/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/ |
D | tf_executor_ops.mlir | 3 // CHECK-LABEL: func private @control_type() -> !tf_executor.control 4 func private @control_type() -> !tf_executor.control 6 // CHECK-LABEL: func private @token_type() -> !tf_executor.token 7 func private @token_type() -> !tf_executor.token 11 tf_executor.graph { 15 // CHECK: tf_executor.graph { 16 // CHECK-NEXT: tf_executor.fetch 23 %result = tf_executor.graph { 24 tf_executor.fetch %0 : tensor<*xf32> 31 %result = tf_executor.graph { [all …]
|
D | executor_island_coarsening.mlir | 8 %0 = tf_executor.graph { 9 %1:2 = tf_executor.island { 11 tf_executor.yield %3 : tensor<i1> 13 %2:2 = tf_executor.island(%1#1) { 15 tf_executor.yield %4 : tensor<f32> 17 tf_executor.fetch %2#0 : tensor<f32> 22 // CHECK: %[[ISLAND:.*]], %[[ISLAND_control:.*]] = tf_executor.island { 25 // CHECK-NEXT: tf_executor.yield %[[OP_B]] : tensor<f32> 26 // CHECK: tf_executor.fetch %[[ISLAND]] : tensor<f32> 33 %0 = tf_executor.graph { [all …]
|
D | tf_executor_ops_invalid.mlir | 3 func @invalid_type() -> !tf_executor.foobar 4 // expected-error@-1 {{unknown tf_executor type: foobar}} 8 // Check that tf_executor.graph does not accept any operand. 10 "tf_executor.graph" (%arg0) ({}) : (tensor<*xf32>) -> () 11 // expected-error@-1 {{'tf_executor.graph' op requires zero operands}} 19 "tf_executor.graph" () ({ 20 // expected-error@-1 {{'tf_executor.graph' op region #0 ('body') failed to verify constraint: regio… 29 "tf_executor.graph" () ({ 30 // expected-error@-1 {{'tf_executor.graph' op expects a non-empty block}} 38 // Check that only tf_executor operations can be present in a tf_executor.graph. [all …]
|
D | parallel_execute_to_islands.mlir | 5 tf_executor.graph { 6 tf_executor.island() { 12 tf_executor.yield 14 tf_executor.fetch 19 // CHECK: [[ISLAND_0_CTRL:%.+]] = tf_executor.island { 20 // CHECK: tf_executor.yield 21 // CHECK: [[ISLAND_1_CTRL:%.+]] = tf_executor.island { 22 // CHECK: tf_executor.yield 23 // CHECK: tf_executor.fetch [[ISLAND_0_CTRL]], [[ISLAND_1_CTRL]] : 29 %0:2 = tf_executor.graph { [all …]
|
D | graph_pruning.mlir | 9 %0 = tf_executor.graph { 10 %1:2 = tf_executor.island { 11 tf_executor.yield %arg0 : i32 13 %2:2 = tf_executor.island { 14 tf_executor.yield %1#0 : i32 16 tf_executor.fetch %2#0 : i32 24 // CHECK: tf_executor.island 25 // CHECK-NOT: tf_executor.island 26 %0 = tf_executor.graph { 27 %1:2 = tf_executor.island { [all …]
|
D | breakup-islands.mlir | 11 %graph:2 = tf_executor.graph { 12 %island:3 = tf_executor.island { 15 tf_executor.yield %add1, %add2 : tensor<*xi32>, tensor<*xi32> 17 tf_executor.fetch %island#0, %island#1 : tensor<*xi32>, tensor<*xi32> 23 // CHECK: %[[GRAPH:.*]]:2 = tf_executor.graph { 24 // CHECK: %[[ADD1:.*]], %[[ADD1_control:.*]] = tf_executor.island wraps "tf.Add"(%arg0, %arg1) 25 // CHECK: %[[ADD2:.*]], %[[ADD2_control:.*]] = tf_executor.island wraps "tf.Add"(%[[ADD1]], %ar… 26 // CHECK: tf_executor.fetch %[[ADD1]], %[[ADD2]] : 32 %graph:2 = tf_executor.graph { 33 %island1:3 = tf_executor.island { [all …]
|
