/external/tensorflow/tensorflow/python/keras/ |
D | losses.py | 123 def __call__(self, y_true, y_pred, sample_weight=None): argument 152 y_true, y_pred, sample_weight) 158 losses = call_fn(y_true, y_pred) 180 def call(self, y_true, y_pred): argument 248 def call(self, y_true, y_pred): argument 258 if tensor_util.is_tf_type(y_pred) and tensor_util.is_tf_type(y_true): 259 y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(y_pred, y_true) 262 return ag_fn(y_true, y_pred, **self._fn_kwargs) 1195 def mean_squared_error(y_true, y_pred): argument 1220 y_true = math_ops.cast(y_true, y_pred.dtype) [all …]
|
D | losses_test.py | 185 y_true = backend.variable(np.array([[0, 1, 0], [1, 0, 0]])) 187 loss = backend.eval(losses.categorical_hinge(y_true, y_pred)) 197 y_true = constant_op.constant([[1., 9.], [2., 5.]]) 200 loss = mse_obj(y_true, y_pred, sample_weight=sample_weight) 212 def loss_fn(y_true, y_pred): argument 214 if math_ops.reduce_mean(y_true) > 0: 215 return mse_loss_fn(y_true, y_pred) 217 return mse_loss_fn(y_true, y_pred) 221 y_true = constant_op.constant([[1., 9.], [2., 5.]]) 226 def tf_functioned_loss_fn(y_true, y_pred, sample_weight=None): argument [all …]
|
D | metrics_functional_test.py | 43 y_true = K.variable(np.random.randint(0, 7, (6,))) 45 self.assertEqual(K.eval(metric(y_true, y_pred)).shape, (6,)) 48 y_true = K.variable([1., 0., 0., 0.]) 50 self.assertAllEqual(K.eval(metric(y_true, y_pred)), [0., 1., 1., 1.]) 53 y_true = K.variable([[1.], [0.], [0.], [0.]]) 55 self.assertAllEqual(K.eval(metric(y_true, y_pred)), [0., 1., 1., 1.]) 62 y_true = K.variable(np.array([[1, 0], [1, 0]])) 63 self.assertAllEqual(K.eval(metric(y_true, y_pred)), [[1., 0.], [0., 1.]]) 68 y_true = K.variable(np.random.random((6,))) 70 self.assertEqual(K.eval(metric(y_true, y_pred)).shape, (6,)) [all …]
|
D | metrics_confusion_matrix_test.py | 59 y_true = constant_op.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), 64 update_op = fp_obj.update_state(y_true, y_pred) 72 y_true = constant_op.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), 77 result = fp_obj(y_true, y_pred, sample_weight=sample_weight) 86 y_true = constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), 89 update_op = fp_obj.update_state(y_true, y_pred) 100 y_true = constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), 105 result = fp_obj(y_true, y_pred, sample_weight=sample_weight) 139 y_true = constant_op.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), 144 update_op = fn_obj.update_state(y_true, y_pred) [all …]
|
D | metrics_test.py | 621 y_true = self.l2_norm(self.np_y_true, axis) 623 self.expected_loss = np.sum(np.multiply(y_true, y_pred), axis=(axis,)) 625 self.y_true = constant_op.constant(self.np_y_true) 643 loss = cosine_obj(self.y_true, self.y_pred) 653 self.y_true, 664 loss = cosine_obj(self.y_true, self.y_pred) 685 y_true = constant_op.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), 690 update_op = mae_obj.update_state(y_true, y_pred) 698 y_true = constant_op.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), 703 result = mae_obj(y_true, y_pred, sample_weight=sample_weight) [all …]
|
D | metrics.py | 560 def update_state(self, y_true, y_pred, sample_weight=None): argument 573 y_true = math_ops.cast(y_true, self._dtype) 575 [y_pred, y_true], sample_weight = \ 577 [y_pred, y_true], sample_weight) 578 y_pred, y_true = losses_utils.squeeze_or_expand_dimensions( 579 y_pred, y_true) 583 y_pred.shape.assert_is_compatible_with(y_true.shape) 585 math_ops.abs(y_true - y_pred), self.normalizer) 613 def update_state(self, y_true, y_pred, sample_weight=None): argument 634 y_true = math_ops.cast(y_true, self._dtype) [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.losses.pbtxt | 73 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 77 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 81 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 85 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 89 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 93 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 97 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 101 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 105 …argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'],… 117 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" [all …]
|
