1 /// @ref gtx_compatibility
2 /// @file glm/gtx/compatibility.hpp
3 ///
4 /// @see core (dependence)
5 /// @see gtc_half_float (dependence)
6 ///
7 /// @defgroup gtx_compatibility GLM_GTX_compatibility
8 /// @ingroup gtx
9 ///
10 /// @brief Provide functions to increase the compatibility with Cg and HLSL languages
11 ///
12 /// <glm/gtx/compatibility.hpp> need to be included to use these functionalities.
13 
14 #pragma once
15 
16 // Dependency:
17 #include "../glm.hpp"
18 #include "../gtc/quaternion.hpp"
19 
20 #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
21 #	pragma message("GLM: GLM_GTX_compatibility extension included")
22 #endif
23 
24 #if GLM_COMPILER & GLM_COMPILER_VC
25 #	include <cfloat>
26 #elif GLM_COMPILER & GLM_COMPILER_GCC
27 #	include <cmath>
28 #	if(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
29 #		undef isfinite
30 #	endif
31 #endif//GLM_COMPILER
32 
33 namespace glm
34 {
35 	/// @addtogroup gtx_compatibility
36 	/// @{
37 
lerp(T x,T y,T a)38 	template <typename T> GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);}																					//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
lerp(const tvec2<T,P> & x,const tvec2<T,P> & y,T a)39 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> lerp(const tvec2<T, P>& x, const tvec2<T, P>& y, T a){return mix(x, y, a);}							//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
40 
lerp(const tvec3<T,P> & x,const tvec3<T,P> & y,T a)41 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> lerp(const tvec3<T, P>& x, const tvec3<T, P>& y, T a){return mix(x, y, a);}							//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
lerp(const tvec4<T,P> & x,const tvec4<T,P> & y,T a)42 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> lerp(const tvec4<T, P>& x, const tvec4<T, P>& y, T a){return mix(x, y, a);}							//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
lerp(const tvec2<T,P> & x,const tvec2<T,P> & y,const tvec2<T,P> & a)43 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> lerp(const tvec2<T, P>& x, const tvec2<T, P>& y, const tvec2<T, P>& a){return mix(x, y, a);}	//!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
lerp(const tvec3<T,P> & x,const tvec3<T,P> & y,const tvec3<T,P> & a)44 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> lerp(const tvec3<T, P>& x, const tvec3<T, P>& y, const tvec3<T, P>& a){return mix(x, y, a);}	//!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
lerp(const tvec4<T,P> & x,const tvec4<T,P> & y,const tvec4<T,P> & a)45 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> lerp(const tvec4<T, P>& x, const tvec4<T, P>& y, const tvec4<T, P>& a){return mix(x, y, a);}	//!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
46 
saturate(T x)47 	template <typename T, precision P> GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));}														//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
saturate(const tvec2<T,P> & x)48 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> saturate(const tvec2<T, P>& x){return clamp(x, T(0), T(1));}					//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
saturate(const tvec3<T,P> & x)49 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> saturate(const tvec3<T, P>& x){return clamp(x, T(0), T(1));}					//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
saturate(const tvec4<T,P> & x)50 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> saturate(const tvec4<T, P>& x){return clamp(x, T(0), T(1));}					//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
51 
atan2(T x,T y)52 	template <typename T, precision P> GLM_FUNC_QUALIFIER T atan2(T x, T y){return atan(x, y);}																//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
atan2(const tvec2<T,P> & x,const tvec2<T,P> & y)53 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> atan2(const tvec2<T, P>& x, const tvec2<T, P>& y){return atan(x, y);}	//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
atan2(const tvec3<T,P> & x,const tvec3<T,P> & y)54 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> atan2(const tvec3<T, P>& x, const tvec3<T, P>& y){return atan(x, y);}	//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
atan2(const tvec4<T,P> & x,const tvec4<T,P> & y)55 	template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> atan2(const tvec4<T, P>& x, const tvec4<T, P>& y){return atan(x, y);}	//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
56 
57 	template <typename genType> GLM_FUNC_DECL bool isfinite(genType const & x);											//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
58 	template <typename T, precision P> GLM_FUNC_DECL tvec1<bool, P> isfinite(const tvec1<T, P>& x);				//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
59 	template <typename T, precision P> GLM_FUNC_DECL tvec2<bool, P> isfinite(const tvec2<T, P>& x);				//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
60 	template <typename T, precision P> GLM_FUNC_DECL tvec3<bool, P> isfinite(const tvec3<T, P>& x);				//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
61 	template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> isfinite(const tvec4<T, P>& x);				//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
62 
63 	typedef bool						bool1;			//!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension)
64 	typedef tvec2<bool, highp>			bool2;			//!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension)
65 	typedef tvec3<bool, highp>			bool3;			//!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension)
66 	typedef tvec4<bool, highp>			bool4;			//!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension)
67 
68 	typedef bool						bool1x1;		//!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension)
69 	typedef tmat2x2<bool, highp>		bool2x2;		//!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
