/external/tensorflow/tensorflow/python/keras/applications/ |
D | vgg19.py | 143 x = layers.Conv2D( 146 x = layers.Conv2D( 151 x = layers.Conv2D( 153 x = layers.Conv2D( 158 x = layers.Conv2D( 160 x = layers.Conv2D( 162 x = layers.Conv2D( 164 x = layers.Conv2D( 169 x = layers.Conv2D( 171 x = layers.Conv2D( [all …]
|
D | vgg16.py | 143 x = layers.Conv2D( 146 x = layers.Conv2D( 151 x = layers.Conv2D( 153 x = layers.Conv2D( 158 x = layers.Conv2D( 160 x = layers.Conv2D( 162 x = layers.Conv2D( 167 x = layers.Conv2D( 169 x = layers.Conv2D( 171 x = layers.Conv2D( [all …]
|
D | resnet.py | 168 x = layers.Conv2D(64, 7, strides=2, use_bias=use_bias, name='conv1_conv')(x) 244 shortcut = layers.Conv2D( 251 x = layers.Conv2D(filters, 1, strides=stride, name=name + '_1_conv')(x) 256 x = layers.Conv2D( 262 x = layers.Conv2D(4 * filters, 1, name=name + '_3_conv')(x) 312 shortcut = layers.Conv2D( 317 x = layers.Conv2D( 324 x = layers.Conv2D( 334 x = layers.Conv2D(4 * filters, 1, name=name + '_3_conv')(x) 384 shortcut = layers.Conv2D( [all …]
|
D | mobilenet_v3.py | 265 x = layers.Conv2D( 285 x = layers.Conv2D( 295 x = layers.Conv2D( 311 x = layers.Conv2D(classes, kernel_size=1, padding='same', name='Logits')(x) 471 x = layers.Conv2D( 478 x = layers.Conv2D( 498 x = layers.Conv2D( 536 x = layers.Conv2D(
|
D | xception.py | 146 x = layers.Conv2D( 153 x = layers.Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x) 157 residual = layers.Conv2D( 175 residual = layers.Conv2D( 194 residual = layers.Conv2D( 244 residual = layers.Conv2D(
|
D | efficientnet.py | 322 x = layers.Conv2D( 358 x = layers.Conv2D( 447 x = layers.Conv2D( 487 se = layers.Conv2D( 495 se = layers.Conv2D( 505 x = layers.Conv2D(
|
/external/tensorflow/tensorflow/lite/delegates/xnnpack/ |
D | conv_2d_test.cc | 28 TEST(Conv2D, 1x1) { 54 TEST(Conv2D, 3x3) { 80 TEST(Conv2D, 3x3Stride2) { 108 TEST(Conv2D, SmallKernelWithSamePadding) { in TEST() argument 136 TEST(Conv2D, SmallKernelWithValidPadding) { in TEST() argument 164 TEST(Conv2D, StrideWithSamePadding) { in TEST() argument 196 TEST(Conv2D, StrideWithValidPadding) { in TEST() argument 228 TEST(Conv2D, DilationWithSamePadding) { in TEST() argument 260 TEST(Conv2D, DilationWithValidPadding) { in TEST() argument 292 TEST(Conv2D, FP16Weights) { in TEST() argument [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/lite/tests/ |
D | dilated-conv.mlir | 7 …%1 = "tf.Conv2D"(%0, %arg1) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x3xf32>, … 13 …// CHECK-NEXT: [[RESULT:%.*]] = "tf.Conv2D"([[INPUT]], [[FILTER]]) {dilations = [1, 2, 2, 1], padd… 20 …%1 = "tf.Conv2D"(%0, %arg2) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x3xf32>, … 26 …// CHECK-NEXT: [[RESULT:%.