D | executor_canonicalize.mlir | 8 tf_executor.graph { 9 %1:2 = tf_executor.island { 12 tf_executor.yield %3 : tensor<i1> 14 tf_executor.fetch 28 %0:3 = tf_executor.graph { 29 %1:4 = tf_executor.island { 33 tf_executor.yield %3, %5, %4 : tensor<i1>, tensor<i1>, tensor<i1> 35 tf_executor.fetch %1#1, %1#0, %1#2 : tensor<i1>, tensor<i1>, tensor<i1> 50 %0:3 = tf_executor.graph { 51 %1:4 = tf_executor.island { [all …]
|
D | replicate_to_island.mlir | 7 tf_executor.graph { 8 %1 = tf_executor.ControlTrigger {} 9 %2 = tf_executor.ControlTrigger {} 10 %3 = tf_executor.island(%1, %2) { 14 tf_executor.yield 16 tf_executor.fetch 21 // CHECK: %[[CT_0:.*]] = tf_executor.ControlTrigger 22 // CHECK: %[[CT_1:.*]] = tf_executor.ControlTrigger 23 // CHECK: %{{.*}} = tf_executor.island(%[[CT_0]], %[[CT_1]]) 24 // CHECK: %{{.*}} = tf_executor.island(%[[CT_0]], %[[CT_1]]) [all …]
|
D | graph_pruning_preserve_ops.mlir | 7 tf_executor.graph { 8 %0 = tf_executor.ControlTrigger {} 10 %1 = tf_executor.island wraps "tf.NoOp"() : () -> () 12 …%2 = tf_executor.island(%1) wraps "tf.TPUReplicateMetadata"() {allow_soft_placement = false, compu… 13 tf_executor.fetch %0 : !tf_executor.control 20 tf_executor.graph { 21 %0 = tf_executor.ControlTrigger {} 23 %1 = tf_executor.island wraps "tf.NoOp"() : () -> () 25 %2, %3 = tf_executor.island(%1) wraps "tf.TPUCompilationResult"() : () -> tensor<!tf.string> 26 tf_executor.fetch %0 : !tf_executor.control [all …]
|
D | tf-functional-to-executor.mlir | 11 // CHECK: %[[GRAPH_RESULT:.*]]:2 = tf_executor.graph { 12 // CHECK: %[[ISLAND_RESULT:.*]]:2, {{.*}} = tf_executor.island { 15 // CHECK: tf_executor.yield %[[ADD1]], %[[ADD2]] : tensor<*xi32>, tensor<*xi32> 17 // CHECK: tf_executor.fetch %[[ISLAND_RESULT]]#0, %[[ISLAND_RESULT]]#1 : tensor<*xi32>, tensor<… 26 // CHECK: tf_executor.graph { 27 // CHECK: %[[CONTROL:.*]] = tf_executor.island { 28 // CHECK: tf_executor.yield 30 // CHECK: tf_executor.fetch %[[CONTROL]] : !tf_executor.control 35 tf_executor.graph { 36 %control = tf_executor.island { [all …]
|
D | resource-device-inference.mlir | 12 tf_executor.graph { 13 // CHECK: tf_executor.island 14 %island = tf_executor.island { 32 tf_executor.yield 34 tf_executor.fetch %island : !tf_executor.control 48 tf_executor.graph { 49 // CHECK: tf_executor.island 50 %island = tf_executor.island { 65 tf_executor.yield 67 tf_executor.fetch %island : !tf_executor.control [all …]
|
D | tf-executor-to-functional.mlir | 4 tf_executor.graph { 5 …/ expected-error@+1 {{'tf_executor.ControlTrigger' op is not supported for lifting out of tf_execu… 6 %control = tf_executor.ControlTrigger {} 7 tf_executor.fetch 17 tf_executor.graph { 18 tf_executor.fetch 26 tf_executor.graph { 27 %control = tf_executor.island { 28 tf_executor.yield 30 tf_executor.fetch [all …]
|
D | tpu_device_propagation.mlir | 9 %0 = tf_executor.graph { 10 tf_executor.fetch %arg0 : tensor<i64> 21 %0 = tf_executor.graph { 24 %1:2 = tf_executor.island wraps "tf.Identity"(%arg0) : (tensor<i64>) -> tensor<i64> 25 tf_executor.fetch %1#0 : tensor<i64> 34 %0:2 = tf_executor.graph { 37 …%1:3 = tf_executor.island wraps "tf.IdentityN"(%arg0, %arg1) : (tensor<i64>, tensor<i32>) -> (tens… 38 tf_executor.fetch %1#0, %1#1 : tensor<i64>, tensor<i32> 47 %0 = tf_executor.graph { 50 %1:2 = tf_executor.island wraps "tf.Shape"(%arg0) : (tensor<*xi64>) -> tensor<?xi64> [all …]