70 	typedef tmat2x3<bool, highp>		bool2x3;		//!< \brief boolean matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
71 	typedef tmat2x4<bool, highp>		bool2x4;		//!< \brief boolean matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
72 	typedef tmat3x2<bool, highp>		bool3x2;		//!< \brief boolean matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
73 	typedef tmat3x3<bool, highp>		bool3x3;		//!< \brief boolean matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
74 	typedef tmat3x4<bool, highp>		bool3x4;		//!< \brief boolean matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
75 	typedef tmat4x2<bool, highp>		bool4x2;		//!< \brief boolean matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
76 	typedef tmat4x3<bool, highp>		bool4x3;		//!< \brief boolean matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
77 	typedef tmat4x4<bool, highp>		bool4x4;		//!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
78 
79 	typedef int							int1;			//!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension)
80 	typedef tvec2<int, highp>			int2;			//!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension)
81 	typedef tvec3<int, highp>			int3;			//!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension)
82 	typedef tvec4<int, highp>			int4;			//!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension)
83 
84 	typedef int							int1x1;			//!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension)
85 	typedef tmat2x2<int, highp>		int2x2;			//!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
86 	typedef tmat2x3<int, highp>		int2x3;			//!< \brief integer matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
87 	typedef tmat2x4<int, highp>		int2x4;			//!< \brief integer matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
88 	typedef tmat3x2<int, highp>		int3x2;			//!< \brief integer matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
89 	typedef tmat3x3<int, highp>		int3x3;			//!< \brief integer matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
90 	typedef tmat3x4<int, highp>		int3x4;			//!< \brief integer matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
91 	typedef tmat4x2<int, highp>		int4x2;			//!< \brief integer matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
92 	typedef tmat4x3<int, highp>		int4x3;			//!< \brief integer matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
93 	typedef tmat4x4<int, highp>		int4x4;			//!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
94 
95 	typedef float						float1;			//!< \brief single-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
96 	typedef tvec2<float, highp>		float2;			//!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
97 	typedef tvec3<float, highp>		float3;			//!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
98 	typedef tvec4<float, highp>		float4;			//!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
99 
100 	typedef float						float1x1;		//!< \brief single-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
101 	typedef tmat2x2<float, highp>		float2x2;		//!< \brief single-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
102 	typedef tmat2x3<float, highp>		float2x3;		//!< \brief single-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
103 	typedef tmat2x4<float, highp>		float2x4;		//!< \brief single-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
104 	typedef tmat3x2<float, highp>		float3x2;		//!< \brief single-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
105 	typedef tmat3x3<float, highp>		float3x3;		//!< \brief single-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
106 	typedef tmat3x4<float, highp>		float3x4;		//!< \brief single-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
107 	typedef tmat4x2<float, highp>		float4x2;		//!< \brief single-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
108 	typedef tmat4x3<float, highp>		float4x3;		//!< \brief single-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
109 	typedef tmat4x4<float, highp>		float4x4;		//!< \brief single-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
110 
111 	typedef double						double1;		//!< \brief double-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
112 	typedef tvec2<double, highp>		double2;		//!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
113 	typedef tvec3<double, highp>		double3;		//!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
114 	typedef tvec4<double, highp>		double4;		//!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
115 
116 	typedef double						double1x1;		//!< \brief double-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
117 	typedef tmat2x2<double, highp>		double2x2;		//!< \brief double-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
118 	typedef tmat2x3<double, highp>		double2x3;		//!< \brief double-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
119 	typedef tmat2x4<double, highp>		double2x4;		//!< \brief double-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
120 	typedef tmat3x2<double, highp>		double3x2;		//!< \brief double-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
121 	typedef tmat3x3<double, highp>		double3x3;		//!< \brief double-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
122 	typedef tmat3x4<double, highp>		double3x4;		//!< \brief double-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
123 	typedef tmat4x2<double, highp>		double4x2;		//!< \brief double-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
124 	typedef tmat4x3<double, highp>		double4x3;		//!< \brief double-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
125 	typedef tmat4x4<double, highp>		double4x4;		//!< \brief double-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
126 
127 	/// @}
128 }//namespace glm
129 
130 #include "compatibility.inl"
131