1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <gtest/gtest.h>
18
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <malloc.h>
23 #include <pthread.h>
24 #include <signal.h>
25 #include <stdio.h>
26 #include <sys/mman.h>
27 #include <sys/prctl.h>
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
30 #include <time.h>
31 #include <unistd.h>
32 #include <unwind.h>
33
34 #include <atomic>
35 #include <future>
36 #include <vector>
37
38 #include <android-base/macros.h>
39 #include <android-base/parseint.h>
40 #include <android-base/scopeguard.h>
41 #include <android-base/silent_death_test.h>
42 #include <android-base/strings.h>
43
44 #include "private/bionic_constants.h"
45 #include "SignalUtils.h"
46 #include "utils.h"
47
48 using pthread_DeathTest = SilentDeathTest;
49
TEST(pthread,pthread_key_create)50 TEST(pthread, pthread_key_create) {
51 pthread_key_t key;
52 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
53 ASSERT_EQ(0, pthread_key_delete(key));
54 // Can't delete a key that's already been deleted.
55 ASSERT_EQ(EINVAL, pthread_key_delete(key));
56 }
57
TEST(pthread,pthread_keys_max)58 TEST(pthread, pthread_keys_max) {
59 // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
60 ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
61 }
62
TEST(pthread,sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX)63 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
64 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
65 ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
66 }
67
TEST(pthread,pthread_key_many_distinct)68 TEST(pthread, pthread_key_many_distinct) {
69 // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
70 // pthread keys, but We should be able to allocate at least this many keys.
71 int nkeys = PTHREAD_KEYS_MAX / 2;
72 std::vector<pthread_key_t> keys;
73
74 auto scope_guard = android::base::make_scope_guard([&keys] {
75 for (const auto& key : keys) {
76 EXPECT_EQ(0, pthread_key_delete(key));
77 }
78 });
79
80 for (int i = 0; i < nkeys; ++i) {
81 pthread_key_t key;
82 // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
83 ASSERT_EQ(0, pthread_key_create(&key, nullptr)) << i << " of " << nkeys;
84 keys.push_back(key);
85 ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
86 }
87
88 for (int i = keys.size() - 1; i >= 0; --i) {
89 ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
90 pthread_key_t key = keys.back();
91 keys.pop_back();
92 ASSERT_EQ(0, pthread_key_delete(key));
93 }
94 }
95
TEST(pthread,pthread_key_not_exceed_PTHREAD_KEYS_MAX)96 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
97 std::vector<pthread_key_t> keys;
98 int rv = 0;
99
100 // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
101 // be more than we are allowed to allocate now.
102 for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
103 pthread_key_t key;
104 rv = pthread_key_create(&key, nullptr);
105 if (rv == EAGAIN) {
106 break;
107 }
108 EXPECT_EQ(0, rv);
109 keys.push_back(key);
110 }
111
112 // Don't leak keys.
113 for (const auto& key : keys) {
114 EXPECT_EQ(0, pthread_key_delete(key));
115 }
116 keys.clear();
117
118 // We should have eventually reached the maximum number of keys and received
119 // EAGAIN.
120 ASSERT_EQ(EAGAIN, rv);
121 }
122
TEST(pthread,pthread_key_delete)123 TEST(pthread, pthread_key_delete) {
124 void* expected = reinterpret_cast<void*>(1234);
125 pthread_key_t key;
126 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
127 ASSERT_EQ(0, pthread_setspecific(key, expected));
128 ASSERT_EQ(expected, pthread_getspecific(key));
129 ASSERT_EQ(0, pthread_key_delete(key));
130 // After deletion, pthread_getspecific returns nullptr.
131 ASSERT_EQ(nullptr, pthread_getspecific(key));
132 // And you can't use pthread_setspecific with the deleted key.
133 ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
134 }
135
TEST(pthread,pthread_key_fork)136 TEST(pthread, pthread_key_fork) {
137 void* expected = reinterpret_cast<void*>(1234);
138 pthread_key_t key;
139 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
140 ASSERT_EQ(0, pthread_setspecific(key, expected));
141 ASSERT_EQ(expected, pthread_getspecific(key));
142
143 pid_t pid = fork();
144 ASSERT_NE(-1, pid) << strerror(errno);
145
146 if (pid == 0) {
147 // The surviving thread inherits all the forking thread's TLS values...
148 ASSERT_EQ(expected, pthread_getspecific(key));
149 _exit(99);
150 }
151
152 AssertChildExited(pid, 99);
153
154 ASSERT_EQ(expected, pthread_getspecific(key));
155 ASSERT_EQ(0, pthread_key_delete(key));
156 }
157
DirtyKeyFn(void * key)158 static void* DirtyKeyFn(void* key) {
159 return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
160 }
161
TEST(pthread,pthread_key_dirty)162 TEST(pthread, pthread_key_dirty) {
163 pthread_key_t key;
164 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
165
166 size_t stack_size = 640 * 1024;
167 void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
168 ASSERT_NE(MAP_FAILED, stack);
169 memset(stack, 0xff, stack_size);
170
171 pthread_attr_t attr;
172 ASSERT_EQ(0, pthread_attr_init(&attr));
173 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
174
175 pthread_t t;
176 ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
177
178 void* result;
179 ASSERT_EQ(0, pthread_join(t, &result));
180 ASSERT_EQ(nullptr, result); // Not ~0!
181
182 ASSERT_EQ(0, munmap(stack, stack_size));
183 ASSERT_EQ(0, pthread_key_delete(key));
184 }
185
TEST(pthread,static_pthread_key_used_before_creation)186 TEST(pthread, static_pthread_key_used_before_creation) {
187 #if defined(__BIONIC__)
188 // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
189 // So here tests if the static/global default value 0 can be detected as invalid key.
190 static pthread_key_t key;
191 ASSERT_EQ(nullptr, pthread_getspecific(key));
192 ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
193 ASSERT_EQ(EINVAL, pthread_key_delete(key));
194 #else
195 GTEST_SKIP() << "bionic-only test";
196 #endif
197 }
198
IdFn(void * arg)199 static void* IdFn(void* arg) {
200 return arg;
201 }
202
203 class SpinFunctionHelper {
204 public:
SpinFunctionHelper()205 SpinFunctionHelper() {
206 SpinFunctionHelper::spin_flag_ = true;
207 }
208
~SpinFunctionHelper()209 ~SpinFunctionHelper() {
210 UnSpin();
211 }
212
GetFunction()213 auto GetFunction() -> void* (*)(void*) {
214 return SpinFunctionHelper::SpinFn;
215 }
216
UnSpin()217 void UnSpin() {
218 SpinFunctionHelper::spin_flag_ = false;
219 }
220
221 private:
SpinFn(void *)222 static void* SpinFn(void*) {
223 while (spin_flag_) {}
224 return nullptr;
225 }
226 static std::atomic<bool> spin_flag_;
227 };
228
229 // It doesn't matter if spin_flag_ is used in several tests,
230 // because it is always set to false after each test. Each thread
231 // loops on spin_flag_ can find it becomes false at some time.
232 std::atomic<bool> SpinFunctionHelper::spin_flag_;
233
JoinFn(void * arg)234 static void* JoinFn(void* arg) {
235 return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), nullptr));
236 }
237
AssertDetached(pthread_t t,bool is_detached)238 static void AssertDetached(pthread_t t, bool is_detached) {
239 pthread_attr_t attr;
240 ASSERT_EQ(0, pthread_getattr_np(t, &attr));
241 int detach_state;
242 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
243 pthread_attr_destroy(&attr);
244 ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
245 }
246
MakeDeadThread(pthread_t & t)247 static void MakeDeadThread(pthread_t& t) {
248 ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, nullptr));
249 ASSERT_EQ(0, pthread_join(t, nullptr));
250 }
251
TEST(pthread,pthread_create)252 TEST(pthread, pthread_create) {
253 void* expected_result = reinterpret_cast<void*>(123);
254 // Can we create a thread?
255 pthread_t t;
256 ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, expected_result));
257 // If we join, do we get the expected value back?
258 void* result;
259 ASSERT_EQ(0, pthread_join(t, &result));
260 ASSERT_EQ(expected_result, result);
261 }
262
TEST(pthread,pthread_create_EAGAIN)263 TEST(pthread, pthread_create_EAGAIN) {
264 pthread_attr_t attributes;
265 ASSERT_EQ(0, pthread_attr_init(&attributes));
266 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
267
268 pthread_t t;
269 ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, nullptr));
270 }
271
TEST(pthread,pthread_no_join_after_detach)272 TEST(pthread, pthread_no_join_after_detach) {
273 SpinFunctionHelper spin_helper;
274
275 pthread_t t1;
276 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
277
278 // After a pthread_detach...
279 ASSERT_EQ(0, pthread_detach(t1));
280 AssertDetached(t1, true);
281
282 // ...pthread_join should fail.
283 ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
284 }
285
TEST(pthread,pthread_no_op_detach_after_join)286 TEST(pthread, pthread_no_op_detach_after_join) {
287 SpinFunctionHelper spin_helper;
288
289 pthread_t t1;
290 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
291
292 // If thread 2 is already waiting to join thread 1...
293 pthread_t t2;
294 ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
295
296 sleep(1); // (Give t2 a chance to call pthread_join.)
297
298 #if defined(__BIONIC__)
299 ASSERT_EQ(EINVAL, pthread_detach(t1));
300 #else
301 ASSERT_EQ(0, pthread_detach(t1));
302 #endif
303 AssertDetached(t1, false);
304
305 spin_helper.UnSpin();
306
307 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
308 void* join_result;
309 ASSERT_EQ(0, pthread_join(t2, &join_result));
310 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
311 }
312
TEST(pthread,pthread_join_self)313 TEST(pthread, pthread_join_self) {
314 ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), nullptr));
315 }
316
317 struct TestBug37410 {
318 pthread_t main_thread;
319 pthread_mutex_t mutex;
320
mainTestBug37410321 static void main() {
322 TestBug37410 data;
323 data.main_thread = pthread_self();
324 ASSERT_EQ(0, pthread_mutex_init(&data.mutex, nullptr));
325 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
326
327 pthread_t t;
328 ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
329
330 // Wait for the thread to be running...
331 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
332 ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
333
334 // ...and exit.
335 pthread_exit(nullptr);
336 }
337
338 private:
thread_fnTestBug37410339 static void* thread_fn(void* arg) {
340 TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
341
342 // Unlocking data->mutex will cause the main thread to exit, invalidating *data. Save the handle.
343 pthread_t main_thread = data->main_thread;
344
345 // Let the main thread know we're running.
346 pthread_mutex_unlock(&data->mutex);
347
348 // And wait for the main thread to exit.
349 pthread_join(main_thread, nullptr);
350
351 return nullptr;
352 }
353 };
354
355 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
356 // run this test (which exits normally) in its own process.
TEST_F(pthread_DeathTest,pthread_bug_37410)357 TEST_F(pthread_DeathTest, pthread_bug_37410) {
358 // http://code.google.com/p/android/issues/detail?id=37410
359 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
360 }
361
SignalHandlerFn(void * arg)362 static void* SignalHandlerFn(void* arg) {
363 sigset64_t wait_set;
364 sigfillset64(&wait_set);
365 return reinterpret_cast<void*>(sigwait64(&wait_set, reinterpret_cast<int*>(arg)));
366 }
367
TEST(pthread,pthread_sigmask)368 TEST(pthread, pthread_sigmask) {
369 // Check that SIGUSR1 isn't blocked.
370 sigset_t original_set;
371 sigemptyset(&original_set);
372 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &original_set));
373 ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
374
375 // Block SIGUSR1.
376 sigset_t set;
377 sigemptyset(&set);
378 sigaddset(&set, SIGUSR1);
379 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, nullptr));
380
381 // Check that SIGUSR1 is blocked.
382 sigset_t final_set;
383 sigemptyset(&final_set);
384 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &final_set));
385 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
386 // ...and that sigprocmask agrees with pthread_sigmask.
387 sigemptyset(&final_set);
388 ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &final_set));
389 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
390
391 // Spawn a thread that calls sigwait and tells us what it received.
392 pthread_t signal_thread;
393 int received_signal = -1;
394 ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
395
396 // Send that thread SIGUSR1.
397 pthread_kill(signal_thread, SIGUSR1);
398
399 // See what it got.
400 void* join_result;
401 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
402 ASSERT_EQ(SIGUSR1, received_signal);
403 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
404
405 // Restore the original signal mask.
406 ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, nullptr));
407 }
408
TEST(pthread,pthread_sigmask64_SIGTRMIN)409 TEST(pthread, pthread_sigmask64_SIGTRMIN) {
410 // Check that SIGRTMIN isn't blocked.
411 sigset64_t original_set;
412 sigemptyset64(&original_set);
413 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &original_set));
414 ASSERT_FALSE(sigismember64(&original_set, SIGRTMIN));
415
416 // Block SIGRTMIN.
417 sigset64_t set;
418 sigemptyset64(&set);
419 sigaddset64(&set, SIGRTMIN);
420 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, &set, nullptr));
421
422 // Check that SIGRTMIN is blocked.
423 sigset64_t final_set;
424 sigemptyset64(&final_set);
425 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &final_set));
426 ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
427 // ...and that sigprocmask64 agrees with pthread_sigmask64.
428 sigemptyset64(&final_set);
429 ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, nullptr, &final_set));
430 ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
431
432 // Spawn a thread that calls sigwait64 and tells us what it received.
433 pthread_t signal_thread;
434 int received_signal = -1;
435 ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
436
437 // Send that thread SIGRTMIN.
