLeftSingleBlock837   bool IsLeftSingle() const { return LeftReference(1) <= kReferenceFrameIntra; }
838 
CountReferencesBlock839   int CountReferences(ReferenceFrameType type) const {
840     return static_cast<int>(top_available[kPlaneY] &&
841                             bp_top->reference_frame[0] == type) +
842            static_cast<int>(top_available[kPlaneY] &&
843                             bp_top->reference_frame[1] == type) +
844            static_cast<int>(left_available[kPlaneY] &&
845                             bp_left->reference_frame[0] == type) +
846            static_cast<int>(left_available[kPlaneY] &&
847                             bp_left->reference_frame[1] == type);
848   }
849 
850   // 7.10.3.
851   // Checks if there are any inter blocks to the left or above. If so, it
852   // returns true indicating that the block has neighbors that are suitable for
853   // use by overlapped motion compensation.
HasOverlappableCandidatesBlock854   bool HasOverlappableCandidates() const {
855     const ptrdiff_t stride = tile.BlockParametersStride();
856     BlockParameters** const bps = tile.BlockParametersAddress(0, 0);
857     if (top_available[kPlaneY]) {
858       BlockParameters** bps_top = bps + (row4x4 - 1) * stride + (column4x4 | 1);
859       const int columns = std::min(tile.frame_header_.columns4x4 - column4x4,
860                                    static_cast<int>(width4x4));
861       BlockParameters** const bps_top_end = bps_top + columns;
862       do {
863         if ((*bps_top)->reference_frame[0] > kReferenceFrameIntra) {
864           return true;
865         }
866         bps_top += 2;
867       } while (bps_top < bps_top_end);
868     }
869     if (left_available[kPlaneY]) {
870       BlockParameters** bps_left = bps + (row4x4 | 1) * stride + column4x4 - 1;
871       const int rows = std::min(tile.frame_header_.rows4x4 - row4x4,
872                                 static_cast<int>(height4x4));
873       BlockParameters** const bps_left_end = bps_left + rows * stride;
874       do {
875         if ((*bps_left)->reference_frame[0] > kReferenceFrameIntra) {
876           return true;
877         }
878         bps_left += 2 * stride;
879       } while (bps_left < bps_left_end);
880     }
881     return false;
882   }
883 
884   const Tile& tile;
885   bool has_chroma;
886   const BlockSize size;
887   bool top_available[kMaxPlanes];
888   bool left_available[kMaxPlanes];
889   BlockSize residual_size[kMaxPlanes];
890   const int row4x4;
891   const int column4x4;
892   const int width;
893   const int height;
894   const int width4x4;
895   const int height4x4;
896   const BlockParameters* bp_top;
897   const BlockParameters* bp_left;
898   BlockParameters* bp;
899   TileScratchBuffer* const scratch_buffer;
900   ResidualPtr* const residual;
901 };
902 
903 extern template bool
904 Tile::ProcessSuperBlockRow<kProcessingModeDecodeOnly, false>(
905     int row4x4, TileScratchBuffer* scratch_buffer);
906 extern template bool
907 Tile::ProcessSuperBlockRow<kProcessingModeParseAndDecode, true>(
908     int row4x4, TileScratchBuffer* scratch_buffer);
909 
910 }  // namespace libgav1
911 
912 #endif  // LIBGAV1_SRC_TILE_H_
913