1 /* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /*
13  * jn(n, x), yn(n, x)
14  * floating point Bessel's function of the 1st and 2nd kind
15  * of order n
16  *
17  * Special cases:
18  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20  * Note 2. About jn(n,x), yn(n,x)
21  *      For n=0, j0(x) is called,
22  *      for n=1, j1(x) is called,
23  *      for n<=x, forward recursion is used starting
24  *      from values of j0(x) and j1(x).
25  *      for n>x, a continued fraction approximation to
26  *      j(n,x)/j(n-1,x) is evaluated and then backward
27  *      recursion is used starting from a supposed value
28  *      for j(n,x). The resulting value of j(0,x) is
29  *      compared with the actual value to correct the
30  *      supposed value of j(n,x).
31  *
32  *      yn(n,x) is similar in all respects, except
33  *      that forward recursion is used for all
34  *      values of n>1.
35  */
36 
37 use super::{cos, fabs, get_high_word, get_low_word, j0, j1, log, sin, sqrt, y0, y1};
38 
39 const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
40 
jn(n: i32, mut x: f64) -> f6441 pub fn jn(n: i32, mut x: f64) -> f64 {
42     let mut ix: u32;
43     let lx: u32;
44     let nm1: i32;
45     let mut i: i32;
46     let mut sign: bool;
47     let mut a: f64;
48     let mut b: f64;
49     let mut temp: f64;
50 
51     ix = get_high_word(x);
52     lx = get_low_word(x);
53     sign = (ix >> 31) != 0;
54     ix &= 0x7fffffff;
55 
56     // -lx == !lx + 1
57     if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
58         /* nan */
59         return x;
60     }
61 
62     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
63      * Thus, J(-n,x) = J(n,-x)
64      */
65     /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
66     if n == 0 {
67         return j0(x);
68     }
69     if n < 0 {
70         nm1 = -(n + 1);
71         x = -x;
72         sign = !sign;
73     } else {
74         nm1 = n - 1;
75     }
76     if nm1 == 0 {
77         return j1(x);
78     }
79 
80     sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
81     x = fabs(x);
82     if (ix | lx) == 0 || ix == 0x7ff00000 {
83         /* if x is 0 or inf */
84         b = 0.0;
85     } else if (nm1 as f64) < x {
86         /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
87         if ix >= 0x52d00000 {
88             /* x > 2**302 */
89             /* (x >> n**2)
90              *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
91              *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
92              *      Let s=sin(x), c=cos(x),
93              *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
94              *
95              *             n    sin(xn)*sqt2    cos(xn)*sqt2
96              *          ----------------------------------
97              *             0     s-c             c+s
98              *             1    -s-c            -c+s
99              *             2    -s+c            -c-s
100              *             3     s+c             c-s
101              */
102             temp = match nm1 & 3 {
103                 0 => -cos(x) + sin(x),
104                 1 => -cos(x) - sin(x),
105                 2 => cos(x) - sin(x),
106                 3 | _ => cos(x) + sin(x),
107             };
108             b = INVSQRTPI * temp / sqrt(x);
109         } else {
110             a = j0(x);
111             b = j1(x);
112             i = 0;
113             while i < nm1 {
114                 i += 1;
115                 temp = b;
116                 b = b * (2.0 * (i as f64) / x) - a; /* avoid underflow */
117                 a = temp;
118             }
119         }
120     } else {
121         if ix < 0x3e100000 {
122             /* x < 2**-29 */
123             /* x is tiny, return the first Taylor expansion of J(n,x)
124              * J(n,x) = 1/n!*(x/2)^n  - ...
125              */
126             if nm1 > 32 {
127                 /* underflow */
128                 b = 0.0;
129             } else {
130                 temp = x * 0.5;
131                 b = temp;
132                 a = 1.0;
133                 i = 2;
134                 while i <= nm1 + 1 {
135                     a *= i as f64; /* a = n! */
136                     b *= temp; /* b = (x/2)^n */
137                     i += 1;
138                 }
139                 b = b / a;
140             }
141         } else {
142             /* use backward recurrence */
143             /*                      x      x^2      x^2
144              *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
145              *                      2n  - 2(n+1) - 2(n+2)
146              *
147              *                      1      1        1
148              *  (for large x)   =  ----  ------   ------   .....
149              *                      2n   2(n+1)   2(n+2)
150              *                      -- - ------ - ------ -
151              *                       x     x         x
152              *
153              * Let w = 2n/x and h=2/x, then the above quotient
154              * is equal to the continued fraction:
155              *                  1
156              *      = -----------------------
157              *                     1
158              *         w - -----------------
159              *                        1
160              *              w+h - ---------
161              *                     w+2h - ...