438 pthread_kill(signal_thread, SIGRTMIN);
439
440 // See what it got.
441 void* join_result;
442 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
443 ASSERT_EQ(SIGRTMIN, received_signal);
444 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
445
446 // Restore the original signal mask.
447 ASSERT_EQ(0, pthread_sigmask64(SIG_SETMASK, &original_set, nullptr));
448 }
449
test_pthread_setname_np__pthread_getname_np(pthread_t t)450 static void test_pthread_setname_np__pthread_getname_np(pthread_t t) {
451 ASSERT_EQ(0, pthread_setname_np(t, "short"));
452 char name[32];
453 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
454 ASSERT_STREQ("short", name);
455
456 // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
457 ASSERT_EQ(0, pthread_setname_np(t, "123456789012345"));
458 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
459 ASSERT_STREQ("123456789012345", name);
460
461 ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456"));
462
463 // The passed-in buffer should be at least 16 bytes.
464 ASSERT_EQ(0, pthread_getname_np(t, name, 16));
465 ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15));
466 }
467
TEST(pthread,pthread_setname_np__pthread_getname_np__self)468 TEST(pthread, pthread_setname_np__pthread_getname_np__self) {
469 test_pthread_setname_np__pthread_getname_np(pthread_self());
470 }
471
TEST(pthread,pthread_setname_np__pthread_getname_np__other)472 TEST(pthread, pthread_setname_np__pthread_getname_np__other) {
473 SpinFunctionHelper spin_helper;
474
475 pthread_t t;
476 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
477 test_pthread_setname_np__pthread_getname_np(t);
478 spin_helper.UnSpin();
479 ASSERT_EQ(0, pthread_join(t, nullptr));
480 }
481
482 // http://b/28051133: a kernel misfeature means that you can't change the
483 // name of another thread if you've set PR_SET_DUMPABLE to 0.
TEST(pthread,pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE)484 TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) {
485 ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno);
486
487 SpinFunctionHelper spin_helper;
488
489 pthread_t t;
490 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
491 test_pthread_setname_np__pthread_getname_np(t);
492 spin_helper.UnSpin();
493 ASSERT_EQ(0, pthread_join(t, nullptr));
494 }
495
TEST_F(pthread_DeathTest,pthread_setname_np__no_such_thread)496 TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) {
497 pthread_t dead_thread;
498 MakeDeadThread(dead_thread);
499
500 EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"),
501 "invalid pthread_t (.*) passed to pthread_setname_np");
502 }
503
TEST_F(pthread_DeathTest,pthread_setname_np__null_thread)504 TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) {
505 pthread_t null_thread = 0;
506 EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3"));
507 }
508
TEST_F(pthread_DeathTest,pthread_getname_np__no_such_thread)509 TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) {
510 pthread_t dead_thread;
511 MakeDeadThread(dead_thread);
512
513 char name[64];
514 EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)),
515 "invalid pthread_t (.*) passed to pthread_getname_np");
516 }
517
TEST_F(pthread_DeathTest,pthread_getname_np__null_thread)518 TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) {
519 pthread_t null_thread = 0;
520
521 char name[64];
522 EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name)));
523 }
524
TEST(pthread,pthread_kill__0)525 TEST(pthread, pthread_kill__0) {
526 // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
527 ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
528 }
529
TEST(pthread,pthread_kill__invalid_signal)530 TEST(pthread, pthread_kill__invalid_signal) {
531 ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
532 }
533
pthread_kill__in_signal_handler_helper(int signal_number)534 static void pthread_kill__in_signal_handler_helper(int signal_number) {
535 static int count = 0;
536 ASSERT_EQ(SIGALRM, signal_number);
537 if (++count == 1) {
538 // Can we call pthread_kill from a signal handler?
539 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
540 }
541 }
542
TEST(pthread,pthread_kill__in_signal_handler)543 TEST(pthread, pthread_kill__in_signal_handler) {
544 ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
545 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
546 }
547
TEST(pthread,pthread_kill__exited_thread)548 TEST(pthread, pthread_kill__exited_thread) {
549 static std::promise<pid_t> tid_promise;
550 pthread_t thread;
551 ASSERT_EQ(0, pthread_create(&thread, nullptr,
552 [](void*) -> void* {
553 tid_promise.set_value(gettid());
554 return nullptr;
555 },
556 nullptr));
557
558 pid_t tid = tid_promise.get_future().get();
559 while (TEMP_FAILURE_RETRY(syscall(__NR_tgkill, getpid(), tid, 0)) != -1) {
560 continue;
561 }
562 ASSERT_EQ(ESRCH, errno);
563
564 ASSERT_EQ(ESRCH, pthread_kill(thread, 0));
565 }
566
TEST_F(pthread_DeathTest,pthread_detach__no_such_thread)567 TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) {
568 pthread_t dead_thread;
569 MakeDeadThread(dead_thread);
570
571 EXPECT_DEATH(pthread_detach(dead_thread),
572 "invalid pthread_t (.*) passed to pthread_detach");
573 }
574
TEST_F(pthread_DeathTest,pthread_detach__null_thread)575 TEST_F(pthread_DeathTest, pthread_detach__null_thread) {
576 pthread_t null_thread = 0;
577 EXPECT_EQ(ESRCH, pthread_detach(null_thread));
578 }
579
TEST(pthread,pthread_getcpuclockid__clock_gettime)580 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
581 SpinFunctionHelper spin_helper;
582
583 pthread_t t;
584 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
585
586 clockid_t c;
587 ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
588 timespec ts;
589 ASSERT_EQ(0, clock_gettime(c, &ts));
590 spin_helper.UnSpin();
591 ASSERT_EQ(0, pthread_join(t, nullptr));
592 }
593
TEST_F(pthread_DeathTest,pthread_getcpuclockid__no_such_thread)594 TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) {
595 pthread_t dead_thread;
596 MakeDeadThread(dead_thread);
597
598 clockid_t c;
599 EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c),
600 "invalid pthread_t (.*) passed to pthread_getcpuclockid");
601 }
602
TEST_F(pthread_DeathTest,pthread_getcpuclockid__null_thread)603 TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) {
604 pthread_t null_thread = 0;
605 clockid_t c;
606 EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c));
607 }
608
TEST_F(pthread_DeathTest,pthread_getschedparam__no_such_thread)609 TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) {
610 pthread_t dead_thread;
611 MakeDeadThread(dead_thread);
612
613 int policy;
614 sched_param param;
615 EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, ¶m),
616 "invalid pthread_t (.*) passed to pthread_getschedparam");
617 }
618
TEST_F(pthread_DeathTest,pthread_getschedparam__null_thread)619 TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) {
620 pthread_t null_thread = 0;
621 int policy;
622 sched_param param;
623 EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, ¶m));
624 }
625
TEST_F(pthread_DeathTest,pthread_setschedparam__no_such_thread)626 TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) {
627 pthread_t dead_thread;
628 MakeDeadThread(dead_thread);
629
630 int policy = 0;
631 sched_param param;
632 EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, ¶m),
633 "invalid pthread_t (.*) passed to pthread_setschedparam");
634 }
635
TEST_F(pthread_DeathTest,pthread_setschedparam__null_thread)636 TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) {
637 pthread_t null_thread = 0;
638 int policy = 0;
639 sched_param param;
640 EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, ¶m));
641 }
642
TEST_F(pthread_DeathTest,pthread_setschedprio__no_such_thread)643 TEST_F(pthread_DeathTest, pthread_setschedprio__no_such_thread) {
644 pthread_t dead_thread;
645 MakeDeadThread(dead_thread);
646
647 EXPECT_DEATH(pthread_setschedprio(dead_thread, 123),
648 "invalid pthread_t (.*) passed to pthread_setschedprio");
649 }
650
TEST_F(pthread_DeathTest,pthread_setschedprio__null_thread)651 TEST_F(pthread_DeathTest, pthread_setschedprio__null_thread) {
652 pthread_t null_thread = 0;
653 EXPECT_EQ(ESRCH, pthread_setschedprio(null_thread, 123));
654 }
655
TEST_F(pthread_DeathTest,pthread_join__no_such_thread)656 TEST_F(pthread_DeathTest, pthread_join__no_such_thread) {
657 pthread_t dead_thread;
658 MakeDeadThread(dead_thread);
659
660 EXPECT_DEATH(pthread_join(dead_thread, nullptr),
661 "invalid pthread_t (.*) passed to pthread_join");
662 }
663
TEST_F(pthread_DeathTest,pthread_join__null_thread)664 TEST_F(pthread_DeathTest, pthread_join__null_thread) {
665 pthread_t null_thread = 0;
666 EXPECT_EQ(ESRCH, pthread_join(null_thread, nullptr));
667 }
668
TEST_F(pthread_DeathTest,pthread_kill__no_such_thread)669 TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) {
670 pthread_t dead_thread;
671 MakeDeadThread(dead_thread);
672
673 EXPECT_DEATH(pthread_kill(dead_thread, 0),
674 "invalid pthread_t (.*) passed to pthread_kill");
675 }
676
TEST_F(pthread_DeathTest,pthread_kill__null_thread)677 TEST_F(pthread_DeathTest, pthread_kill__null_thread) {
678 pthread_t null_thread = 0;
679 EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0));
680 }
681
TEST(pthread,pthread_join__multijoin)682 TEST(pthread, pthread_join__multijoin) {
683 SpinFunctionHelper spin_helper;
684
685 pthread_t t1;
686 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
687
688 pthread_t t2;
689 ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
690
691 sleep(1); // (Give t2 a chance to call pthread_join.)
692
693 // Multiple joins to the same thread should fail.
694 ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
695
696 spin_helper.UnSpin();
697
698 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
699 void* join_result;
700 ASSERT_EQ(0, pthread_join(t2, &join_result));
701 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
702 }
703
TEST(pthread,pthread_join__race)704 TEST(pthread, pthread_join__race) {
705 // http://b/11693195 --- pthread_join could return before the thread had actually exited.
706 // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
707 for (size_t i = 0; i < 1024; ++i) {
708 size_t stack_size = 640*1024;
709 void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
710
711 pthread_attr_t a;
712 pthread_attr_init(&a);
713 pthread_attr_setstack(&a, stack, stack_size);
714
715 pthread_t t;
716 ASSERT_EQ(0, pthread_create(&t, &a, IdFn, nullptr));
717 ASSERT_EQ(0, pthread_join(t, nullptr));
718 ASSERT_EQ(0, munmap(stack, stack_size));
719 }
720 }
721
GetActualGuardSizeFn(void * arg)722 static void* GetActualGuardSizeFn(void* arg) {
723 pthread_attr_t attributes;
724 pthread_getattr_np(pthread_self(), &attributes);
725 pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
726 return nullptr;
727 }
728
GetActualGuardSize(const pthread_attr_t & attributes)729 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
730 size_t result;
731 pthread_t t;
732 pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
733 pthread_join(t, nullptr);
734 return result;
735 }
736
GetActualStackSizeFn(void * arg)737 static void* GetActualStackSizeFn(void* arg) {
738 pthread_attr_t attributes;
739 pthread_getattr_np(pthread_self(), &attributes);
740 pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
741 return nullptr;
742 }
743
GetActualStackSize(const pthread_attr_t & attributes)744 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
745 size_t result;
746 pthread_t t;
747 pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
748 pthread_join(t, nullptr);
749 return result;
750 }
751
TEST(pthread,pthread_attr_setguardsize_tiny)752 TEST(pthread, pthread_attr_setguardsize_tiny) {
753 pthread_attr_t attributes;
754 ASSERT_EQ(0, pthread_attr_init(&attributes));
755
756 // No such thing as too small: will be rounded up to one page by pthread_create.
757 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
758 size_t guard_size;
759 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
760 ASSERT_EQ(128U, guard_size);
761 ASSERT_EQ(4096U, GetActualGuardSize(attributes));
762 }
763
TEST(pthread,pthread_attr_setguardsize_reasonable)764 TEST(pthread, pthread_attr_setguardsize_reasonable) {
765 pthread_attr_t attributes;
766 ASSERT_EQ(0, pthread_attr_init(&attributes));
767
768 // Large enough and a multiple of the page size.
769 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
770 size_t guard_size;
771 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
772 ASSERT_EQ(32*1024U, guard_size);
773 ASSERT_EQ(32*1024U, GetActualGuardSize(attributes));
774 }
775
TEST(pthread,pthread_attr_setguardsize_needs_rounding)776 TEST(pthread, pthread_attr_setguardsize_needs_rounding) {
777 pthread_attr_t attributes;
778 ASSERT_EQ(0, pthread_attr_init(&attributes));
779
780 // Large enough but not a multiple of the page size.
781 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
782 size_t guard_size;
783 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
784 ASSERT_EQ(32*1024U + 1, guard_size);
785 ASSERT_EQ(36*1024U, GetActualGuardSize(attributes));
786 }
787
TEST(pthread,pthread_attr_setguardsize_enormous)788 TEST(pthread, pthread_attr_setguardsize_enormous) {
789 pthread_attr_t attributes;
790 ASSERT_EQ(0, pthread_attr_init(&attributes));
791
792 // Larger than the stack itself. (Historically we mistakenly carved
793 // the guard out of the stack itself, rather than adding it after the
794 // end.)
795 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024*1024));
796 size_t guard_size;
797 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
798 ASSERT_EQ(32*1024*1024U, guard_size);
799 ASSERT_EQ(32*1024*1024U, GetActualGuardSize(attributes));
800 }
801
TEST(pthread,pthread_attr_setstacksize)802 TEST(pthread, pthread_attr_setstacksize) {
803 pthread_attr_t attributes;
804 ASSERT_EQ(0, pthread_attr_init(&attributes));
805
806 // Get the default stack size.