D | tensorflow.keras.losses.pbtxt | 73 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 77 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 81 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 85 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 89 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 93 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 97 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 101 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 105 …argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'],… 117 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" [all …]
|
D | tensorflow.keras.metrics.pbtxt | 157 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 161 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 165 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 169 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 173 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 177 …argspec: "args=[\'y_true\', \'y_pred\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0… 181 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 185 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 189 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 201 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" [all …]
|
D | tensorflow.metrics.pbtxt | 157 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 161 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 165 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 169 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 173 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 177 …argspec: "args=[\'y_true\', \'y_pred\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0… 181 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 185 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 189 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 201 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.losses.pbtxt | 69 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 73 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 77 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 81 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 85 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 89 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 93 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 97 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 101 …argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'],… 105 …argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'],… [all …]
|
D | tensorflow.keras.metrics.pbtxt | 157 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 161 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 165 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 169 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 173 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 177 …argspec: "args=[\'y_true\', \'y_pred\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0… 181 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 185 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 189 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywo… 193 …argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'],… [all …]
|
/external/rnnoise/training/ |
D | rnn_train.py | 31 def my_crossentropy(y_true, y_pred): argument 32 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1) 34 def mymask(y_true): argument 35 return K.minimum(y_true+1., 1.) 37 def msse(y_true, y_pred): argument 38 return K.mean(mymask(y_true) * K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1) 40 def mycost(y_true, y_pred): argument 41 …y_true) * (10*K.square(K.square(K.sqrt(y_pred) - K.sqrt(y_true))) + K.square(K.sqrt(y_pred) - K.sq… 43 def my_accuracy(y_true, y_pred): argument 44 return K.mean(2*K.abs(y_true-0.5) * K.equal(y_true, K.round(y_pred)), axis=-1)
|
/external/tensorflow/tensorflow/python/ops/losses/ |
D | util.py | 34 def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None): argument 60 if y_true is not None: 66 y_true_shape = y_true.shape 71 y_true, y_pred = confusion_matrix.remove_squeezable_dimensions( 72 y_true, y_pred) 75 rank_diff = array_ops.rank(y_pred) - array_ops.rank(y_true) 77 y_true, y_pred) 80 is_last_dim_1, squeeze_dims, lambda: (y_true, y_pred)) 81 y_true, y_pred = control_flow_ops.cond( 85 return y_pred, y_true [all …]