*]] = "tf.Conv2D"([[INPUT]], [[FILTER]]) {dilations = [1, 2, 2, 1], padd… 35 …%1 = "tf.Conv2D"(%0, %arg1) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x3xf32>, … 41 …// CHECK-NEXT: [[RESULT:%.*]] = "tf.Conv2D"([[INPUT]], [[FILTER]]) {dilations = [1, 2, 2, 1], padd… 50 …%1 = "tf.Conv2D"(%0, %arg1) {padding = "VALID", dilations = [1, 2, 2, 1], strides = [1, 1, 1, 1]} … 56 // CHECK-NEXT: [[CONV:%.*]] = "tf.Conv2D" 81 …%1 = "tf.Conv2D"(%0, %arg2) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x3xf32>, … 89 …// CHECK-NEXT: [[CONV:%.*]] = "tf.Conv2D"([[INPUT]], [[FILTER]]) {dilations = [1, 2, 2, 1], paddin… [all …]
|
/external/tensorflow/tensorflow/python/layers/ |
D | convolutional.py | 26 Conv2D = convolutional.Conv2D variable 42 Convolution2D = Conv2D
|
/external/tensorflow/tensorflow/python/keras/integration_test/ |
D | gradient_checkpoint_test.py | 36 model.add(layers.Conv2D(10, 5, padding='same', activation=tf.nn.relu)) 38 model.add(layers.Conv2D(40, 5, padding='same', activation=tf.nn.relu)) 40 model.add(layers.Conv2D(20, 5, padding='same', activation=tf.nn.relu)) 59 model.add(layers.Conv2D(10, 5, padding='same', activation=tf.nn.relu)) 61 model.add(layers.Conv2D(40, 5, padding='same', activation=tf.nn.relu)) 63 model.add(layers.Conv2D(20, 5, padding='same', activation=tf.nn.relu))
|
/external/tensorflow/tensorflow/python/eager/benchmarks/resnet50/ |
D | resnet50.py | 54 self.conv2a = layers.Conv2D( 59 self.conv2b = layers.Conv2D( 68 self.conv2c = layers.Conv2D( 118 self.conv2a = layers.Conv2D( 126 self.conv2b = layers.Conv2D( 135 self.conv2c = layers.Conv2D( 140 self.conv_shortcut = layers.Conv2D( 233 self.conv1 = layers.Conv2D(
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/ |
D | layout_optimization_layout_assignment_gpu_cc_70.mlir | 10 // CHECK: "tf.Conv2D"(%[[INPUT_TRANSPOSE:[0-9]*]], %arg1) 12 %0 = "tf.Conv2D"(%input, %filter) 26 // CHECK: "tf.Conv2D"(%[[INPUT_TRANSPOSE:[0-9]*]], %arg1) 28 %0 = "tf.Conv2D"(%input, %filter) 37 // CHECK: "tf.Conv2D"(%arg0, %arg1) 39 %1 = "tf.Conv2D"(%input, %filter) 53 // CHECK: "tf.Conv2D"(%[[INPUT_TRANSPOSE:[0-9]*]], %arg1) 55 %0 = "tf.Conv2D"(%input, %filter)
|
D | layout_optimization_to_nchw.mlir | 11 %2 = "tf.Conv2D"(%1, %arg1) 23 // Check that Conv2D computed in NCHW format, and all redundant transpose 26 // CHECK: %[[CONV:[0-9]*]] = "tf.Conv2D"(%arg0, %arg1)
|
D | layout_optimization_to_nhwc.mlir | 46 %5 = "tf.Conv2D"(%4, %arg3) 55 // CHECK: %[[CONV0:[0-9]*]] = "tf.Conv2D" 89 %9 = "tf.Conv2D"(%8, %arg4) 98 // CHECK: %[[CONV1:[0-9]*]] = "tf.Conv2D"(%[[MAX_POOL]], %arg4) 116 %11 = "tf.Conv2D"(%8, %arg4) 125 // CHECK: %[[CONV2:[0-9]*]] = "tf.Conv2D"(%[[MAX_POOL]], %arg4)
|
D | optimize.mlir | 8 …%0 = "tf.Conv2D"(%arg, %filter) {T = "tfdtype$DT_FLOAT", data_format = "NHWC", dilations = [1, 2, … 15 // CHECK-NEXT: %[[conv:.*]] = "tf.Conv2D"(%arg0, %[[cst]]) 25 …%0 = "tf.Conv2D"(%arg, %filter) {T = "tfdtype$DT_FLOAT", data_format = "NHWC", dilations = [1, 2, … 32 // CHECK-NEXT: %[[conv:.*]] = "tf.Conv2D"(%arg0, %[[cst]])