807 size_t default_stack_size;
808 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
809
810 // Too small.
811 ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
812 size_t stack_size;
813 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
814 ASSERT_EQ(default_stack_size, stack_size);
815 ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
816
817 // Large enough and a multiple of the page size; may be rounded up by pthread_create.
818 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
819 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
820 ASSERT_EQ(32*1024U, stack_size);
821 ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
822
823 // Large enough but not aligned; will be rounded up by pthread_create.
824 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
825 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
826 ASSERT_EQ(32*1024U + 1, stack_size);
827 #if defined(__BIONIC__)
828 ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
829 #else // __BIONIC__
830 // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
831 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
832 #endif // __BIONIC__
833 }
834
TEST(pthread,pthread_rwlockattr_smoke)835 TEST(pthread, pthread_rwlockattr_smoke) {
836 pthread_rwlockattr_t attr;
837 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
838
839 int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
840 for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
841 ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
842 int pshared;
843 ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
844 ASSERT_EQ(pshared_value_array[i], pshared);
845 }
846
847 int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
848 PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
849 for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
850 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
851 int kind;
852 ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
853 ASSERT_EQ(kind_array[i], kind);
854 }
855
856 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
857 }
858
TEST(pthread,pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER)859 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
860 pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
861 pthread_rwlock_t lock2;
862 ASSERT_EQ(0, pthread_rwlock_init(&lock2, nullptr));
863 ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
864 }
865
TEST(pthread,pthread_rwlock_smoke)866 TEST(pthread, pthread_rwlock_smoke) {
867 pthread_rwlock_t l;
868 ASSERT_EQ(0, pthread_rwlock_init(&l, nullptr));
869
870 // Single read lock
871 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
872 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
873
874 // Multiple read lock
875 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
876 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
877 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
878 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
879
880 // Write lock
881 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
882 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
883
884 // Try writer lock
885 ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
886 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
887 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
888 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
889
890 // Try reader lock
891 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
892 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
893 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
894 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
895 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
896
897 // Try writer lock after unlock
898 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
899 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
900
901 // EDEADLK in "read after write"
902 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
903 ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
904 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
905
906 // EDEADLK in "write after write"
907 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
908 ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
909 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
910
911 ASSERT_EQ(0, pthread_rwlock_destroy(&l));
912 }
913
914 struct RwlockWakeupHelperArg {
915 pthread_rwlock_t lock;
916 enum Progress {
917 LOCK_INITIALIZED,
918 LOCK_WAITING,
919 LOCK_RELEASED,
920 LOCK_ACCESSED,
921 LOCK_TIMEDOUT,
922 };
923 std::atomic<Progress> progress;
924 std::atomic<pid_t> tid;
925 std::function<int (pthread_rwlock_t*)> trylock_function;
926 std::function<int (pthread_rwlock_t*)> lock_function;
927 std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
928 clockid_t clock;
929 };
930
pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg * arg)931 static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
932 arg->tid = gettid();
933 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
934 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
935
936 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
937 ASSERT_EQ(0, arg->lock_function(&arg->lock));
938 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
939 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
940
941 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
942 }
943
test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t *)> lock_function)944 static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
945 RwlockWakeupHelperArg wakeup_arg;
946 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
947 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
948 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
949 wakeup_arg.tid = 0;
950 wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
951 wakeup_arg.lock_function = lock_function;
952
953 pthread_t thread;
954 ASSERT_EQ(0, pthread_create(&thread, nullptr,
955 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
956 WaitUntilThreadSleep(wakeup_arg.tid);
957 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
958
959 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
960 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
961
962 ASSERT_EQ(0, pthread_join(thread, nullptr));
963 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
964 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
965 }
966
TEST(pthread,pthread_rwlock_reader_wakeup_writer)967 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
968 test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
969 }
970
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait)971 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
972 timespec ts;
973 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
974 ts.tv_sec += 1;
975 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
976 return pthread_rwlock_timedwrlock(lock, &ts);
977 });
978 }
979
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np)980 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np) {
981 #if defined(__BIONIC__)
982 timespec ts;
983 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
984 ts.tv_sec += 1;
985 test_pthread_rwlock_reader_wakeup_writer(
986 [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedwrlock_monotonic_np(lock, &ts); });
987 #else // __BIONIC__
988 GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
989 #endif // __BIONIC__
990 }
991
TEST(pthread,pthread_rwlock_reader_wakeup_writer_clockwait)992 TEST(pthread, pthread_rwlock_reader_wakeup_writer_clockwait) {
993 #if defined(__BIONIC__)
994 timespec ts;
995 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
996 ts.tv_sec += 1;
997 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
998 return pthread_rwlock_clockwrlock(lock, CLOCK_MONOTONIC, &ts);
999 });
1000
1001 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1002 ts.tv_sec += 1;
1003 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
1004 return pthread_rwlock_clockwrlock(lock, CLOCK_REALTIME, &ts);
1005 });
1006 #else // __BIONIC__
1007 GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
1008 #endif // __BIONIC__
1009 }
1010
test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t *)> lock_function)1011 static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
1012 RwlockWakeupHelperArg wakeup_arg;
1013 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1014 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
1015 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1016 wakeup_arg.tid = 0;
1017 wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
1018 wakeup_arg.lock_function = lock_function;
1019
1020 pthread_t thread;
1021 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1022 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
1023 WaitUntilThreadSleep(wakeup_arg.tid);
1024 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1025
1026 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
1027 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1028
1029 ASSERT_EQ(0, pthread_join(thread, nullptr));
1030 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
1031 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1032 }
1033
TEST(pthread,pthread_rwlock_writer_wakeup_reader)1034 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
1035 test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
1036 }
1037
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait)1038 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
1039 timespec ts;
1040 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1041 ts.tv_sec += 1;
1042 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
1043 return pthread_rwlock_timedrdlock(lock, &ts);
1044 });
1045 }
1046
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np)1047 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np) {
1048 #if defined(__BIONIC__)
1049 timespec ts;
1050 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1051 ts.tv_sec += 1;
1052 test_pthread_rwlock_writer_wakeup_reader(
1053 [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedrdlock_monotonic_np(lock, &ts); });
1054 #else // __BIONIC__
1055 GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
1056 #endif // __BIONIC__
1057 }
1058
TEST(pthread,pthread_rwlock_writer_wakeup_reader_clockwait)1059 TEST(pthread, pthread_rwlock_writer_wakeup_reader_clockwait) {
1060 #if defined(__BIONIC__)
1061 timespec ts;
1062 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1063 ts.tv_sec += 1;
1064 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
1065 return pthread_rwlock_clockrdlock(lock, CLOCK_MONOTONIC, &ts);
1066 });
1067
1068 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1069 ts.tv_sec += 1;
1070 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
1071 return pthread_rwlock_clockrdlock(lock, CLOCK_REALTIME, &ts);
1072 });
1073 #else // __BIONIC__
1074 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1075 #endif // __BIONIC__
1076 }
1077
pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg * arg)1078 static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
1079 arg->tid = gettid();
1080 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
1081 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
1082
1083 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
1084
1085 timespec ts;
1086 ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
1087 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1088 ts.tv_nsec = -1;
1089 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
1090 ts.tv_nsec = NS_PER_S;
1091 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
1092 ts.tv_nsec = NS_PER_S - 1;
1093 ts.tv_sec = -1;
1094 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1095 ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
1096 ts.tv_sec += 1;
1097 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1098 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
1099 arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
1100 }
1101
pthread_rwlock_timedrdlock_timeout_helper(clockid_t clock,int (* lock_function)(pthread_rwlock_t * __rwlock,const timespec * __timeout))1102 static void pthread_rwlock_timedrdlock_timeout_helper(
1103 clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
1104 RwlockWakeupHelperArg wakeup_arg;
1105 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1106 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
1107 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1108 wakeup_arg.tid = 0;
1109 wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
1110 wakeup_arg.timed_lock_function = lock_function;
1111 wakeup_arg.clock = clock;
1112
1113 pthread_t thread;
1114 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1115 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
1116 WaitUntilThreadSleep(wakeup_arg.tid);
1117 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1118
1119 ASSERT_EQ(0, pthread_join(thread, nullptr));
1120 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
1121 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1122 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1123 }
1124
TEST(pthread,pthread_rwlock_timedrdlock_timeout)1125 TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
1126 pthread_rwlock_timedrdlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedrdlock);
1127 }
1128
TEST(pthread,pthread_rwlock_timedrdlock_monotonic_np_timeout)1129 TEST(pthread, pthread_rwlock_timedrdlock_monotonic_np_timeout) {
1130 #if defined(__BIONIC__)
1131 pthread_rwlock_timedrdlock_timeout_helper(CLOCK_MONOTONIC,
1132 pthread_rwlock_timedrdlock_monotonic_np);
1133 #else // __BIONIC__
1134 GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
1135 #endif // __BIONIC__
1136 }
1137
TEST(pthread,pthread_rwlock_clockrdlock_monotonic_timeout)1138 TEST(pthread, pthread_rwlock_clockrdlock_monotonic_timeout) {
1139 #if defined(__BIONIC__)
1140 pthread_rwlock_timedrdlock_timeout_helper(
1141 CLOCK_MONOTONIC, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1142 return pthread_rwlock_clockrdlock(__rwlock, CLOCK_MONOTONIC, __timeout);
1143 });
1144 #else // __BIONIC__
1145 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1146 #endif // __BIONIC__
1147 }
1148
TEST(pthread,pthread_rwlock_clockrdlock_realtime_timeout)1149 TEST(pthread, pthread_rwlock_clockrdlock_realtime_timeout) {
1150 #if defined(__BIONIC__)
1151 pthread_rwlock_timedrdlock_timeout_helper(
1152 CLOCK_REALTIME, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1153 return pthread_rwlock_clockrdlock(__rwlock, CLOCK_REALTIME, __timeout);
1154 });
1155 #else // __BIONIC__
1156 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1157 #endif // __BIONIC__
1158 }
1159
TEST(pthread,pthread_rwlock_clockrdlock_invalid)1160 TEST(pthread, pthread_rwlock_clockrdlock_invalid) {
1161 #if defined(__BIONIC__)
1162 pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER;
1163 timespec ts;
1164 EXPECT_EQ(EINVAL, pthread_rwlock_clockrdlock(&lock, CLOCK_PROCESS_CPUTIME_ID, &ts));
1165 #else // __BIONIC__
1166 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1167 #endif // __BIONIC__
1168 }
1169
pthread_rwlock_timedwrlock_timeout_helper(clockid_t clock,int (* lock_function)(pthread_rwlock_t * __rwlock,const timespec * __timeout))1170 static void pthread_rwlock_timedwrlock_timeout_helper(
1171 clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
1172 RwlockWakeupHelperArg wakeup_arg;
1173 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1174 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
1175 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1176 wakeup_arg.tid = 0;
1177 wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
1178 wakeup_arg.timed_lock_function = lock_function;
1179 wakeup_arg.clock = clock;
1180
1181 pthread_t thread;
1182 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1183 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
1184 WaitUntilThreadSleep(wakeup_arg.tid);
1185 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1186
1187 ASSERT_EQ(0, pthread_join(thread, nullptr));
1188 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
1189 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1190 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1191 }
1192
TEST(pthread,pthread_rwlock_timedwrlock_timeout)1193 TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
1194 pthread_rwlock_timedwrlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedwrlock);
1195 }
1196
TEST(pthread,pthread_rwlock_timedwrlock_monotonic_np_timeout)1197 TEST(pthread, pthread_rwlock_timedwrlock_monotonic_np_timeout) {
1198 #if defined(__BIONIC__)
1199 pthread_rwlock_timedwrlock_timeout_helper(CLOCK_MONOTONIC,
1200 pthread_rwlock_timedwrlock_monotonic_np);
1201 #else // __BIONIC__
1202 GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
1203 #endif // __BIONIC__
1204 }
1205
TEST(pthread,pthread_rwlock_clockwrlock_monotonic_timeout)1206 TEST(pthread, pthread_rwlock_clockwrlock_monotonic_timeout) {
1207 #if defined(__BIONIC__)
1208 pthread_rwlock_timedwrlock_timeout_helper(
1209 CLOCK_MONOTONIC, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1210 return pthread_rwlock_clockwrlock(__rwlock, CLOCK_MONOTONIC, __timeout);
1211 });
1212 #else // __BIONIC__
1213 GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
1214 #endif // __BIONIC__
1215 }
1216
TEST(pthread,pthread_rwlock_clockwrlock_realtime_timeout)1217 TEST(pthread, pthread_rwlock_clockwrlock_realtime_timeout) {
1218 #if defined(__BIONIC__)
1219 pthread_rwlock_timedwrlock_timeout_helper(
1220 CLOCK_REALTIME, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1221 return pthread_rwlock_clockwrlock(__rwlock, CLOCK_REALTIME, __timeout);
1222 });
1223 #else // __BIONIC__
1224 GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
1225 #endif // __BIONIC__
1226 }
1227
TEST(pthread,pthread_rwlock_clockwrlock_invalid)1228 TEST(pthread, pthread_rwlock_clockwrlock_invalid) {
1229 #if defined(__BIONIC__)
1230 pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER;
1231 timespec ts;
1232 EXPECT_EQ(EINVAL, pthread_rwlock_clockwrlock(&lock, CLOCK_PROCESS_CPUTIME_ID, &ts));
1233 #else // __BIONIC__
1234 GTEST_SKIP() << "pthread_rwlock_clockrwlock not available";
1235 #endif // __BIONIC__
1236 }
1237
1238 class RwlockKindTestHelper {
1239 private:
1240 struct ThreadArg {
1241 RwlockKindTestHelper* helper;
1242 std::atomic<pid_t>& tid;
1243