|
/external/tensorflow/tensorflow/lite/micro/examples/hello_world/ |
D | hello_world_test.cc | 30 float y_true = sin(x); in TF_LITE_MICRO_TEST() local 106 TF_LITE_MICRO_EXPECT_NEAR(y_true, y_pred, epsilon); in TF_LITE_MICRO_TEST() 110 y_true = sin(x); in TF_LITE_MICRO_TEST() 114 TF_LITE_MICRO_EXPECT_NEAR(y_true, y_pred, epsilon); in TF_LITE_MICRO_TEST() 117 y_true = sin(x); in TF_LITE_MICRO_TEST() 121 TF_LITE_MICRO_EXPECT_NEAR(y_true, y_pred, epsilon); in TF_LITE_MICRO_TEST() 124 y_true = sin(x); in TF_LITE_MICRO_TEST() 128 TF_LITE_MICRO_EXPECT_NEAR(y_true, y_pred, epsilon); in TF_LITE_MICRO_TEST()
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | losses_utils.py | 146 def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None): argument 172 if y_true is not None: 178 y_true_shape = y_true.shape 183 y_true, y_pred = remove_squeezable_dimensions( 184 y_true, y_pred) 187 rank_diff = array_ops.rank(y_pred) - array_ops.rank(y_true) 189 y_true, y_pred) 192 is_last_dim_1, squeeze_dims, lambda: (y_true, y_pred)) 193 y_true, y_pred = control_flow_ops.cond( 197 return y_pred, y_true [all …]
|
D | metrics_utils.py | 237 y_true, argument 311 y_true = math_ops.cast(y_true, dtype=variable_dtype) 323 y_true], _ = ragged_assert_compatible_and_get_flat_values([y_pred, y_true], 346 y_pred, y_true = losses_utils.squeeze_or_expand_dimensions( 347 y_pred, y_true) 350 y_pred, y_true, sample_weight = ( 352 y_pred, y_true, sample_weight=sample_weight)) 353 y_pred.shape.assert_is_compatible_with(y_true.shape) 358 y_true = y_true[..., class_id] 375 math_ops.cast(y_true, dtype=dtypes.bool), 0) [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | compile_utils.py | 166 y_true, argument 184 y_true = self._conform_to_outputs(y_pred, y_true) 191 y_true = nest.flatten(y_true) 197 zip_args = (y_true, y_pred, sample_weight, self._losses, self._loss_weights, 319 def build(self, y_pred, y_true): argument 333 y_true = nest.list_to_tuple(y_true) 340 self._metrics, y_true, y_pred) 344 y_true, y_pred) 403 def update_state(self, y_true, y_pred, sample_weight=None): argument 405 y_true = self._conform_to_outputs(y_pred, y_true) [all …]
|
D | training_gpu_test.py | 49 … loss = lambda y_true, y_pred: K.sparse_categorical_crossentropy( # pylint: disable=g-long-lambda argument 50 y_true, y_pred, axis=axis) 54 loss = lambda y_true, y_pred: K.categorical_crossentropy( # pylint: disable=g-long-lambda argument 55 y_true, y_pred, axis=axis) 59 …loss = lambda y_true, y_pred: K.binary_crossentropy(y_true, y_pred) # pylint: disable=unnecessary… argument
|
D | compile_utils_test.py | 345 def custom_loss_fn(y_true, y_pred): argument 346 return math_ops.reduce_sum(y_true - y_pred) 350 def __call__(self, y_true, y_pred): argument 351 return math_ops.reduce_sum(y_true - y_pred) 364 def custom_loss_fn(y_true, y_pred): argument 366 return losses_mod.mse(y_true, y_pred) 371 def call(self, y_true, y_pred): argument 373 math_ops.squared_difference, y_true, y_pred) 751 def custom_metric_fn(y_true, y_pred): argument 752 return math_ops.reduce_sum(y_true - y_pred) [all …]
|
/external/libopus/training/ |
D | rnn_train.py | 28 def binary_crossentrop2(y_true, y_pred): argument 29 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_true, y_pred), axis=-1) 31 def binary_accuracy2(y_true, y_pred): argument 32 …return K.mean(K.cast(K.equal(y_true, K.round(y_pred)), 'float32') + K.cast(K.equal(y_true, 0.5), '…
|
D | rnn_dump.py | 35 def binary_crossentrop2(y_true, y_pred): argument 36 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
|
/external/libopus/scripts/ |
D | dump_rnn.py | 32 def binary_crossentrop2(y_true, y_pred): argument 33 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
|
D | rnn_train.py | 19 def binary_crossentrop2(y_true, y_pred): argument 20 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
|
/external/tensorflow/tensorflow/python/keras/saving/saved_model/ |
D | revive_test.py | 367 y_true = np.random.random((5, 3)).astype(np.float32) 368 model.train_on_batch(x, y_true) 372 self.assertAllClose(model.test_on_batch(x, y_true), 373 revived.test_on_batch(x, y_true)) 377 y_true = np.random.randint(0, 3, (5, 1)).astype(np.float32) 378 model.train_on_batch(x, y_true) 381 self.assertAllClose(model.test_on_batch(x, y_true), 382 revived.test_on_batch(x, y_true))
|