|
D | tf_executor_ops_printer.mlir | 3 // Tests printer for tf_executor.island "wraps" short form. 7 tf_executor.graph { 8 // CHECK: tf_executor.island wraps "tf.IdentityN" 9 %0:3 = tf_executor.island { 11 tf_executor.yield %1#0, %1#1 : tensor<i32>, tensor<f32> loc("identity@some_function") 13 tf_executor.fetch 20 tf_executor.graph { 21 // CHECK: tf_executor.island 23 %0:3 = tf_executor.island { 25 tf_executor.yield %1#1, %1#0 : tensor<f32>, tensor<i32> loc("identity@some_function") [all …]
|
D | tf_executor_ops_location_roundtrip.mlir | 16 // This test case exercises the "tf_executor.island wraps" syntax. 18 // tf_executor.island, tf.Identity, and tf_executor.yield). 21 // CHECK: "tf_executor.graph"() ( { 22 // CHECK-NEXT: "tf_executor.island"() ( { 24 // CHECK-NEXT: "tf_executor.yield"(%{{.*}}) : (tensor<f32>) -> () loc("identity@some_functio… 25 // CHECK-NEXT: }) : () -> (tensor<f32>, !tf_executor.control) loc("identity@some_function") 26 // CHECK-NEXT: "tf_executor.fetch"(%{{.*}}) : (tensor<f32>) -> () loc(unknown) 32 %0 = "tf_executor.graph"() ( { 33 %1:2 = "tf_executor.island"() ( { 35 "tf_executor.yield"(%2) : (tensor<f32>) -> () loc("identity@some_function") [all …]
|
D | launch_to_device_attribute.mlir | 8 tf_executor.graph { 9 %0:5 = tf_executor.island { 16 … tf_executor.yield %a, %launch#0, %launch#1, %c : tensor<i1>, tensor<f32>, tensor<i32>, tensor<i1> 18 tf_executor.fetch 28 // CHECK: tf_executor.yield %[[A]], %[[B]]#1, %[[B]]#0, %[[C]] 35 tf_executor.graph { 36 %0:5 = tf_executor.island { 44 … tf_executor.yield %a, %launch#0, %launch#1, %d : tensor<i1>, tensor<f32>, tensor<i32>, tensor<i1> 46 tf_executor.fetch 58 // CHECK: tf_executor.yield %[[A]], %[[C]], %[[B]], %[[D]] [all …]
|
D | functionalize-if-fail.mlir | 7 tf_executor.graph { 8 …%0 = tf_executor.island wraps "tf._TPUReplicate"() {computation = @foo, Tinputs = [], Tbroadcast_i… 9 tf_executor.fetch 15 tf_executor.graph { 16 …%0:2 = tf_executor.island wraps "tf.Const"() {device = "", dtype = "tfdtype$DT_INT32", value = den… 17 …%1:2 = tf_executor.island wraps "tf.Const"() {device = "", dtype = "tfdtype$DT_BOOL", value = dens… 18 …%2:3 = tf_executor.Switch %0#0, %1#0 : (tensor<i32>, tensor<i1>) -> (tensor<i32>, tensor<i32>, !tf… 19 …%3:2 = tf_executor.island wraps "tf.Add"(%2#0, %2#1) {T = "tfdtype$DT_INT32", device = ""} : (tens… 20 …%4:2 = tf_executor.island wraps "tf.Mul"(%2#1, %2#0) {T = "tfdtype$DT_INT32", device = ""} : (tens… 21 …%5:3 = tf_executor.Merge %3#0, %4#0 : tensor<i32> {device = "", N = 2, T = "tfdtype$DT_INT32"} loc… [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/mlir2graphdef/ |