ThreadArgRwlockKindTestHelper::ThreadArg1244 ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
1245 : helper(helper), tid(tid) { }
1246 };
1247
1248 public:
1249 pthread_rwlock_t lock;
1250
1251 public:
RwlockKindTestHelper(int kind_type)1252 explicit RwlockKindTestHelper(int kind_type) {
1253 InitRwlock(kind_type);
1254 }
1255
~RwlockKindTestHelper()1256 ~RwlockKindTestHelper() {
1257 DestroyRwlock();
1258 }
1259
CreateWriterThread(pthread_t & thread,std::atomic<pid_t> & tid)1260 void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
1261 tid = 0;
1262 ThreadArg* arg = new ThreadArg(this, tid);
1263 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1264 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
1265 }
1266
CreateReaderThread(pthread_t & thread,std::atomic<pid_t> & tid)1267 void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
1268 tid = 0;
1269 ThreadArg* arg = new ThreadArg(this, tid);
1270 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1271 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
1272 }
1273
1274 private:
InitRwlock(int kind_type)1275 void InitRwlock(int kind_type) {
1276 pthread_rwlockattr_t attr;
1277 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
1278 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
1279 ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
1280 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
1281 }
1282
DestroyRwlock()1283 void DestroyRwlock() {
1284 ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
1285 }
1286
WriterThreadFn(ThreadArg * arg)1287 static void WriterThreadFn(ThreadArg* arg) {
1288 arg->tid = gettid();
1289
1290 RwlockKindTestHelper* helper = arg->helper;
1291 ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
1292 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1293 delete arg;
1294 }
1295
ReaderThreadFn(ThreadArg * arg)1296 static void ReaderThreadFn(ThreadArg* arg) {
1297 arg->tid = gettid();
1298
1299 RwlockKindTestHelper* helper = arg->helper;
1300 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
1301 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1302 delete arg;
1303 }
1304 };
1305
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP)1306 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
1307 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
1308 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1309
1310 pthread_t writer_thread;
1311 std::atomic<pid_t> writer_tid;
1312 helper.CreateWriterThread(writer_thread, writer_tid);
1313 WaitUntilThreadSleep(writer_tid);
1314
1315 pthread_t reader_thread;
1316 std::atomic<pid_t> reader_tid;
1317 helper.CreateReaderThread(reader_thread, reader_tid);
1318 ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
1319
1320 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1321 ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
1322 }
1323
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)1324 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
1325 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
1326 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1327
1328 pthread_t writer_thread;
1329 std::atomic<pid_t> writer_tid;
1330 helper.CreateWriterThread(writer_thread, writer_tid);
1331 WaitUntilThreadSleep(writer_tid);
1332
1333 pthread_t reader_thread;
1334 std::atomic<pid_t> reader_tid;
1335 helper.CreateReaderThread(reader_thread, reader_tid);
1336 WaitUntilThreadSleep(reader_tid);
1337
1338 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1339 ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
1340 ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
1341 }
1342
1343 static int g_once_fn_call_count = 0;
OnceFn()1344 static void OnceFn() {
1345 ++g_once_fn_call_count;
1346 }
1347
TEST(pthread,pthread_once_smoke)1348 TEST(pthread, pthread_once_smoke) {
1349 pthread_once_t once_control = PTHREAD_ONCE_INIT;
1350 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1351 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1352 ASSERT_EQ(1, g_once_fn_call_count);
1353 }
1354
1355 static std::string pthread_once_1934122_result = "";
1356
Routine2()1357 static void Routine2() {
1358 pthread_once_1934122_result += "2";
1359 }
1360
Routine1()1361 static void Routine1() {
1362 pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
1363 pthread_once_1934122_result += "1";
1364 pthread_once(&once_control_2, &Routine2);
1365 }
1366
TEST(pthread,pthread_once_1934122)1367 TEST(pthread, pthread_once_1934122) {
1368 // Very old versions of Android couldn't call pthread_once from a
1369 // pthread_once init routine. http://b/1934122.
1370 pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
1371 ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
1372 ASSERT_EQ("12", pthread_once_1934122_result);
1373 }
1374
1375 static int g_atfork_prepare_calls = 0;
AtForkPrepare1()1376 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
AtForkPrepare2()1377 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
1378 static int g_atfork_parent_calls = 0;
AtForkParent1()1379 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
AtForkParent2()1380 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
1381 static int g_atfork_child_calls = 0;
AtForkChild1()1382 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
AtForkChild2()1383 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
1384
TEST(pthread,pthread_atfork_smoke)1385 TEST(pthread, pthread_atfork_smoke) {
1386 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1387 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1388
1389 pid_t pid = fork();
1390 ASSERT_NE(-1, pid) << strerror(errno);
1391
1392 // Child and parent calls are made in the order they were registered.
1393 if (pid == 0) {
1394 ASSERT_EQ(12, g_atfork_child_calls);
1395 _exit(0);
1396 }
1397 ASSERT_EQ(12, g_atfork_parent_calls);
1398
1399 // Prepare calls are made in the reverse order.
1400 ASSERT_EQ(21, g_atfork_prepare_calls);
1401 AssertChildExited(pid, 0);
1402 }
1403
TEST(pthread,pthread_attr_getscope)1404 TEST(pthread, pthread_attr_getscope) {
1405 pthread_attr_t attr;
1406 ASSERT_EQ(0, pthread_attr_init(&attr));
1407
1408 int scope;
1409 ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
1410 ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
1411 }
1412
TEST(pthread,pthread_condattr_init)1413 TEST(pthread, pthread_condattr_init) {
1414 pthread_condattr_t attr;
1415 pthread_condattr_init(&attr);
1416
1417 clockid_t clock;
1418 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1419 ASSERT_EQ(CLOCK_REALTIME, clock);
1420
1421 int pshared;
1422 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1423 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1424 }
1425
TEST(pthread,pthread_condattr_setclock)1426 TEST(pthread, pthread_condattr_setclock) {
1427 pthread_condattr_t attr;
1428 pthread_condattr_init(&attr);
1429
1430 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1431 clockid_t clock;
1432 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1433 ASSERT_EQ(CLOCK_REALTIME, clock);
1434
1435 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1436 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1437 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1438
1439 ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1440 }
1441
TEST(pthread,pthread_cond_broadcast__preserves_condattr_flags)1442 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1443 #if defined(__BIONIC__)
1444 pthread_condattr_t attr;
1445 pthread_condattr_init(&attr);
1446
1447 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1448 ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1449
1450 pthread_cond_t cond_var;
1451 ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1452
1453 ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1454 ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1455
1456 attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1457 clockid_t clock;
1458 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1459 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1460 int pshared;
1461 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1462 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1463 #else // !defined(__BIONIC__)
1464 GTEST_SKIP() << "bionic-only test";
1465 #endif // !defined(__BIONIC__)
1466 }
1467
1468 class pthread_CondWakeupTest : public ::testing::Test {
1469 protected:
1470 pthread_mutex_t mutex;
1471 pthread_cond_t cond;
1472
1473 enum Progress {
1474 INITIALIZED,
1475 WAITING,
1476 SIGNALED,
1477 FINISHED,
1478 };
1479 std::atomic<Progress> progress;
1480 pthread_t thread;
1481 std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
1482
1483 protected:
SetUp()1484 void SetUp() override {
1485 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1486 }
1487
InitCond(clockid_t clock=CLOCK_REALTIME)1488 void InitCond(clockid_t clock=CLOCK_REALTIME) {
1489 pthread_condattr_t attr;
1490 ASSERT_EQ(0, pthread_condattr_init(&attr));
1491 ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
1492 ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1493 ASSERT_EQ(0, pthread_condattr_destroy(&attr));
1494 }
1495
StartWaitingThread(std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex)> wait_function)1496 void StartWaitingThread(
1497 std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
1498 progress = INITIALIZED;
1499 this->wait_function = wait_function;
1500 ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(WaitThreadFn),
1501 this));
1502 while (progress != WAITING) {
1503 usleep(5000);
1504 }
1505 usleep(5000);
1506 }
1507
RunTimedTest(clockid_t clock,std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex,const timespec * timeout)> wait_function)1508 void RunTimedTest(
1509 clockid_t clock,
1510 std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex, const timespec* timeout)>
1511 wait_function) {
1512 timespec ts;
1513 ASSERT_EQ(0, clock_gettime(clock, &ts));
1514 ts.tv_sec += 1;
1515
1516 StartWaitingThread([&wait_function, &ts](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1517 return wait_function(cond, mutex, &ts);
1518 });
1519
1520 progress = SIGNALED;
1521 ASSERT_EQ(0, pthread_cond_signal(&cond));
1522 }
1523
RunTimedTest(clockid_t clock,std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex,clockid_t clock,const timespec * timeout)> wait_function)1524 void RunTimedTest(clockid_t clock, std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex,
1525 clockid_t clock, const timespec* timeout)>
1526 wait_function) {
1527 RunTimedTest(clock, [clock, &wait_function](pthread_cond_t* cond, pthread_mutex_t* mutex,
1528 const timespec* timeout) {
1529 return wait_function(cond, mutex, clock, timeout);
1530 });
1531 }
1532
TearDown()1533 void TearDown() override {
1534 ASSERT_EQ(0, pthread_join(thread, nullptr));
1535 ASSERT_EQ(FINISHED, progress);
1536 ASSERT_EQ(0, pthread_cond_destroy(&cond));
1537 ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1538 }
1539
1540 private:
WaitThreadFn(pthread_CondWakeupTest * test)1541 static void WaitThreadFn(pthread_CondWakeupTest* test) {
1542 ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1543 test->progress = WAITING;
1544 while (test->progress == WAITING) {
1545 ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
1546 }
1547 ASSERT_EQ(SIGNALED, test->progress);
1548 test->progress = FINISHED;
1549 ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1550 }
1551 };
1552
TEST_F(pthread_CondWakeupTest,signal_wait)1553 TEST_F(pthread_CondWakeupTest, signal_wait) {
1554 InitCond();
1555 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1556 return pthread_cond_wait(cond, mutex);
1557 });
1558 progress = SIGNALED;
1559 ASSERT_EQ(0, pthread_cond_signal(&cond));
1560 }
1561
TEST_F(pthread_CondWakeupTest,broadcast_wait)1562 TEST_F(pthread_CondWakeupTest, broadcast_wait) {
1563 InitCond();
1564 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1565 return pthread_cond_wait(cond, mutex);
1566 });
1567 progress = SIGNALED;
1568 ASSERT_EQ(0, pthread_cond_broadcast(&cond));
1569 }
1570
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_REALTIME)1571 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
1572 InitCond(CLOCK_REALTIME);
1573 RunTimedTest(CLOCK_REALTIME, pthread_cond_timedwait);
1574 }
1575
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC)1576 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
1577 InitCond(CLOCK_MONOTONIC);
1578 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_timedwait);
1579 }
1580
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC_np)1581 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC_np) {
1582 #if defined(__BIONIC__)
1583 InitCond(CLOCK_REALTIME);
1584 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
1585 #else // __BIONIC__
1586 GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
1587 #endif // __BIONIC__
1588 }
1589
TEST_F(pthread_CondWakeupTest,signal_clockwait_monotonic_monotonic)1590 TEST_F(pthread_CondWakeupTest, signal_clockwait_monotonic_monotonic) {
1591 #if defined(__BIONIC__)
1592 InitCond(CLOCK_MONOTONIC);
1593 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_clockwait);
1594 #else // __BIONIC__
1595 GTEST_SKIP() << "pthread_cond_clockwait not available";
1596 #endif // __BIONIC__
1597 }
1598
TEST_F(pthread_CondWakeupTest,signal_clockwait_monotonic_realtime)1599 TEST_F(pthread_CondWakeupTest, signal_clockwait_monotonic_realtime) {
1600 #if defined(__BIONIC__)
1601 InitCond(CLOCK_MONOTONIC);
1602 RunTimedTest(CLOCK_REALTIME, pthread_cond_clockwait);
1603 #else // __BIONIC__
1604 GTEST_SKIP() << "pthread_cond_clockwait not available";
1605 #endif // __BIONIC__
1606 }
1607
TEST_F(pthread_CondWakeupTest,signal_clockwait_realtime_monotonic)1608 TEST_F(pthread_CondWakeupTest, signal_clockwait_realtime_monotonic) {
1609 #if defined(__BIONIC__)
1610 InitCond(CLOCK_REALTIME);
1611 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_clockwait);
1612 #else // __BIONIC__
1613 GTEST_SKIP() << "pthread_cond_clockwait not available";
1614 #endif // __BIONIC__
1615 }
1616
TEST_F(pthread_CondWakeupTest,signal_clockwait_realtime_realtime)1617 TEST_F(pthread_CondWakeupTest, signal_clockwait_realtime_realtime) {
1618 #if defined(__BIONIC__)
1619 InitCond(CLOCK_REALTIME);
1620 RunTimedTest(CLOCK_REALTIME, pthread_cond_clockwait);
1621 #else // __BIONIC__
1622 GTEST_SKIP() << "pthread_cond_clockwait not available";
1623 #endif // __BIONIC__
1624 }
1625
pthread_cond_timedwait_timeout_helper(bool init_monotonic,clockid_t clock,int (* wait_function)(pthread_cond_t * __cond,pthread_mutex_t * __mutex,const timespec * __timeout))1626 static void pthread_cond_timedwait_timeout_helper(bool init_monotonic, clockid_t clock,
1627 int (*wait_function)(pthread_cond_t* __cond,
1628 pthread_mutex_t* __mutex,
1629 const timespec* __timeout)) {
1630 pthread_mutex_t mutex;
1631 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1632 pthread_cond_t cond;
1633
1634 if (init_monotonic) {
1635 pthread_condattr_t attr;
1636 pthread_condattr_init(&attr);
1637
1638 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1639 clockid_t clock;
1640 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1641 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1642
1643 ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1644 } else {
1645 ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
1646 }
1647 ASSERT_EQ(0, pthread_mutex_lock(&mutex));
1648
1649 timespec ts;
1650 ASSERT_EQ(0, clock_gettime(clock, &ts));
1651 ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
1652 ts.tv_nsec = -1;
1653 ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
1654 ts.tv_nsec = NS_PER_S;
1655 ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
1656 ts.tv_nsec = NS_PER_S - 1;
1657 ts.tv_sec = -1;
1658 ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
1659 ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
1660 }
1661
TEST(pthread,pthread_cond_timedwait_timeout)1662 TEST(pthread, pthread_cond_timedwait_timeout) {
1663 pthread_cond_timedwait_timeout_helper(false, CLOCK_REALTIME, pthread_cond_timedwait);
1664 }
1665
TEST(pthread,pthread_cond_timedwait_monotonic_np_timeout)1666 TEST(pthread, pthread_cond_timedwait_monotonic_np_timeout) {
1667 #if defined(__BIONIC__)
1668 pthread_cond_timedwait_timeout_helper(false, CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
1669 pthread_cond_timedwait_timeout_helper(true, CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
1670 #else // __BIONIC__
1671 GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
1672 #endif // __BIONIC__
1673 }
1674
TEST(pthread,pthread_cond_clockwait_timeout)1675 TEST(pthread, pthread_cond_clockwait_timeout) {
1676 #if defined(__BIONIC__)
1677 pthread_cond_timedwait_timeout_helper(
1678 false, CLOCK_MONOTONIC,
1679 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1680 return pthread_cond_clockwait(__cond, __mutex, CLOCK_MONOTONIC, __timeout);
1681 });
1682 pthread_cond_timedwait_timeout_helper(
1683 true, CLOCK_MONOTONIC,
1684 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1685 return pthread_cond_clockwait(__cond, __mutex, CLOCK_MONOTONIC, __timeout);
1686 });
1687 pthread_cond_timedwait_timeout_helper(
1688 false, CLOCK_REALTIME,
1689 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1690 return pthread_cond_clockwait(__cond, __mutex, CLOCK_REALTIME, __timeout);
1691 });
1692 pthread_cond_timedwait_timeout_helper(
1693 true, CLOCK_REALTIME,
1694 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1695 return pthread_cond_clockwait(__cond, __mutex, CLOCK_REALTIME, __timeout);
1696 });
1697 #else // __BIONIC__
1698 GTEST_SKIP() << "pthread_cond_clockwait not available";
1699 #endif // __BIONIC__
1700 }
1701
TEST(pthread,pthread_cond_clockwait_invalid)1702 TEST(pthread, pthread_cond_clockwait_invalid) {
1703 #if defined(__BIONIC__)
1704 pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
1705 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
1706 timespec ts;
1707 EXPECT_EQ(EINVAL, pthread_cond_clockwait(&cond, &mutex, CLOCK_PROCESS_CPUTIME_ID, &ts));
1708
1709 #else // __BIONIC__
1710 GTEST_SKIP() << "pthread_cond_clockwait not available";
1711 #endif // __BIONIC__
1712 }
1713
TEST(pthread,pthread_attr_getstack__main_thread)1714 TEST(pthread, pthread_attr_getstack__main_thread) {
1715 // This test is only meaningful for the main thread, so make sure we're running on it!