|
D | fused_kernel_matcher.mlir | 4 // Conv2D + BiasAdd + <Activation> fusions. 12 …%0 = "tf.Conv2D"(%arg2, %arg1) {data_format = "NHWC", dilations = [1, 1, 1, 1], explicit_paddings … 23 …%0 = "tf.Conv2D"(%arg2, %arg1) {data_format = "NHWC", dilations = [1, 1, 1, 1], explicit_paddings … 35 …%0 = "tf.Conv2D"(%arg2, %arg1) {data_format = "NHWC", dilations = [1, 1, 1, 1], explicit_paddings … 47 …%0 = "tf.Conv2D"(%arg2, %arg1) {data_format = "NHWC", dilations = [1, 1, 1, 1], explicit_paddings … 57 …%0 = "tf.Conv2D"(%arg2, %arg1) {data_format = "NHWC", dilations = [1, 1, 1, 1], explicit_paddings … 72 …%0 = "tf.Conv2D"(%arg2, %arg1) {data_format = "NHWC", dilations = [1, 1, 1, 1], explicit_paddings … 83 …%0 = "tf.Conv2D"(%arg2, %arg1) {data_format = "NHWC", dilations = [1, 1, 1, 1], explicit_paddings … 92 …%0 = "tf.Conv2D"(%arg2, %arg1) {data_format = "NHWC", dilations = [1, 1, 1, 1], explicit_paddings … 103 …%0 = "tf.Conv2D"(%arg2, %arg1) {data_format = "NHWC", dilations = [1, 1, 1, 1], explicit_paddings …
|
/external/tensorflow/tensorflow/core/profiler/g3doc/ |
D | profile_model_architecture.md | 73 init/init_conv/Conv2D (113.25m/113.25m flops) 76 unit_1_0/sub1/conv1/Conv2D (603.98m/603.98m flops) 77 unit_1_0/sub2/conv2/Conv2D (603.98m/603.98m flops) 78 unit_1_1/sub1/conv1/Conv2D (603.98m/603.98m flops) 79 unit_1_1/sub2/conv2/Conv2D (603.98m/603.98m flops) 84 Conv2D 17.63b float_ops (100.00%, 100.00%)
|
/external/tensorflow/tensorflow/core/kernels/ |
D | conv_ops_benchmark_test.cc | 76 static Conv2DGraph Conv2D(int batch, int height, int width, int in_depth, in Conv2D() function 110 Conv2DGraph conv_graph = Conv2D<T>(batch, height, width, in_depth, filter_w, in Conv2DWithBias() 159 Conv2DGraph conv_graph = Conv2D<T>(batch, height, width, in_depth, filter_w, in Conv2DWithBatchNorm() 323 test::Benchmark(#type, Conv2D<float>(N, H, W, C, FW, FH, FC).graph, \ 326 BM_SET_INFO(N, H, W, C, type, LABEL, Conv2D); \ 338 BM_SET_INFO(N, H, W, C, type, LABEL, Conv2D); \ 352 BM_SET_INFO(N, H, W, C, type, LABEL, Conv2D); \ 365 BM_SET_INFO(N, H, W, C, type, LABEL, Conv2D); \ 378 BM_SET_INFO(N, H, W, C, type, LABEL, Conv2D); \ 391 BM_SET_INFO(N, H, W, C, type, LABEL, Conv2D); \ [all …]
|
D | conv_ops_test.cc | 219 Output conv = Conv2D(root.WithOpName("conv"), mirror_pad, casted_filter, in CompareFusedAndSeparate() 273 Output conv = Conv2D(root.WithOpName("conv"), mirror_pad, casted_filter, in CompareFusedPadOnlyAndSeparate() 619 ops::Conv2D conv = ops::Conv2D( in RunConv2DWithBias() 624 ops::Conv2D::Attrs().ExplicitPaddings(explicit_paddings)); in RunConv2DWithBias() 640 ops::Conv2D conv = ops::Conv2D( in RunConv2DWithBiasAndActivation() 645 ops::Conv2D::Attrs().ExplicitPaddings(explicit_paddings)); in RunConv2DWithBiasAndActivation() 674 ops::Conv2D conv = ops::Conv2D( in RunConv2DWithBatchNorm() 679 ops::Conv2D::Attrs().ExplicitPaddings(explicit_paddings)); in RunConv2DWithBatchNorm() 704 ops::Conv2D conv = ops::Conv2D( in RunConv2DWithBatchNormAndActivation() 709 ops::Conv2D::Attrs().ExplicitPaddings(explicit_paddings)); in RunConv2DWithBatchNormAndActivation()