162              *
163              * To determine how many terms needed, let
164              * Q(0) = w, Q(1) = w(w+h) - 1,
165              * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
166              * When Q(k) > 1e4      good for single
167              * When Q(k) > 1e9      good for double
168              * When Q(k) > 1e17     good for quadruple
169              */
170             /* determine k */
171             let mut t: f64;
172             let mut q0: f64;
173             let mut q1: f64;
174             let mut w: f64;
175             let h: f64;
176             let mut z: f64;
177             let mut tmp: f64;
178             let nf: f64;
179 
180             let mut k: i32;
181 
182             nf = (nm1 as f64) + 1.0;
183             w = 2.0 * nf / x;
184             h = 2.0 / x;
185             z = w + h;
186             q0 = w;
187             q1 = w * z - 1.0;
188             k = 1;
189             while q1 < 1.0e9 {
190                 k += 1;
191                 z += h;
192                 tmp = z * q1 - q0;
193                 q0 = q1;
194                 q1 = tmp;
195             }
196             t = 0.0;
197             i = k;
198             while i >= 0 {
199                 t = 1.0 / (2.0 * ((i as f64) + nf) / x - t);
200                 i -= 1;
201             }
202             a = t;
203             b = 1.0;
204             /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
205              *  Hence, if n*(log(2n/x)) > ...
206              *  single 8.8722839355e+01
207              *  double 7.09782712893383973096e+02
208              *  long double 1.1356523406294143949491931077970765006170e+04
209              *  then recurrent value may overflow and the result is
210              *  likely underflow to zero
211              */
212             tmp = nf * log(fabs(w));
213             if tmp < 7.09782712893383973096e+02 {
214                 i = nm1;
215                 while i > 0 {
216                     temp = b;
217                     b = b * (2.0 * (i as f64)) / x - a;
218                     a = temp;
219                     i -= 1;
220                 }
221             } else {
222                 i = nm1;
223                 while i > 0 {
224                     temp = b;
225                     b = b * (2.0 * (i as f64)) / x - a;
226                     a = temp;
227                     /* scale b to avoid spurious overflow */
228                     let x1p500 = f64::from_bits(0x5f30000000000000); // 0x1p500 == 2^500
229                     if b > x1p500 {
230                         a /= b;
231                         t /= b;
232                         b = 1.0;
233                     }
234                     i -= 1;
235                 }
236             }
237             z = j0(x);
238             w = j1(x);
239             if fabs(z) >= fabs(w) {
240                 b = t * z / b;
241             } else {
242                 b = t * w / a;
243             }
244         }
245     }
246 
247     if sign {
248         -b
249     } else {
250         b
251     }
252 }
253 
yn(n: i32, x: f64) -> f64254 pub fn yn(n: i32, x: f64) -> f64 {
255     let mut ix: u32;
256     let lx: u32;
257     let mut ib: u32;
258     let nm1: i32;
259     let mut sign: bool;
260     let mut i: i32;
261     let mut a: f64;
262     let mut b: f64;
263     let mut temp: f64;
264 
265     ix = get_high_word(x);
266     lx = get_low_word(x);
267     sign = (ix >> 31) != 0;
268     ix &= 0x7fffffff;
269 
270     // -lx == !lx + 1
271     if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
272         /* nan */
273         return x;
274     }
275     if sign && (ix | lx) != 0 {
276         /* x < 0 */
277         return 0.0 / 0.0;
278     }
279     if ix == 0x7ff00000 {
280         return 0.0;
281     }
282 
283     if n == 0 {
284         return y0(x);
285     }
286     if n < 0 {
287         nm1 = -(n + 1);
288         sign = (n & 1) != 0;
289     } else {
290         nm1 = n - 1;
291         sign = false;
292     }
293     if nm1 == 0 {
294         if sign {
295             return -y1(x);
296         } else {
297             return y1(x);
298         }
299     }
300 
301     if ix >= 0x52d00000 {
302         /* x > 2**302 */
303         /* (x >> n**2)
304          *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
305          *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
306          *      Let s=sin(x), c=cos(x),
307          *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
308          *
309          *             n    sin(xn)*sqt2    cos(xn)*sqt2
310          *          ----------------------------------
311          *             0     s-c             c+s
312          *             1    -s-c            -c+s
313          *             2    -s+c            -c-s
314          *             3     s+c             c-s
315          */
316         temp = match nm1 & 3 {
317             0 => -sin(x) - cos(x),
318             1 => -sin(x) + cos(x),
319             2 => sin(x) + cos(x),
320             3 | _ => sin(x) - cos(x),
321         };
322         b = INVSQRTPI * temp / sqrt(x);
323     } else {
324         a = y0(x);
325         b = y1(x);
326         /* quit if b is -inf */
327         ib = get_high_word(b);
328         i = 0;
329         while i < nm1 && ib != 0xfff00000 {
330             i += 1;
331             temp = b;
332             b = (2.0 * (i as f64) / x) * b - a;
333             ib = get_high_word(b);
334             a = temp;
335         }
336     }
337 
338     if sign {
339         -b
340     } else {
341         b
342     }
343 }
344