1716 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1717
1718 // Get the main thread's attributes.
1719 pthread_attr_t attributes;
1720 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1721
1722 // Check that we correctly report that the main thread has no guard page.
1723 size_t guard_size;
1724 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1725 ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1726
1727 // Get the stack base and the stack size (both ways).
1728 void* stack_base;
1729 size_t stack_size;
1730 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1731 size_t stack_size2;
1732 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1733
1734 // The two methods of asking for the stack size should agree.
1735 EXPECT_EQ(stack_size, stack_size2);
1736
1737 #if defined(__BIONIC__)
1738 // Find stack in /proc/self/maps using a pointer to the stack.
1739 //
1740 // We do not use "[stack]" label because in native-bridge environment it is not
1741 // guaranteed to point to the right stack. A native bridge implementation may
1742 // keep separate stack for the guest code.
1743 void* maps_stack_hi = nullptr;
1744 std::vector<map_record> maps;
1745 ASSERT_TRUE(Maps::parse_maps(&maps));
1746 uintptr_t stack_address = reinterpret_cast<uintptr_t>(untag_address(&maps_stack_hi));
1747 for (const auto& map : maps) {
1748 if (map.addr_start <= stack_address && map.addr_end > stack_address){
1749 maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1750 break;
1751 }
1752 }
1753
1754 // The high address of the /proc/self/maps stack region should equal stack_base + stack_size.
1755 // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1756 // region isn't very interesting.
1757 EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1758
1759 // The stack size should correspond to RLIMIT_STACK.
1760 rlimit rl;
1761 ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1762 uint64_t original_rlim_cur = rl.rlim_cur;
1763 if (rl.rlim_cur == RLIM_INFINITY) {
1764 rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1765 }
1766 EXPECT_EQ(rl.rlim_cur, stack_size);
1767
1768 auto guard = android::base::make_scope_guard([&rl, original_rlim_cur]() {
1769 rl.rlim_cur = original_rlim_cur;
1770 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1771 });
1772
1773 //
1774 // What if RLIMIT_STACK is smaller than the stack's current extent?
1775 //
1776 rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1777 rl.rlim_max = RLIM_INFINITY;
1778 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1779
1780 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1781 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1782 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1783
1784 EXPECT_EQ(stack_size, stack_size2);
1785 ASSERT_EQ(1024U, stack_size);
1786
1787 //
1788 // What if RLIMIT_STACK isn't a whole number of pages?
1789 //
1790 rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1791 rl.rlim_max = RLIM_INFINITY;
1792 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1793
1794 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1795 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1796 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1797
1798 EXPECT_EQ(stack_size, stack_size2);
1799 ASSERT_EQ(6666U, stack_size);
1800 #endif
1801 }
1802
1803 struct GetStackSignalHandlerArg {
1804 volatile bool done;
1805 void* signal_stack_base;
1806 size_t signal_stack_size;
1807 void* main_stack_base;
1808 size_t main_stack_size;
1809 };
1810
1811 static GetStackSignalHandlerArg getstack_signal_handler_arg;
1812
getstack_signal_handler(int sig)1813 static void getstack_signal_handler(int sig) {
1814 ASSERT_EQ(SIGUSR1, sig);
1815 // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1816 sleep(1);
1817 pthread_attr_t attr;
1818 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1819 void* stack_base;
1820 size_t stack_size;
1821 ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1822
1823 // Verify if the stack used by the signal handler is the alternate stack just registered.
1824 ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr);
1825 ASSERT_LT(static_cast<void*>(untag_address(&attr)),
1826 static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) +
1827 getstack_signal_handler_arg.signal_stack_size);
1828
1829 // Verify if the main thread's stack got in the signal handler is correct.
1830 ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base);
1831 ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size);
1832
1833 getstack_signal_handler_arg.done = true;
1834 }
1835
1836 // The previous code obtained the main thread's stack by reading the entry in
1837 // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1838 // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1839 // switches a process while the main thread is in an alternate stack, then the kernel will label
1840 // the wrong map with [stack]. This test verifies that when the above situation happens, the main
1841 // thread's stack is found correctly.
TEST(pthread,pthread_attr_getstack_in_signal_handler)1842 TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1843 // This test is only meaningful for the main thread, so make sure we're running on it!
1844 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1845
1846 const size_t sig_stack_size = 16 * 1024;
1847 void* sig_stack = mmap(nullptr, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1848 -1, 0);
1849 ASSERT_NE(MAP_FAILED, sig_stack);
1850 stack_t ss;
1851 ss.ss_sp = sig_stack;
1852 ss.ss_size = sig_stack_size;
1853 ss.ss_flags = 0;
1854 stack_t oss;
1855 ASSERT_EQ(0, sigaltstack(&ss, &oss));
1856
1857 pthread_attr_t attr;
1858 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1859 void* main_stack_base;
1860 size_t main_stack_size;
1861 ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
1862
1863 ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1864 getstack_signal_handler_arg.done = false;
1865 getstack_signal_handler_arg.signal_stack_base = sig_stack;
1866 getstack_signal_handler_arg.signal_stack_size = sig_stack_size;
1867 getstack_signal_handler_arg.main_stack_base = main_stack_base;
1868 getstack_signal_handler_arg.main_stack_size = main_stack_size;
1869 kill(getpid(), SIGUSR1);
1870 ASSERT_EQ(true, getstack_signal_handler_arg.done);
1871
1872 ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1873 ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1874 }
1875
pthread_attr_getstack_18908062_helper(void *)1876 static void pthread_attr_getstack_18908062_helper(void*) {
1877 char local_variable;
1878 pthread_attr_t attributes;
1879 pthread_getattr_np(pthread_self(), &attributes);
1880 void* stack_base;
1881 size_t stack_size;
1882 pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1883
1884 // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1885 ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1886 ASSERT_LT(untag_address(&local_variable), reinterpret_cast<char*>(stack_base) + stack_size);
1887 }
1888
1889 // Check whether something on stack is in the range of
1890 // [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread,pthread_attr_getstack_18908062)1891 TEST(pthread, pthread_attr_getstack_18908062) {
1892 pthread_t t;
1893 ASSERT_EQ(0, pthread_create(&t, nullptr,
1894 reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1895 nullptr));
1896 ASSERT_EQ(0, pthread_join(t, nullptr));
1897 }
1898
1899 #if defined(__BIONIC__)
1900 static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1901
pthread_gettid_np_helper(void * arg)1902 static void* pthread_gettid_np_helper(void* arg) {
1903 *reinterpret_cast<pid_t*>(arg) = gettid();
1904
1905 // Wait for our parent to call pthread_gettid_np on us before exiting.
1906 pthread_mutex_lock(&pthread_gettid_np_mutex);
1907 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1908 return nullptr;
1909 }
1910 #endif
1911
TEST(pthread,pthread_gettid_np)1912 TEST(pthread, pthread_gettid_np) {
1913 #if defined(__BIONIC__)
1914 ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1915
1916 // Ensure the other thread doesn't exit until after we've called
1917 // pthread_gettid_np on it.
1918 pthread_mutex_lock(&pthread_gettid_np_mutex);
1919
1920 pid_t t_gettid_result;
1921 pthread_t t;
1922 pthread_create(&t, nullptr, pthread_gettid_np_helper, &t_gettid_result);
1923
1924 pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1925
1926 // Release the other thread and wait for it to exit.
1927 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1928 ASSERT_EQ(0, pthread_join(t, nullptr));
1929
1930 ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1931 #else
1932 GTEST_SKIP() << "pthread_gettid_np not available";
1933 #endif
1934 }
1935
1936 static size_t cleanup_counter = 0;
1937
AbortCleanupRoutine(void *)1938 static void AbortCleanupRoutine(void*) {
1939 abort();
1940 }
1941
CountCleanupRoutine(void *)1942 static void CountCleanupRoutine(void*) {
1943 ++cleanup_counter;
1944 }
1945
PthreadCleanupTester()1946 static void PthreadCleanupTester() {
1947 pthread_cleanup_push(CountCleanupRoutine, nullptr);
1948 pthread_cleanup_push(CountCleanupRoutine, nullptr);
1949 pthread_cleanup_push(AbortCleanupRoutine, nullptr);
1950
1951 pthread_cleanup_pop(0); // Pop the abort without executing it.
1952 pthread_cleanup_pop(1); // Pop one count while executing it.
1953 ASSERT_EQ(1U, cleanup_counter);
1954 // Exit while the other count is still on the cleanup stack.