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
D | Conv2D.pbtxt | 2 name: "Conv2D" 61 name: "Conv2D" 133 name: "Conv2D" 206 name: "Conv2D" 288 name: "Conv2D"
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v2/ |
D | Conv2D.pbtxt | 2 name: "Conv2D" 61 name: "Conv2D" 133 name: "Conv2D" 206 name: "Conv2D" 288 name: "Conv2D"
|
/external/tensorflow/tensorflow/python/keras/benchmarks/keras_examples_benchmarks/ |
D | cifar10_cnn_benchmark_test.py | 40 tf.keras.layers.Conv2D( 43 model.add(tf.keras.layers.Conv2D(32, (3, 3))) 48 model.add(tf.keras.layers.Conv2D(64, (3, 3), padding='same')) 50 model.add(tf.keras.layers.Conv2D(64, (3, 3)))
|
/external/tensorflow/tensorflow/core/grappler/optimizers/ |
D | generic_layout_optimizer_transposer_test.cc | 111 auto conv2d = ops::Conv2D( in SimpleConv2D() 113 {1, kStride1, kStride2, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); in SimpleConv2D() 296 Output conv2d = ops::Conv2D( in CreateSimpleAddN() 298 {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); in CreateSimpleAddN() 321 ops::Conv2D(scope.WithOpName("conv2d_1").WithDevice("/device:GPU:0"), in CreateSimpleIdentityN() 323 ops::Conv2D::DataFormat(kDstFormat)); in CreateSimpleIdentityN() 331 ops::Conv2D(scope.WithOpName("conv2d_2").WithDevice("/device:GPU:0"), in CreateSimpleIdentityN() 333 ops::Conv2D::DataFormat(kSrcFormat)); in CreateSimpleIdentityN() 387 Output conv2d = ops::Conv2D( in ReduceTransposerKeepDims() 389 {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); in ReduceTransposerKeepDims() [all …]
|
/external/tensorflow/tensorflow/compiler/jit/tests/ |
D | keras_imagenet_main.pbtxt | 18194 name: "res5a_branch1_1/Conv2D/ReadVariableOp" 18242 name: "res4a_branch1_1/Conv2D/ReadVariableOp" 18290 name: "res3a_branch1_1/Conv2D/ReadVariableOp" 18338 name: "res2a_branch1_1/Conv2D/ReadVariableOp" 18386 name: "conv1_1/Conv2D/ReadVariableOp" 18453 name: "res2a_branch2c_1/Conv2D/ReadVariableOp" 18501 name: "res2a_branch2b_1/Conv2D/ReadVariableOp" 18549 name: "res2a_branch2a_1/Conv2D/ReadVariableOp" 18597 name: "res2b_branch2c_1/Conv2D/ReadVariableOp" 18645 name: "res2b_branch2b_1/Conv2D/ReadVariableOp" [all …]
|
/external/tensorflow/tensorflow/lite/micro/testing/ |
D | generate_test_models.py | 44 tf.keras.layers.Conv2D(16, 3, activation="relu", input_shape=input_shape)) 45 model.add(tf.keras.layers.Conv2D(32, 3, activation="relu"))
|