D | switchn.mlir | 5 "tf_executor.graph"() ( { 6 %outputs, %control = "tf_executor.island"() ( { 8 "tf_executor.yield"(%0) : (tensor<i32>) -> () 9 }) : () -> (tensor<i32>, !tf_executor.control) 10 …tf_executor._SwitchN"(%outputs, %outputs) {T = i32, device = "", num_outs = 3 : i64} : (tensor<i32… 11 %outputs_2, %control_3 = "tf_executor.island"() ( { 13 "tf_executor.yield"(%0) : (tensor<*xi32>) -> () 14 }) : () -> (tensor<*xi32>, !tf_executor.control) 15 %outputs_4, %control_5 = "tf_executor.island"(%control_3) ( { 17 "tf_executor.yield"(%0) : (tensor<f32>) -> () [all …]
|
D | invalid_input.mlir | 22 … must be of a single Graph with single op Islands: first op in function is not a tf_executor.graph. 27 tf_executor.graph { 28 tf_executor.fetch 30 tf_executor.graph { 31 tf_executor.fetch 36 …f a single Graph with single op Islands: function does not only contain a single tf_executor.graph. 41 tf_executor.graph { 42 %0 = tf_executor.island { 43 tf_executor.yield 45 tf_executor.fetch [all …]
|
D | while-loop.mlir | 11 tf_executor.graph { 12 …%0:3 = tf_executor.NextIteration.Source : tensor<*xi32> {device = "", T = "tfdtype$DT_INT32"} loc(… 13 …%1:2 = tf_executor.island wraps "tf.VariableV2"() {device = "", dtype = "tfdtype$DT_INT32", value … 14 …%2:2 = tf_executor.Enter %1#0 frame "while/while_context" parallel_iterations 10 : (tensor<i32>) -… 15 …%3:3 = tf_executor.Merge %2#0, %0#0 : tensor<*xi32> {device = "", N = 2, T = "tfdtype$DT_INT32"} l… 16 …%4:2 = tf_executor.island(%3#2) wraps "tf.Const"() {device = "", dtype = "tfdtype$DT_INT32", value… 17 …%5:2 = tf_executor.island wraps "tf.Less"(%3#0, %4#0) {device = "", T = "tfdtype$DT_INT32"} : (ten… 18 …%6:2 = tf_executor.LoopCond %5#0 : (tensor<*xi1>) -> (tensor<*xi1>, !tf_executor.control) {device … 19 …%7:3 = tf_executor.Switch %3#0, %6#0 : (tensor<*xi32>, tensor<*xi1>) -> (tensor<*xi32>, tensor<*xi… 20 …%8:2 = tf_executor.Exit %7#1 : tensor<*xi32> {device = "", T = "tfdtype$DT_INT32"} loc("while/Exit… [all …]
|
D | ref-while-loop.mlir | 10 tf_executor.graph { 11 …%0:3 = tf_executor.NextIteration.Source : tensor<*x!tf.int32ref> {device = "", T = "tfdtype$DT_INT… 12 …%1:2 = tf_executor.island wraps "tf.VariableV2"() {device = "", dtype = "tfdtype$DT_INT32", value … 13 …%2:2 = tf_executor.Enter %1#0 frame "while/while_context" parallel_iterations 10 : (tensor<!tf.int… 14 …%3:3 = tf_executor.Merge %2#0, %0#0 : tensor<*x!tf.int32ref> {device = "", N = 2, T = "tfdtype$DT_… 15 …%4:2 = tf_executor.island(%3#2) wraps "tf.Const"() {device = "", dtype = "tfdtype$DT_INT32", value… 16 …%5:2 = tf_executor.island(%3#2) wraps "tf.Const"() {device = "", dtype = "tfdtype$DT_BOOL", value … 17 …%6:2 = tf_executor.LoopCond %5#0 : (tensor<i1>) -> (tensor<i1>, !tf_executor.control) {device = ""… 18 …%7:3 = tf_executor.Switch %3#0, %6#0 : (tensor<*x!tf.int32ref>, tensor<i1>) -> (tensor<*x!tf.int32… 19 …%8:2 = tf_executor.Exit %7#1 : tensor<*x!tf.int32ref> {device = "", T = "tfdtype$DT_INT32"} loc("w… [all …]
|