1955 pthread_exit(nullptr);
1956
1957 // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1958 pthread_cleanup_pop(0);
1959 }
1960
PthreadCleanupStartRoutine(void *)1961 static void* PthreadCleanupStartRoutine(void*) {
1962 PthreadCleanupTester();
1963 return nullptr;
1964 }
1965
TEST(pthread,pthread_cleanup_push__pthread_cleanup_pop)1966 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1967 pthread_t t;
1968 ASSERT_EQ(0, pthread_create(&t, nullptr, PthreadCleanupStartRoutine, nullptr));
1969 ASSERT_EQ(0, pthread_join(t, nullptr));
1970 ASSERT_EQ(2U, cleanup_counter);
1971 }
1972
TEST(pthread,PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL)1973 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1974 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1975 }
1976
TEST(pthread,pthread_mutexattr_gettype)1977 TEST(pthread, pthread_mutexattr_gettype) {
1978 pthread_mutexattr_t attr;
1979 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1980
1981 int attr_type;
1982
1983 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1984 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1985 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1986
1987 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1988 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1989 ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1990
1991 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1992 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1993 ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1994
1995 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1996 }
1997
TEST(pthread,pthread_mutexattr_protocol)1998 TEST(pthread, pthread_mutexattr_protocol) {
1999 pthread_mutexattr_t attr;
2000 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
2001
2002 int protocol;
2003 ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
2004 ASSERT_EQ(PTHREAD_PRIO_NONE, protocol);
2005 for (size_t repeat = 0; repeat < 2; ++repeat) {
2006 for (int set_protocol : {PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT}) {
2007 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, set_protocol));
2008 ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
2009 ASSERT_EQ(protocol, set_protocol);
2010 }
2011 }
2012 }
2013
2014 struct PthreadMutex {
2015 pthread_mutex_t lock;
2016
PthreadMutexPthreadMutex2017 explicit PthreadMutex(int mutex_type, int protocol = PTHREAD_PRIO_NONE) {
2018 init(mutex_type, protocol);
2019 }
2020
~PthreadMutexPthreadMutex2021 ~PthreadMutex() {
2022 destroy();
2023 }
2024
2025 private:
initPthreadMutex2026 void init(int mutex_type, int protocol) {
2027 pthread_mutexattr_t attr;
2028 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
2029 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
2030 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, protocol));
2031 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
2032 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
2033 }
2034
destroyPthreadMutex2035 void destroy() {
2036 ASSERT_EQ(0, pthread_mutex_destroy(&lock));
2037 }
2038
2039 DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
2040 };
2041
UnlockFromAnotherThread(pthread_mutex_t * mutex)2042 static int UnlockFromAnotherThread(pthread_mutex_t* mutex) {
2043 pthread_t thread;
2044 pthread_create(&thread, nullptr, [](void* mutex_voidp) -> void* {
2045 pthread_mutex_t* mutex = static_cast<pthread_mutex_t*>(mutex_voidp);
2046 intptr_t result = pthread_mutex_unlock(mutex);
2047 return reinterpret_cast<void*>(result);
2048 }, mutex);
2049 void* result;
2050 EXPECT_EQ(0, pthread_join(thread, &result));
2051 return reinterpret_cast<intptr_t>(result);
2052 };
2053
TestPthreadMutexLockNormal(int protocol)2054 static void TestPthreadMutexLockNormal(int protocol) {
2055 PthreadMutex m(PTHREAD_MUTEX_NORMAL, protocol);
2056
2057 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2058 if (protocol == PTHREAD_PRIO_INHERIT) {
2059 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2060 }
2061 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2062 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2063 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
2064 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2065 }
2066
TestPthreadMutexLockErrorCheck(int protocol)2067 static void TestPthreadMutexLockErrorCheck(int protocol) {
2068 PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK, protocol);
2069
2070 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2071 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2072 ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
2073 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2074 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2075 if (protocol == PTHREAD_PRIO_NONE) {
2076 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
2077 } else {
2078 ASSERT_EQ(EDEADLK, pthread_mutex_trylock(&m.lock));
2079 }
2080 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2081 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
2082 }
2083
TestPthreadMutexLockRecursive(int protocol)2084 static void TestPthreadMutexLockRecursive(int protocol) {
2085 PthreadMutex m(PTHREAD_MUTEX_RECURSIVE, protocol);
2086
2087 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2088 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2089 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2090 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2091 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2092 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2093 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2094 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2095 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2096 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2097 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
2098 }
2099
TEST(pthread,pthread_mutex_lock_NORMAL)2100 TEST(pthread, pthread_mutex_lock_NORMAL) {
2101 TestPthreadMutexLockNormal(PTHREAD_PRIO_NONE);
2102 }
2103
TEST(pthread,pthread_mutex_lock_ERRORCHECK)2104 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
2105 TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_NONE);
2106 }
2107
TEST(pthread,pthread_mutex_lock_RECURSIVE)2108 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
2109 TestPthreadMutexLockRecursive(PTHREAD_PRIO_NONE);
2110 }
2111
TEST(pthread,pthread_mutex_lock_pi)2112 TEST(pthread, pthread_mutex_lock_pi) {
2113 TestPthreadMutexLockNormal(PTHREAD_PRIO_INHERIT);
2114 TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_INHERIT);
2115 TestPthreadMutexLockRecursive(PTHREAD_PRIO_INHERIT);
2116 }
2117
TEST(pthread,pthread_mutex_pi_count_limit)2118 TEST(pthread, pthread_mutex_pi_count_limit) {
2119 #if defined(__BIONIC__) && !defined(__LP64__)
2120 // Bionic only supports 65536 pi mutexes in 32-bit programs.
2121 pthread_mutexattr_t attr;
2122 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
2123 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT));
2124 std::vector<pthread_mutex_t> mutexes(65536);
2125 // Test if we can use 65536 pi mutexes at the same time.
2126 // Run 2 times to check if freed pi mutexes can be recycled.
2127 for (int repeat = 0; repeat < 2; ++repeat) {
2128 for (auto& m : mutexes) {
2129 ASSERT_EQ(0, pthread_mutex_init(&m, &attr));
2130 }
2131 pthread_mutex_t m;
2132 ASSERT_EQ(ENOMEM, pthread_mutex_init(&m, &attr));
2133 for (auto& m : mutexes) {
2134 ASSERT_EQ(0, pthread_mutex_lock(&m));
2135 }
2136 for (auto& m : mutexes) {
2137 ASSERT_EQ(0, pthread_mutex_unlock(&m));
2138 }
2139 for (auto& m : mutexes) {
2140 ASSERT_EQ(0, pthread_mutex_destroy(&m));
2141 }
2142 }
2143 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
2144 #else
2145 GTEST_SKIP() << "pi mutex count not limited to 64Ki";
2146 #endif
2147 }
2148
TEST(pthread,pthread_mutex_init_same_as_static_initializers)2149 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
2150 pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
2151 PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
2152 ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
2153 pthread_mutex_destroy(&lock_normal);
2154
2155 pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
2156 PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
2157 ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
2158 pthread_mutex_destroy(&lock_errorcheck);
2159
2160 pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
2161 PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
2162 ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
2163 ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
2164 }
2165
2166 class MutexWakeupHelper {
2167 private:
2168 PthreadMutex m;
2169 enum Progress {
2170 LOCK_INITIALIZED,
2171 LOCK_WAITING,
2172 LOCK_RELEASED,
2173 LOCK_ACCESSED
2174 };
2175 std::atomic<Progress> progress;
2176 std::atomic<pid_t> tid;
2177
thread_fn(MutexWakeupHelper * helper)2178 static void thread_fn(MutexWakeupHelper* helper) {
2179 helper->tid = gettid();
2180 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
2181 helper->progress = LOCK_WAITING;
2182
2183 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
2184 ASSERT_EQ(LOCK_RELEASED, helper->progress);
2185 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
2186
2187 helper->progress = LOCK_ACCESSED;
2188 }
2189
2190 public:
MutexWakeupHelper(int mutex_type)2191 explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) {
2192 }
2193
test()2194 void test() {
2195 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2196 progress = LOCK_INITIALIZED;
2197 tid = 0;
2198
2199 pthread_t thread;
2200 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2201 reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
2202
2203 WaitUntilThreadSleep(tid);
2204 ASSERT_EQ(LOCK_WAITING, progress);
2205
2206 progress = LOCK_RELEASED;
2207 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2208
2209 ASSERT_EQ(0, pthread_join(thread, nullptr));
2210 ASSERT_EQ(LOCK_ACCESSED, progress);
2211 }
2212 };
2213
TEST(pthread,pthread_mutex_NORMAL_wakeup)2214 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
2215 MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
2216 helper.test();
2217 }
2218
TEST(pthread,pthread_mutex_ERRORCHECK_wakeup)2219 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
2220 MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
2221 helper.test();
2222 }
2223
TEST(pthread,pthread_mutex_RECURSIVE_wakeup)2224 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
2225 MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
2226 helper.test();
2227 }
2228
GetThreadPriority(pid_t tid)2229 static int GetThreadPriority(pid_t tid) {
2230 // sched_getparam() returns the static priority of a thread, which can't reflect a thread's
2231 // priority after priority inheritance. So read /proc/<pid>/stat to get the dynamic priority.
2232 std::string filename = android::base::StringPrintf("/proc/%d/stat", tid);
2233 std::string content;
2234 int result = INT_MAX;
2235 if (!android::base::ReadFileToString(filename, &content)) {
2236 return result;
2237 }
2238 std::vector<std::string> strs = android::base::Split(content, " ");
2239 if (strs.size() < 18) {
2240 return result;
2241 }
2242 if (!android::base::ParseInt(strs[17], &result)) {
2243 return INT_MAX;
2244 }
2245 return result;
2246 }
2247
2248 class PIMutexWakeupHelper {
2249 private:
2250 PthreadMutex m;
2251 int protocol;
2252 enum Progress {
2253 LOCK_INITIALIZED,
2254 LOCK_CHILD_READY,
2255 LOCK_WAITING,
2256 LOCK_RELEASED,
2257 };
2258 std::atomic<Progress> progress;
2259 std::atomic<pid_t> main_tid;
2260 std::atomic<pid_t> child_tid;
2261 PthreadMutex start_thread_m;
2262
thread_fn(PIMutexWakeupHelper * helper)2263 static void thread_fn(PIMutexWakeupHelper* helper) {
2264 helper->child_tid = gettid();
2265 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
2266 ASSERT_EQ(0, setpriority(PRIO_PROCESS, gettid(), 1));
2267 ASSERT_EQ(21, GetThreadPriority(gettid()));
2268 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
2269 helper->progress = LOCK_CHILD_READY;
2270 ASSERT_EQ(0, pthread_mutex_lock(&helper->start_thread_m.lock));
2271
2272 ASSERT_EQ(0, pthread_mutex_unlock(&helper->start_thread_m.lock));
2273 WaitUntilThreadSleep(helper->main_tid);
2274 ASSERT_EQ(LOCK_WAITING, helper->progress);
2275
2276 if (helper->protocol == PTHREAD_PRIO_INHERIT) {
2277 ASSERT_EQ(20, GetThreadPriority(gettid()));
2278 } else {
2279 ASSERT_EQ(21, GetThreadPriority(gettid()));
2280 }
2281 helper->progress = LOCK_RELEASED;
2282 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
2283 }
2284
2285 public:
PIMutexWakeupHelper(int mutex_type,int protocol)2286 explicit PIMutexWakeupHelper(int mutex_type, int protocol)
2287 : m(mutex_type, protocol), protocol(protocol), start_thread_m(PTHREAD_MUTEX_NORMAL) {
2288 }
2289
test()2290 void test() {
2291 ASSERT_EQ(0, pthread_mutex_lock(&start_thread_m.lock));
2292 main_tid = gettid();
2293 ASSERT_EQ(20, GetThreadPriority(main_tid));
2294 progress = LOCK_INITIALIZED;
2295 child_tid = 0;
2296
2297 pthread_t thread;
2298 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2299 reinterpret_cast<void* (*)(void*)>(PIMutexWakeupHelper::thread_fn), this));
2300
2301 WaitUntilThreadSleep(child_tid);
2302 ASSERT_EQ(LOCK_CHILD_READY, progress);
2303 ASSERT_EQ(0, pthread_mutex_unlock(&start_thread_m.lock));
2304 progress = LOCK_WAITING;
2305 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2306
2307 ASSERT_EQ(LOCK_RELEASED, progress);
2308 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2309 ASSERT_EQ(0, pthread_join(thread, nullptr));
2310 }
2311 };
2312
TEST(pthread,pthread_mutex_pi_wakeup)2313 TEST(pthread, pthread_mutex_pi_wakeup) {
2314 for (int type : {PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK}) {
2315 for (int protocol : {PTHREAD_PRIO_INHERIT}) {
2316 PIMutexWakeupHelper helper(type, protocol);
2317 helper.test();
2318 }
2319 }
2320 }
2321
TEST(pthread,pthread_mutex_owner_tid_limit)2322 TEST(pthread, pthread_mutex_owner_tid_limit) {
2323 #if defined(__BIONIC__) && !defined(__LP64__)
2324 FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
2325 ASSERT_TRUE(fp != nullptr);
2326 long pid_max;
2327 ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
2328 fclose(fp);
2329 // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
2330 ASSERT_LE(pid_max, 65536);
2331 #else
2332 GTEST_SKIP() << "pthread_mutex supports 32-bit tid";
2333 #endif
2334 }
2335
pthread_mutex_timedlock_helper(clockid_t clock,int (* lock_function)(pthread_mutex_t * __mutex,const timespec * __timeout))2336 static void pthread_mutex_timedlock_helper(clockid_t clock,
2337 int (*lock_function)(pthread_mutex_t* __mutex,
2338 const timespec* __timeout)) {
2339 pthread_mutex_t m;
2340 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
2341
2342 // If the mutex is already locked, pthread_mutex_timedlock should time out.
2343 ASSERT_EQ(0, pthread_mutex_lock(&m));
2344
2345 timespec ts;
2346 ASSERT_EQ(0, clock_gettime(clock, &ts));
2347 ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
2348 ts.tv_nsec = -1;
2349 ASSERT_EQ(EINVAL, lock_function(&m, &ts));
2350 ts.tv_nsec = NS_PER_S;
2351 ASSERT_EQ(EINVAL, lock_function(&m, &ts));
2352 ts.tv_nsec = NS_PER_S - 1;
2353 ts.tv_sec = -1;
2354 ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
2355
2356 // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
2357 ASSERT_EQ(0, pthread_mutex_unlock(&m));
2358
2359 ASSERT_EQ(0, clock_gettime(clock, &ts));
2360 ts.tv_sec += 1;
2361 ASSERT_EQ(0, lock_function(&m, &ts));
2362
2363 ASSERT_EQ(0, pthread_mutex_unlock(&m));
2364 ASSERT_EQ(0, pthread_mutex_destroy(&m));
2365 }
2366
TEST(pthread,pthread_mutex_timedlock)2367 TEST(pthread, pthread_mutex_timedlock) {
2368 pthread_mutex_timedlock_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
2369 }
2370
TEST(pthread,pthread_mutex_timedlock_monotonic_np)2371 TEST(pthread, pthread_mutex_timedlock_monotonic_np) {
2372 #if defined(__BIONIC__)
2373 pthread_mutex_timedlock_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
2374 #else // __BIONIC__
2375 GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
2376 #endif // __BIONIC__
2377 }
2378
TEST(pthread,pthread_mutex_clocklock)2379 TEST(pthread, pthread_mutex_clocklock) {
2380 #if defined(__BIONIC__)
2381 pthread_mutex_timedlock_helper(
2382 CLOCK_MONOTONIC, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2383 return pthread_mutex_clocklock(__mutex, CLOCK_MONOTONIC, __timeout);
2384 });
2385 pthread_mutex_timedlock_helper(
2386 CLOCK_REALTIME, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2387 return pthread_mutex_clocklock(__mutex, CLOCK_REALTIME, __timeout);
2388 });
2389 #else // __BIONIC__
2390 GTEST_SKIP() << "pthread_mutex_clocklock not available";
2391 #endif // __BIONIC__
2392 }
2393
pthread_mutex_timedlock_pi_helper(clockid_t clock,int (* lock_function)(pthread_mutex_t * __mutex,const timespec * __timeout))2394 static void pthread_mutex_timedlock_pi_helper(clockid_t clock,
2395 int (*lock_function)(pthread_mutex_t* __mutex,
2396 const timespec* __timeout)) {
2397 PthreadMutex m(PTHREAD_MUTEX_NORMAL, PTHREAD_PRIO_INHERIT);
2398
2399 timespec ts;
2400 clock_gettime(clock, &ts);
2401 ts.tv_sec += 1;
2402 ASSERT_EQ(0, lock_function(&m.lock, &ts));
2403
2404 struct ThreadArgs {
2405 clockid_t clock;
2406 int (*lock_function)(pthread_mutex_t* __mutex, const timespec* __timeout);
2407 PthreadMutex& m;
2408 };
2409
2410 ThreadArgs thread_args = {
2411 .clock = clock,
2412 .lock_function = lock_function,
2413 .m = m,
2414 };
2415
2416 auto ThreadFn = [](void* arg) -> void* {
2417 auto args = static_cast<ThreadArgs*>(arg);
2418 timespec ts;
2419 clock_gettime(args->clock, &ts);
2420 ts.tv_sec += 1;
2421 intptr_t result = args->lock_function(&args->m.lock, &ts);
2422 return reinterpret_cast<void*>(result);
2423 };
2424
2425 pthread_t thread;
2426 ASSERT_EQ(0, pthread_create(&thread, nullptr, ThreadFn, &thread_args));
2427 void* result;
2428 ASSERT_EQ(0, pthread_join(thread, &result));
2429 ASSERT_EQ(ETIMEDOUT, reinterpret_cast<intptr_t>(result));
2430 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2431 }
2432
TEST(pthread,pthread_mutex_timedlock_pi)2433 TEST(pthread, pthread_mutex_timedlock_pi) {
2434 pthread_mutex_timedlock_pi_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
2435 }
2436
TEST(pthread,pthread_mutex_timedlock_monotonic_np_pi)2437 TEST(pthread, pthread_mutex_timedlock_monotonic_np_pi) {
2438 #if defined(__BIONIC__)
2439 pthread_mutex_timedlock_pi_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
2440 #else // __BIONIC__
2441 GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
2442 #endif // __BIONIC__
2443 }
2444
TEST(pthread,pthread_mutex_clocklock_pi)2445 TEST(pthread, pthread_mutex_clocklock_pi) {
2446 #if defined(__BIONIC__)
2447 pthread_mutex_timedlock_pi_helper(
2448 CLOCK_MONOTONIC, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2449 return pthread_mutex_clocklock(__mutex, CLOCK_MONOTONIC, __timeout);
2450 });
2451 pthread_mutex_timedlock_pi_helper(
2452 CLOCK_REALTIME, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2453 return pthread_mutex_clocklock(__mutex, CLOCK_REALTIME, __timeout);
2454 });
2455 #else // __BIONIC__
2456 GTEST_SKIP() << "pthread_mutex_clocklock not available";
2457 #endif // __BIONIC__
2458 }
2459
TEST(pthread,pthread_mutex_clocklock_invalid)2460 TEST(pthread, pthread_mutex_clocklock_invalid) {
2461 #if defined(__BIONIC__)
2462 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
2463 timespec ts;
2464 EXPECT_EQ(EINVAL, pthread_mutex_clocklock(&mutex, CLOCK_PROCESS_CPUTIME_ID, &ts));
2465 #else // __BIONIC__
2466 GTEST_SKIP() << "pthread_mutex_clocklock not available";
2467 #endif // __BIONIC__
2468 }
2469
TEST_F(pthread_DeathTest,pthread_mutex_using_destroyed_mutex)2470 TEST_F(pthread_DeathTest, pthread_mutex_using_destroyed_mutex) {
2471 #if defined(__BIONIC__)
2472 pthread_mutex_t m;
2473 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
2474 ASSERT_EQ(0, pthread_mutex_destroy(&m));
2475 ASSERT_EXIT(pthread_mutex_lock(&m), ::testing::KilledBySignal(SIGABRT),
2476 "pthread_mutex_lock called on a destroyed mutex");
2477 ASSERT_EXIT(pthread_mutex_unlock(&m), ::testing::KilledBySignal(SIGABRT),
2478 "pthread_mutex_unlock called on a destroyed mutex");
2479 ASSERT_EXIT(pthread_mutex_trylock(&m), ::testing::KilledBySignal(SIGABRT),
2480 "pthread_mutex_trylock called on a destroyed mutex");
2481 timespec ts;
2482 ASSERT_EXIT(pthread_mutex_timedlock(&m, &ts), ::testing::KilledBySignal(SIGABRT),
2483 "pthread_mutex_timedlock called on a destroyed mutex");
2484 ASSERT_EXIT(pthread_mutex_timedlock_monotonic_np(&m, &ts), ::testing::KilledBySignal(SIGABRT),
2485 "pthread_mutex_timedlock_monotonic_np called on a destroyed mutex");
2486 ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_MONOTONIC, &ts), ::testing::KilledBySignal(SIGABRT),
2487 "pthread_mutex_clocklock called on a destroyed mutex");
2488 ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_REALTIME, &ts), ::testing::KilledBySignal(SIGABRT),
2489 "pthread_mutex_clocklock called on a destroyed mutex");
2490 ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_PROCESS_CPUTIME_ID, &ts),
2491 ::testing::KilledBySignal(SIGABRT),
2492 "pthread_mutex_clocklock called on a destroyed mutex");
2493 ASSERT_EXIT(pthread_mutex_destroy(&m), ::testing::KilledBySignal(SIGABRT),
2494 "pthread_mutex_destroy called on a destroyed mutex");
2495 #else
2496 GTEST_SKIP() << "bionic-only test";
2497 #endif
2498 }
2499
2500 class StrictAlignmentAllocator {
2501 public:
allocate(size_t size,size_t alignment)2502 void* allocate(size_t size, size_t alignment) {
2503 char* p = new char[size + alignment * 2];
2504 allocated_array.push_back(p);
2505 while (!is_strict_aligned(p, alignment)) {
2506 ++p;
2507 }
2508 return p;
2509 }
2510
~StrictAlignmentAllocator()2511 ~StrictAlignmentAllocator() {
2512 for (const auto& p : allocated_array) {
2513 delete[] p;
2514 }
2515 }
2516
2517 private:
is_strict_aligned(char * p,size_t alignment)2518 bool is_strict_aligned(char* p, size_t alignment) {
2519 return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
2520 }
2521
2522 std::vector<char*> allocated_array;
2523 };
2524
TEST(pthread,pthread_types_allow_four_bytes_alignment)2525 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
2526 #if defined(__BIONIC__)
2527 // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
2528 StrictAlignmentAllocator allocator;
2529 pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
2530 allocator.allocate(sizeof(pthread_mutex_t), 4));
2531 ASSERT_EQ(0, pthread_mutex_init(mutex, nullptr));
2532 ASSERT_EQ(0, pthread_mutex_lock(mutex));
2533 ASSERT_EQ(0, pthread_mutex_unlock(mutex));
2534 ASSERT_EQ(0, pthread_mutex_destroy(mutex));
2535
2536 pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
2537 allocator.allocate(sizeof(pthread_cond_t), 4));
2538 ASSERT_EQ(0, pthread_cond_init(cond, nullptr));
2539 ASSERT_EQ(0, pthread_cond_signal(cond));
2540 ASSERT_EQ(0, pthread_cond_broadcast(cond));
2541 ASSERT_EQ(0, pthread_cond_destroy(cond));
2542
2543 pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
2544 allocator.allocate(sizeof(pthread_rwlock_t), 4));
2545 ASSERT_EQ(0, pthread_rwlock_init(rwlock, nullptr));
2546 ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
2547 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
2548 ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
2549 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
2550 ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
2551
2552 #else
2553 GTEST_SKIP() << "bionic-only test";
2554 #endif
2555 }
2556
TEST(pthread,pthread_mutex_lock_null_32)2557 TEST(pthread, pthread_mutex_lock_null_32) {
2558 #if defined(__BIONIC__) && !defined(__LP64__)
2559 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
2560 // EINVAL in that case: http://b/19995172.
2561 //
2562 // We decorate the public defintion with _Nonnull so that people recompiling
2563 // their code with get a warning and might fix their bug, but need to pass
2564 // NULL here to test that we remain compatible.
2565 pthread_mutex_t* null_value = nullptr;
2566 ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value));
2567 #else
2568 GTEST_SKIP() << "32-bit bionic-only test";
2569 #endif
2570 }
2571
TEST(pthread,pthread_mutex_unlock_null_32)2572 TEST(pthread, pthread_mutex_unlock_null_32) {
2573 #if defined(__BIONIC__) && !defined(__LP64__)
2574 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
2575 // EINVAL in that case: http://b/19995172.
2576 //
2577 // We decorate the public defintion with _Nonnull so that people recompiling
2578 // their code with get a warning and might fix their bug, but need to pass
2579 // NULL here to test that we remain compatible.
2580 pthread_mutex_t* null_value = nullptr;
2581 ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value));
2582 #else
2583 GTEST_SKIP() << "32-bit bionic-only test";
2584 #endif
2585 }
2586
TEST_F(pthread_DeathTest,pthread_mutex_lock_null_64)2587 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
2588 #if defined(__BIONIC__) && defined(__LP64__)
2589 pthread_mutex_t* null_value = nullptr;
2590 ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
2591 #else
2592 GTEST_SKIP() << "64-bit bionic-only test";
2593 #endif
2594 }
2595
TEST_F(pthread_DeathTest,pthread_mutex_unlock_null_64)2596 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
2597 #if defined(__BIONIC__) && defined(__LP64__)
2598 pthread_mutex_t* null_value = nullptr;
2599 ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
2600 #else
2601 GTEST_SKIP() << "64-bit bionic-only test";
2602 #endif
2603 }
2604
2605 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
2606
2607 static volatile bool signal_handler_on_altstack_done;
2608
2609 __attribute__((__noinline__))
signal_handler_backtrace()2610 static void signal_handler_backtrace() {
2611 // Check if we have enough stack space for unwinding.
2612 int count = 0;
2613 _Unwind_Backtrace(FrameCounter, &count);
2614 ASSERT_GT(count, 0);
2615 }
2616
2617 __attribute__((__noinline__))
signal_handler_logging()2618 static void signal_handler_logging() {
2619 // Check if we have enough stack space for logging.
2620 std::string s(2048, '*');
2621 GTEST_LOG_(INFO) << s;
2622 signal_handler_on_altstack_done = true;
2623 }
2624
2625 __attribute__((__noinline__))
signal_handler_snprintf()2626 static void signal_handler_snprintf() {
2627 // Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra.