D | case.mlir | 5 tf_executor.graph { 6 …%outputs, %control = tf_executor.island wraps "tf.Const"() {device = "", value = dense<1> : tensor… 7 …%outputs_0, %control_1 = tf_executor.island wraps "tf.Const"() {device = "", value = dense<0> : te… 8 …%outputs_2, %control_3 = tf_executor.island wraps "tf.Case"(%outputs_0, %outputs) {Tin = [i32], To… 9 …%outputs_4, %control_5 = tf_executor.island wraps "tf.Identity"(%outputs_2) {device = ""} : (tenso… 10 …%outputs_6, %control_7 = tf_executor.island wraps "tf.Case"(%outputs_0, %outputs) {Tin = [i32], To… 11 tf_executor.fetch 17 %0 = tf_executor.graph { 18 …%outputs, %control = tf_executor.island wraps "tf.Const"() {device = "", value = dense<1> : tensor… 19 …%outputs_0, %control_1 = tf_executor.island wraps "tf.AddV2"(%arg0, %outputs) {device = ""} : (ten… [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/executor_tpuv1_island_coarsening/ |
D | executor_tpuv1_island_coarsening.mlir | 7 %0 = tf_executor.graph { 8 %1:2 = tf_executor.island { 10 tf_executor.yield %3 : tensor<i1> 12 %2:2 = tf_executor.island(%1#1) { 14 tf_executor.yield %4 : tensor<f32> 21 tf_executor.fetch %2#0 : tensor<f32> 29 tf_executor.graph { 34 …%outputs, %control = tf_executor.island wraps "tf.Const"() {_tpu_replicate = "cluster", value = de… 35 …%outputs_0, %control_1 = tf_executor.island wraps "tf.Const"() {_tpu_replicate = "cluster", value … 36 …%outputs_3, %control_4 = tf_executor.island wraps "tf.AddV2"(%outputs, %outputs_0) {_tpu_replicate… [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/g3doc/ |
D | tf_dialects.md | 12 the `tf_executor` dialect that represents the execution model of the TensorFlow 18 just the `tf` dialect, allowing us to phase out the `tf_executor` dialect in 82 The `tf_executor` dialect is intended to model the current TensorFlow executor 86 `tf_executor` dialect defines two dialect-specific types: 88 * `!tf_executor.control` to represent control dependencies. 89 * `!tf_executor.token` to represent the pair of operations modeling 92 The `tf_executor` dialect is closed (operations are all known to MLIR) as there 102 return an extra control token as output. Except for `tf_executor.Merge` and 103 `tf_executor.ControlTrigger`, operations are propagating deadness: if any of the 105 non-control) are dead as well. For `tf_executor.Merge`, the output is dead only [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/tpu_bridge_v1/ |
D | end_to_end.mlir | 9 tf_executor.graph { 10 …%outputs, %control = tf_executor.island wraps "std.constant"() {value = dense<2.000000e+00> : tens… 11 …%outputs_0, %control_1 = tf_executor.island wraps "std.constant"() {value = dense<3.000000e+00> : … 12 …%control_2 = tf_executor.island wraps "tf.TPUReplicateMetadata"() {_tpu_replicate = "cluster", all… 13 …%outputs_3, %control_4 = tf_executor.island wraps "tf.Placeholder"() {device = "", dtype = "tfdtyp… 14 …%outputs_5, %control_6 = tf_executor.island wraps "tf.TPUReplicatedInput"(%outputs_3) {N = 1 : i64… 15 …%outputs_7, %control_8 = tf_executor.island wraps "tf.Identity"(%outputs_5) {T = "tfdtype$DT_FLOAT… 16 …%outputs_9, %control_10 = tf_executor.island wraps "tf.Mul"(%outputs_7, %outputs) {T = "tfdtype$DT… 17 …%outputs_11, %control_12 = tf_executor.island wraps "tf.Placeholder"() {device = "", dtype = "tfdt… 18 …%outputs_13, %control_14 = tf_executor.island wraps "tf.TPUReplicatedInput"(%outputs_11) {N = 1 : … [all …]
|