2628 char buf[PATH_MAX + 2048];
2629 ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0);
2630 }
2631
SignalHandlerOnAltStack(int signo,siginfo_t *,void *)2632 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
2633 ASSERT_EQ(SIGUSR1, signo);
2634 signal_handler_backtrace();
2635 signal_handler_logging();
2636 signal_handler_snprintf();
2637 }
2638
TEST(pthread,big_enough_signal_stack)2639 TEST(pthread, big_enough_signal_stack) {
2640 signal_handler_on_altstack_done = false;
2641 ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
2642 kill(getpid(), SIGUSR1);
2643 ASSERT_TRUE(signal_handler_on_altstack_done);
2644 }
2645
TEST(pthread,pthread_barrierattr_smoke)2646 TEST(pthread, pthread_barrierattr_smoke) {
2647 pthread_barrierattr_t attr;
2648 ASSERT_EQ(0, pthread_barrierattr_init(&attr));
2649 int pshared;
2650 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
2651 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
2652 ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
2653 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
2654 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
2655 ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
2656 }
2657
2658 struct BarrierTestHelperData {
2659 size_t thread_count;
2660 pthread_barrier_t barrier;
2661 std::atomic<int> finished_mask;
2662 std::atomic<int> serial_thread_count;
2663 size_t iteration_count;
2664 std::atomic<size_t> finished_iteration_count;
2665
BarrierTestHelperDataBarrierTestHelperData2666 BarrierTestHelperData(size_t thread_count, size_t iteration_count)
2667 : thread_count(thread_count), finished_mask(0), serial_thread_count(0),
2668 iteration_count(iteration_count), finished_iteration_count(0) {
2669 }
2670 };
2671
2672 struct BarrierTestHelperArg {
2673 int id;
2674 BarrierTestHelperData* data;
2675 };
2676
BarrierTestHelper(BarrierTestHelperArg * arg)2677 static void BarrierTestHelper(BarrierTestHelperArg* arg) {
2678 for (size_t i = 0; i < arg->data->iteration_count; ++i) {
2679 int result = pthread_barrier_wait(&arg->data->barrier);
2680 if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
2681 arg->data->serial_thread_count++;
2682 } else {
2683 ASSERT_EQ(0, result);
2684 }
2685 int mask = arg->data->finished_mask.fetch_or(1 << arg->id);
2686 mask |= 1 << arg->id;
2687 if (mask == ((1 << arg->data->thread_count) - 1)) {
2688 ASSERT_EQ(1, arg->data->serial_thread_count);
2689 arg->data->finished_iteration_count++;
2690 arg->data->finished_mask = 0;
2691 arg->data->serial_thread_count = 0;
2692 }
2693 }
2694 }
2695
TEST(pthread,pthread_barrier_smoke)2696 TEST(pthread, pthread_barrier_smoke) {
2697 const size_t BARRIER_ITERATION_COUNT = 10;
2698 const size_t BARRIER_THREAD_COUNT = 10;
2699 BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
2700 ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
2701 std::vector<pthread_t> threads(data.thread_count);
2702 std::vector<BarrierTestHelperArg> args(threads.size());
2703 for (size_t i = 0; i < threads.size(); ++i) {
2704 args[i].id = i;
2705 args[i].data = &data;
2706 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2707 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
2708 }
2709 for (size_t i = 0; i < threads.size(); ++i) {
2710 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2711 }
2712 ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
2713 ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
2714 }
2715
2716 struct BarrierDestroyTestArg {
2717 std::atomic<int> tid;
2718 pthread_barrier_t* barrier;
2719 };
2720
BarrierDestroyTestHelper(BarrierDestroyTestArg * arg)2721 static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
2722 arg->tid = gettid();
2723 ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
2724 }
2725
TEST(pthread,pthread_barrier_destroy)2726 TEST(pthread, pthread_barrier_destroy) {
2727 pthread_barrier_t barrier;
2728 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
2729 pthread_t thread;
2730 BarrierDestroyTestArg arg;
2731 arg.tid = 0;
2732 arg.barrier = &barrier;
2733 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2734 reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
2735 WaitUntilThreadSleep(arg.tid);
2736 ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
2737 ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
2738 // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
2739 ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
2740 ASSERT_EQ(0, pthread_join(thread, nullptr));
2741 #if defined(__BIONIC__)
2742 ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
2743 #endif
2744 }
2745
2746 struct BarrierOrderingTestHelperArg {
2747 pthread_barrier_t* barrier;
2748 size_t* array;
2749 size_t array_length;
2750 size_t id;
2751 };
2752
BarrierOrderingTestHelper(BarrierOrderingTestHelperArg * arg)2753 void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
2754 const size_t ITERATION_COUNT = 10000;
2755 for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
2756 arg->array[arg->id] = i;
2757 int result = pthread_barrier_wait(arg->barrier);
2758 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2759 for (size_t j = 0; j < arg->array_length; ++j) {
2760 ASSERT_EQ(i, arg->array[j]);
2761 }
2762 result = pthread_barrier_wait(arg->barrier);
2763 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2764 }
2765 }
2766
TEST(pthread,pthread_barrier_check_ordering)2767 TEST(pthread, pthread_barrier_check_ordering) {
2768 const size_t THREAD_COUNT = 4;
2769 pthread_barrier_t barrier;
2770 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
2771 size_t array[THREAD_COUNT];
2772 std::vector<pthread_t> threads(THREAD_COUNT);
2773 std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
2774 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2775 args[i].barrier = &barrier;
2776 args[i].array = array;
2777 args[i].array_length = THREAD_COUNT;
2778 args[i].id = i;
2779 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2780 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
2781 &args[i]));
2782 }
2783 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2784 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2785 }
2786 }
2787
TEST(pthread,pthread_barrier_init_zero_count)2788 TEST(pthread, pthread_barrier_init_zero_count) {
2789 pthread_barrier_t barrier;
2790 ASSERT_EQ(EINVAL, pthread_barrier_init(&barrier, nullptr, 0));
2791 }
2792
TEST(pthread,pthread_spinlock_smoke)2793 TEST(pthread, pthread_spinlock_smoke) {
2794 pthread_spinlock_t lock;
2795 ASSERT_EQ(0, pthread_spin_init(&lock, 0));
2796 ASSERT_EQ(0, pthread_spin_trylock(&lock));
2797 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2798 ASSERT_EQ(0, pthread_spin_lock(&lock));
2799 ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
2800 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2801 ASSERT_EQ(0, pthread_spin_destroy(&lock));
2802 }
2803
TEST(pthread,pthread_attr_getdetachstate__pthread_attr_setdetachstate)2804 TEST(pthread, pthread_attr_getdetachstate__pthread_attr_setdetachstate) {
2805 pthread_attr_t attr;
2806 ASSERT_EQ(0, pthread_attr_init(&attr));
2807
2808 int state;
2809 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2810 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2811 ASSERT_EQ(PTHREAD_CREATE_DETACHED, state);
2812
2813 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
2814 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2815 ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
2816
2817 ASSERT_EQ(EINVAL, pthread_attr_setdetachstate(&attr, 123));
2818 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2819 ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
2820 }
2821
TEST(pthread,pthread_create__mmap_failures)2822 TEST(pthread, pthread_create__mmap_failures) {
2823 // After thread is successfully created, native_bridge might need more memory to run it.
2824 SKIP_WITH_NATIVE_BRIDGE;
2825
2826 pthread_attr_t attr;
2827 ASSERT_EQ(0, pthread_attr_init(&attr));
2828 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2829
2830 const auto kPageSize = sysconf(_SC_PAGE_SIZE);
2831
2832 // Use up all the VMAs. By default this is 64Ki (though some will already be in use).
2833 std::vector<void*> pages;
2834 pages.reserve(64 * 1024);
2835 int prot = PROT_NONE;
2836 while (true) {
2837 void* page = mmap(nullptr, kPageSize, prot, MAP_ANON|MAP_PRIVATE, -1, 0);
2838 if (page == MAP_FAILED) break;
2839 pages.push_back(page);
2840 prot = (prot == PROT_NONE) ? PROT_READ : PROT_NONE;
2841 }
2842
2843 // Try creating threads, freeing up a page each time we fail.
2844 size_t EAGAIN_count = 0;
2845 size_t i = 0;
2846 for (; i < pages.size(); ++i) {
2847 pthread_t t;
2848 int status = pthread_create(&t, &attr, IdFn, nullptr);
2849 if (status != EAGAIN) break;
2850 ++EAGAIN_count;
2851 ASSERT_EQ(0, munmap(pages[i], kPageSize));
2852 }
2853
2854 // Creating a thread uses at least three VMAs: the combined stack and TLS, and a guard on each
2855 // side. So we should have seen at least three failures.
2856 ASSERT_GE(EAGAIN_count, 3U);
2857
2858 for (; i < pages.size(); ++i) {
2859 ASSERT_EQ(0, munmap(pages[i], kPageSize));
2860 }
2861 }
2862
TEST(pthread,pthread_setschedparam)2863 TEST(pthread, pthread_setschedparam) {
2864 sched_param p = { .sched_priority = INT_MIN };
2865 ASSERT_EQ(EINVAL, pthread_setschedparam(pthread_self(), INT_MIN, &p));
2866 }
2867
TEST(pthread,pthread_setschedprio)2868 TEST(pthread, pthread_setschedprio) {
2869 ASSERT_EQ(EINVAL, pthread_setschedprio(pthread_self(), INT_MIN));
2870 }
2871
TEST(pthread,pthread_attr_getinheritsched__pthread_attr_setinheritsched)2872 TEST(pthread, pthread_attr_getinheritsched__pthread_attr_setinheritsched) {
2873 pthread_attr_t attr;
2874 ASSERT_EQ(0, pthread_attr_init(&attr));
2875
2876 int state;
2877 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2878 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2879 ASSERT_EQ(PTHREAD_INHERIT_SCHED, state);
2880
2881 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2882 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2883 ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
2884
2885 ASSERT_EQ(EINVAL, pthread_attr_setinheritsched(&attr, 123));
2886 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2887 ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
2888 }
2889
TEST(pthread,pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED)2890 TEST(pthread, pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED) {
2891 pthread_attr_t attr;
2892 ASSERT_EQ(0, pthread_attr_init(&attr));
2893
2894 // If we set invalid scheduling attributes but choose to inherit, everything's fine...
2895 sched_param param = { .sched_priority = sched_get_priority_max(SCHED_FIFO) + 1 };
2896 ASSERT_EQ(0, pthread_attr_setschedparam(&attr, ¶m));
2897 ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_FIFO));
2898 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2899
2900 pthread_t t;
2901 ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, nullptr));
2902 ASSERT_EQ(0, pthread_join(t, nullptr));
2903
2904 #if defined(__LP64__)
2905 // If we ask to use them, though, we'll see a failure...
2906 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2907 ASSERT_EQ(EINVAL, pthread_create(&t, &attr, IdFn, nullptr));
2908 #else
2909 // For backwards compatibility with broken apps, we just ignore failures
2910 // to set scheduler attributes on LP32.
2911 #endif
2912 }
2913
TEST(pthread,pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect)2914 TEST(pthread, pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect) {
2915 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2916 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m);
2917 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2918 ASSERT_EQ(0, rc);
2919
2920 pthread_attr_t attr;
2921 ASSERT_EQ(0, pthread_attr_init(&attr));
2922 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2923
2924 SpinFunctionHelper spin_helper;
2925 pthread_t t;
2926 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2927 int actual_policy;
2928 sched_param actual_param;
2929 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2930 ASSERT_EQ(SCHED_FIFO, actual_policy);
2931 spin_helper.UnSpin();
2932 ASSERT_EQ(0, pthread_join(t, nullptr));
2933 }
2934
TEST(pthread,pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect)2935 TEST(pthread, pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect) {
2936 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2937 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m);
2938 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2939 ASSERT_EQ(0, rc);
2940
2941 pthread_attr_t attr;
2942 ASSERT_EQ(0, pthread_attr_init(&attr));
2943 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2944 ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_OTHER));
2945
2946 SpinFunctionHelper spin_helper;
2947 pthread_t t;
2948 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2949 int actual_policy;
2950 sched_param actual_param;
2951 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2952 ASSERT_EQ(SCHED_OTHER, actual_policy);
2953 spin_helper.UnSpin();
2954 ASSERT_EQ(0, pthread_join(t, nullptr));
2955 }
2956
TEST(pthread,pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK)2957 TEST(pthread, pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK) {
2958 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2959 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO | SCHED_RESET_ON_FORK, ¶m);
2960 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2961 ASSERT_EQ(0, rc);
2962
2963 pthread_attr_t attr;
2964 ASSERT_EQ(0, pthread_attr_init(&attr));
2965 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2966
2967 SpinFunctionHelper spin_helper;
2968 pthread_t t;
2969 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2970 int actual_policy;
2971 sched_param actual_param;
2972 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2973 ASSERT_EQ(SCHED_FIFO | SCHED_RESET_ON_FORK, actual_policy);
2974 spin_helper.UnSpin();
2975 ASSERT_EQ(0, pthread_join(t, nullptr));
2976 }
2977
2978 extern "C" bool android_run_on_all_threads(bool (*func)(void*), void* arg);
2979
TEST(pthread,run_on_all_threads)2980 TEST(pthread, run_on_all_threads) {
2981 #if defined(__BIONIC__)
2982 pthread_t t;
2983 ASSERT_EQ(
2984 0, pthread_create(
2985 &t, nullptr,
2986 [](void*) -> void* {
2987 pthread_attr_t detached;
2988 if (pthread_attr_init(&detached) != 0 ||
2989 pthread_attr_setdetachstate(&detached, PTHREAD_CREATE_DETACHED) != 0) {
2990 return reinterpret_cast<void*>(errno);
2991 }
2992
2993 for (int i = 0; i != 1000; ++i) {
2994 pthread_t t1, t2;
2995 if (pthread_create(
2996 &t1, &detached, [](void*) -> void* { return nullptr; }, nullptr) != 0 ||
2997 pthread_create(
2998 &t2, nullptr, [](void*) -> void* { return nullptr; }, nullptr) != 0 ||
2999 pthread_join(t2, nullptr) != 0) {
3000 return reinterpret_cast<void*>(errno);
3001 }
3002 }
3003
3004 if (pthread_attr_destroy(&detached) != 0) {
3005 return reinterpret_cast<void*>(errno);
3006 }
3007 return nullptr;
3008 },
3009 nullptr));
3010
3011 for (int i = 0; i != 1000; ++i) {
3012 ASSERT_TRUE(android_run_on_all_threads([](void* arg) { return arg == nullptr; }, nullptr));
3013 }
3014
3015 void *retval;
3016 ASSERT_EQ(0, pthread_join(t, &retval));
3017 ASSERT_EQ(nullptr, retval);
3018 #else
3019 GTEST_SKIP() << "bionic-only test";
3020 #endif
3021 }
3022